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In probabilistic design of multilevel systems, the challenge is to estimate uncertainty propagation since 

outputs of subsystems at lower levels constitute inputs of subsystems at higher levels. Three uncertainty 

propagation estimation techniques are compared in this paper in terms of numerical efficiency and accuracy: 

root sum square (linearization), distribution-based moment approximation, and Taguchi-based integration. 

When applied to simulation-based, multilevel system design optimization under uncertainty, it is investigated 

which type of applications each method is best suitable for. The probabilistic formulation of the analytical 

target cascading methodology is used to solve the multilevel problem. A hierarchical bi-level engine design 

problem is employed to investigate unique features of the presented techniques for uncertainty propagation. 

This study aims at helping potential users to identify appropriate techniques for their applications. 

1. Introduction 

Multilevel system design refers to the optimization process of large, complex engineering systems that are 

decomposed into a hierarchy of subsystems. Since the subsystems are coupled, their interactions need to be taken 

into consideration to achieve consistent designs. Analytical target cascading (ATC) is a methodology that takes 

these interactions into account during the early stages of the design optimization process [1]. 

In recent years, design guidelines and standards are being adjusted to incorporate the concept of uncertainty into 

the early design and product development stage [2].  In response to these new requirements, the ATC formulation 
has been extended to solve probabilistic design optimization problems [3]. 

Probabilistic design of multilevel systems does not only entail the difficulty of formulating and solving non-

deterministic optimization problems; it is also quite challenging to model the mechanism of uncertainty propagation 

throughout the multilevel hierarchy. Outputs of subsystems at lower levels constitute inputs of subsystems at higher 

levels. It is thus necessary to estimate the statistical information of these outputs (that are inputs of subsystems at 
higher levels) with adequate accuracy without requiring a huge amount of raw data.  In previous work [4], we have 

taken advantage of the ATC formulation that enables the use of first-order Taylor series [5] for approximating 

nonlinear responses. The ATC consistency constraints do not allow large deviations from the incumbent expansion 

point (which are the mean values of the design variables) during the optimization process. In this manner, not only 

can we linearize nonlinear responses, but we can also consider them as normally distributed if all the random 

variables they depend on were also normally distributed. Although large approximation errors of expected values for 
the nonlinear responses are avoided, the convergence rate of the ATC process can be low since many iterations 

involving small “steps” may be necessary. In addition, this estimation technique may exhibit relatively large errors 

when approximating higher-order statistical moments [3,4,6].   

This paper considers two alternative methods for estimating statistical moments of nonlinear responses of 

random variables. The first method generates approximate probability density functions to be numerically integrated 

[3].  The second method uses numerical quadrature rules motivated by Taguchi-type experimental designs [7].  The 
scope of this paper is to investigate the stability, accuracy, and efficiency of these two methods when applied on 
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simulation-based, multilevel system design optimization problems, and to determine which type of applications each 

method is best suitable for. 

2. Probabilistic Design of Multilevel Systems 

The major characteristic of hierarchically decomposed multilevel systems is that outputs (responses) of lower-

level subsystems are inputs of higher-level subsystems. We take advantage of this functional dependency among 

levels and use analytical target cascading to solve probabilistic design problems of multilevel systems. The ATC 

process formulates and solves a design optimization problem for each of the elements in a multilevel hierarchy, e.g., 
the one shown in Figure 1. 

 

 

 
Figure 1: Example of multilevel system hierarchy 

 

In the following general mathematical formulation, subscripts i  and j  are used to denote level and element, 

respectively. For each element j  at level i , the set ijC  includes the elements that are “children” of this element. 

Responses ijr  are functions of children responses ( ) ( )11 1
,...,

+ + cij
i k i k

r r , local design variables ijx , and shared design 

variables ijy , i.e., 
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In the presence of uncertainty, random design variables and parameters are symbolized by the use of upper case 

letters and represented by their mean values, responses are represented by the expectations of nonlinear responses, 
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with ( ) ( )( ) ( )
11 1

f ,..., , , f
+ +

= =
cij

ij ij ij ij ij iji k i kR R R X Y Z , where the vector of design variables 
~

µ

ijX

consists of vectors 

( ) ( )1 11

,  ,...,µ µ µ
+ +ij i k i kcij

Z Y Y
 and ( ) ij ijg Z denote local design inequality constraints. [ ]E •  denotes expected value of a 

random variable, [ ]P •  represents the probability of an event, and fP is a vector of assigned probabilities of failure, 

i.e., probabilities of violating constraints. Tolerance optimization variables r

ε  and y
ε  are introduced for 

coordinating responses and shared variables, respectively. Superscripts (subscripts) ( )u l  are used to denote 

response and shared variable values that have been obtained at the parent (children) problem(s), and have been 

cascaded down (passed up) as design targets (consistency parameters).  

Figure 2 illustrates the information flow of the ATC process at element j  in level i . Assuming that all the 

parameters have been updated using the solutions obtained at the parent- and children- problems, Problem (2) is 

solved to update the parameters of the parent- and children- problems. This process is repeated until the tolerance 

optimization variables in all problems cannot be reduced any further. The top-level element of the hierarchy is a 

special case; the responses cascaded from above are the given system design targets, and since this is the only 
element of the level, there exist no shared variables. 

 

 
Figure 2: ATC information flow at element j , level i  

 

We optimize with respect to the means of the random variables, and utilize an analytical first-order reliability 

method (FORM) to evaluate the reliability of satisfying the probabilistic constraints. Specifically, we adopt the 

hybrid mean value (HMV) algorithm to compute the most probable point (MPP) for each constraint at each iteration 

of the optimization process [2]. It is emphasized that first-order methods yield exact results only if the limit-state 

(i.e., constraint) responses are linear, and random variables are normally distributed and uncorrelated. If these 
assumptions are violated, the obtained results are only approximate. Nevertheless, these methods are used widely in 

literature due to their simplicity and efficiency despite their relative inaccuracy. 

3. Uncertainty Propagation Techniques 

The solution of a probabilistic design problem requires information on the distribution and moments of the random 

design variables and parameters. Typically, this information is given or postulated at the bottom level of a 

probabilistic multilevel system design problem. However, since the outputs of lower-level problems constitute 

inputs to higher-level problems, we must propagate the uncertainty information as accurate as possible to solve the 

higher-level problems and the overall multilevel design problem. In this section we present two alternative 

techniques for estimating uncertainty propagation.   
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3.1 Advanced Mean Value Based Distribution Generation and Moment Estimation 

The main idea of this technique is to perform a reliability analysis on the output response (i.e., the nonlinear 

response of the random variables) using FORM for a sufficiently large range of reliability targets, e.g., from 

4β =  (with corresponding probability of failure ( ) 0.00003fP β= Φ − = ) to 4β = −  (with ( ) 0.99997fP β= Φ − = ). 

Once the most probable point is found (we use the HMV method [2]), the output response is evaluated at this point 

to provide the “corrected” function value for the corresponding probability of failure [8]. With the cumulative 

density function (CDF) available, one can then differentiate numerically to obtain the probability density function 

(PDF) [9]. We use central differences to obtain second-order accurate approximations. Finally, we integrate 

numerically, using spline interpolation to estimate response values that lie between the available “discrete” points of 
the PDF, to compute moments. As will be shown later by means of preliminary numerical results, this method is 

quite accurate. However, it can be inefficient depending on how the “β-range” is “discretized”.  

3.2 Taguchi-based Integration and Moment Estimation 

3.2.1 Output Statistical Moment Modeling: Numerical Integration on Input Domain 

One purpose of statistical moment estimation stems from the robust design optimization, which attempts to 

minimize the quality loss [10,11], which is a function of the statistical mean and standard deviation. Several 

methods are proposed to estimate the first two statistical moments of the output response. Analytically, the statistical 
moments are expressed in an integration form as 
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Using numerical integration, the statistical moments of output response are approximated through numerical 

integration on the input domain as 
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 (4) 

For application, Taguchi [11,12] proposed an experimental design approach for statistical tolerance design with 

a three-level (m=3) factorial experiment, which are composed of low, center, and high levels as 

 { } { }1 1 1 3 3
2 21 2 3 1 2 3 3 3 3

, , , , , , , , ,0,w w w α α α = −  

Three-level factorial experiment is modified by D’Errico and Zaino [13] by employing distinctive weights at 

different levels as 

 { } { }1 4 1

1 2 3 1 2 3 6 6 6
, , , , , , , , 3,0, 3w w w α α α = −  

Thus, the modified three-level factorial experiment improved numerical accuracy in estimating the statistical 

moments of output response. In numerical integration, three weights for Xi are used to approximate the probability 

density of Xi at three different probability levels. From the statistical point of view, the modified three-level factorial 
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experiment is meaningful, since many random input variables follows the rule of high density near the mean and low 

density at the tail of statistical distribution, as shown in Fig. 3. 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

( a ) Taguchi Method [11]     ( b ) D’Errico and Zaino Method [13] 

 

Figure 3: Three-level numerical integration on the input domain 

 

In the experimental method, the computation of the moment could be very expensive for a large number of 

design and/or random parameters, since the number of function evaluations or experiments required is 3
n

N =  

where n is a number of design and random parameters. Thus, this method is not used in this paper. 

3.2.2 Output Statistical Moment Modeling: Numerical Integration on Output Domain 

In Section 3.2.1, statistical moments of output response are estimated through numerical integration on the input 

domain, making it very expensive for reliability-based robust design optimization. In this paper, the proposed 

method directly identifies uncertainty propagation using numerical integration on the output domain. Unlike Eq. (3), 

the statistical moment calculation is carried out by 
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where ( )
R
f r  is a probability density function of R. To approximate the statistical moments of R accurately, N-point 

numerical quadrature technique can be used as 
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At minimum, the three-point integration (N=3) is required to maintain a good accuracy in estimating first two 

statistical moments. By solving Eq. (6), three levels and weights on the output domain are obtained as{ }1 2 3
, ,r r r =  

{ }3 3
, ( ),r r r

β β=− =+X
µ  and { } { }1 4 1

1 2 3 6 6 6
, , , ,w w w = , as shown in Fig. 4. In general, upper and lower levels are not 

symmetrically located, as shown in Fig. 4. 
 

 

 

 

 
 

3
2

i i
X X

µ σ−
i

X
µ 3

2
i i

X X
µ σ+

( )
i

X i
f x

1/3 

Xi 

1/6 

3
i i

X X
µ σ−

i
X

µ 3
i i

X X
µ σ+

� X

4/6 

( )
i

X i
f x



 
American Institute of Aeronautics and Astronautics 

 

6

 

 

 
 

 

 

 

 

 
 

 

 

Figure 4: Three-level numerical integration on the output domain 

 

Using the three-level numerical integration on the output domain, the first two statistical moments in Eq. (5), the 
mean and standard variation of the output response are approximated to be 
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Since the statistical moments of output response are estimated through a numerical integration on the output (or 

performance) domain, this method is called performance moment integration (PMI) method. In the PMI method, 

3 3
 and r r

β β=− =+
 are obtained through reliability analyses [2,8,9] at 3β = ±  confidence levels. In this paper, the 

hybrid mean value (HMV) method is used for reliability analysis [2]. 

4. Numerical Examples 

4.1 Single-level Propagation Examples 

Two nonlinear analytical examples and one vehicle crashworthiness for side-impact simulation example are used 
to demonstrate the aforementioned techniques. For abbreviation purposes, the method presented in Section 3.1 is 

called distribution-based method (DBM) in this paper. Monte Carlo simulation (MCS) with one million samples and 

root sum square (RSS) method are used for numerical comparison. Experimental methods [11,13] are not used for 

comparison because it would be too expensive even though it would be as accurate as MCS. Statistical non-

normality of the response functions is represented by skewness and kurtosis. Skewness is a measure of symmetry of 

probability density function (a normal distribution has a skewness value of 0). Kurtosis is a measure of relative 
peakness/flatness of probability density function to normal distribution, which has a kurtosis value of 3. 

The first analytical example, the response is 

 2

1 1 2
( ) 1 / 20R X X= −X  (8) 

For this example, the input random parameters are modeled as (5.0,0.3)
i

X N∼  for i=1,2. As shown in Table 1 and 

Fig. 5, the probabilistic distribution of the first response is close to a normal distribution with a moderate rate of 
skewness and kurtosis. Thus, RSS, DBM, and PMI show overall a good accuracy in estimating the first two 

statistical moments of responses. 

The second analytical example response is  

 1
7

2 2
( ) 10X

R e X
−

= − − +X . (9) 

 fR(r) 

1/6 

( )r
X

µ 3
r
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The input random parameters are modeled as (6.0,0.8)
i

X N∼  for i=1,2. As shown in Table 1, the RSS method 

yields a large approximation error of 107% for the second moment, whereas the DBM and PMI methods are much 

more accurate for both the mean and standard deviation. 

The last single-level example R3 is the pubic force from a side impact simulation [14], which is modeled with 
input uncertainties of Gumbel distribution and 10% coefficient of variation. Even though the stochastic response is 

highly skewed with large kurtosis, the PMI method seems to predict the first two statistical moments accurately, 

whereas the RSS could yield larger errors. DBM results are not available for this example. 

 

 

Table 1: Single-level examples 
 

 Mean Standard Deviation Skew. Kurt. 

 RSS DBM PMI MCS RSS DBM PMI MCS   

R1 -5.2500 -5.286 -5.286 -5.2719 0.8385 0.842 0.8411 0.8405 -0.26 3.11 

Error, % 0.415 -0.259 -0.259 -- -0.238 0.17 0.071 -- -- -- 

R2 3.6321 3.6029 3.6082 3.4937 1.9386 0.9013 0.8800 0.9349 -0.57 7.13 

Error, % 3.961 3.125 3.277 -- 107.4 -3.593 -5.872 --   

R3 -1.4100 N/A -1.4135 -1.4291 0.0632 N/A 0.0685 0.0708 -0.99 4.93 
Error, % 1.337 N/A 1.092 -- -10.73 N/A -3.248 -- -- -- 

 

 

 

   
 

Figure 5: PDF of R1 (left), R2 (middle), and R3 (right) 

 

4.2 Bi-level Propagation Example 

In this section we demonstrate how the aforementioned techniques are used to estimate uncertainty propagation 
in multilevel systems. The probabilistic formulation of the ATC process is used to solve a simple yet illustrative 

simulation example. An engine is considered at the system (top) level, which is decomposed into subsystems 

(bottom level) representing the piston-ring/cyliner-liner subassembly of the cylinders. Although an engine has 

multiple cylinders, they are all designed to be identical. For this reason, only one subsystem is considered. 

The system simulation predicts engine performance in terms of brake-specific fuel consumption. The ring/liner 

subassembly simulation takes as inputs the surface roughness of the ring and the liner and the Young’s modulus and 
hardness and computes power loss due to friction. The root mean square (RMS) of asperity height is used to 

represent asperity roughness, which is assumed to be normally distributed with a coefficient of variation of 15-25%. 

The engine simulation takes then as input the power loss and computes brake-specific fuel consumption of the 

engine. Commercial software packages were used to perform the simulations. Detailed descriptions of the problem 

can be found in [3,4]. 

Since we have some information about the uncertainty associated with surface roughness of the ring and the 
liner, we begin at the bottom level. The bottom-level ATC problem is formulated as 
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and is solved first assuming that 
1

0µ =
u

R
. When the optimal solution is found, uncertainty propagation associated 

with the random response R1 must be estimated in order to solve the top-level problem, which is formulated as 
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 Once this problem is solved, we have an update for 
1

µ
u

R
, and we solve the bottom-level problem again. This process 

is repeated until the optimization variables in both problems don’t change significantly anymore. 

It was found that the response of the bottom-level simulation (power loss) is highly nonlinear, while the response 
of the top-level simulation (fuel consumption) was almost linear. Therefore, we focus on the results of the bottom-

level simulation, which are the more interesting anyway since it is the power loss that is propagated in the bi-level 

system (as the output of the bottom level simulation that constitutes the input of the top level simulation). The DBM 

method enables the generation of the highly nonlinear, multi-modal probability density function (shown in Fig. 6). 

The histogram obtained using Monte Carlo simulation with one million samples confirms the accuracy of the DBM-

predicted PDF. Note that the presented plots and numerical results are based on the obtained optimal ring/liner 
design. 
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Figure 6: DBM-generated PDF of power loss (left) and MCS histogram (right) 
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 As shown in Table 2, although all methods predict the mean of power loss accurately, RSS is highly inaccurate 

when estimating the standard deviation. PMI exhibits a smaller error, while DBM yields excellent prediction, due to 

the fact that it generates distribution information. The PMI error is mostly due to the statistical nonlineariy of 
bimodal distribution. PMI requires two reliability analyses for each of the three measures, whereas DBM requires 

about 11 reliability analyses to discretize the “β-range” in order to generate the probability density function.  
 

Table 2: Numerical accuracy of moments for simulation-based example 

 

Mean Standard Deviation 

 

RSS PMI DBM MCS RSS PMI DBM MCS 

R4 0.3950 0.3920 0.3923 0.3932 0.0482 0.0297 0.0310 0.0311 

Error, % 0.5 -0.3 -0.2 - 55.0 -4.6 -0.45 - 

 

 
Table 3 compares the optimal design of the ring/liner obtained using the three methods. It is clear that solving the 

probabilistic multilevel design problem using the error-prone RSS method yields the wrong results, which highlights 

the importance of accurate estimation of uncertainty propagation. The results obtained using DBM or PMI are very 

similar for this example. 

 

Table 3: Comparison of ring/liner optimal design 
 

Design variable Initial RSS optimum DBM optimum  PMI optimum 

X11: ring surface roughness, [µm] 5.000 4.264 4.000 4.000 

X12: liner surface roughness, [µm] 5.000 6.001 6.150 6.113 

x13: liner Young’s modulus, [GPa] 200 80 80 80 
x14: liner hardness, [BHV] 200 220.84 240 239.8 

5. Discussion and Conclusions 

Two alternative techniques for estimating uncertainty propagation in probabilistic design of multilevel systems 

were presented in the paper. The first method generates approximate probability density functions, which are then 
integrated numerically to obtain statistical moments (distribution-based method, DBM). The second method uses 

numerical quadrature rules to estimate statistical moments of output response (performance moment integration, 

PMI). The methods were successfully applied to model the uncertainty propagation mechanism by estimating 

statistical moments efficiently and accurately. The scope of this paper was to investigate the stability, accuracy, and 

efficiency of these two methods when applied on simulation-based, multilevel system design optimization problems, 

and to determine which type of applications each method is best suited for. 
It was found that both DBM and PMI estimate statistical moments accurately for nonlinear responses with high 

skewness and kurtosis. Thus, PMI and DBM successfully carried out the probabilistic design optimization of 

multilevel hierarchical system. The methods were compared to the Root Sum Square (RSS) method and Monte 

Carlo simulation was performed to compare the estimation of statistical moments. PMI and DBM are more accurate 

to assess statistical moments than RSS. PMI can be useful for many nonlinear engineering systems, since it is 

computationally inexpensive yet accurate. On the other hand, DBM can be more accurate but is computationally 
more expensive. Finally, DBM should be used when the probabilistic design of multilevel systems requires 

generating distributions of nonlinear responses, i.e., when moments are not adequate to model propagation of 

uncertainties.   
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