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Analytical target cascading (ATC) is a methodology for translating system design tar-
gets to design specifications for the elements comprising a decomposed engineering system.
In previous work we extended the ATC formulation to reliability-based design optimiza-
tion (RBDO) problems, where the bounds of the probabilistic design constraints for each
subproblem were assigned arbitrarily and held fixed during the ATC process. In this work,
we extend the probabilistic ATC formulation to include reliability targets in the cascaded
quantities. We employ a series-system formulation to solve the RBDO problem associated
with each element of the ATC hierarchy and to compute its reliability. Thus, we quantify
the optimality-reliability tradeoffs for each element of the decomposed system, which allows
us to determine the probabilistic constraint bounds required to satisfy the overall system
reliability target. In this manner we cascade the latter to element reliability specifications.

I. Introduction

In many industry branches including aerospace optimal system design problems appear in a decomposed
form: the design optimization tasks associated with the elements that comprise the system are distributed
among departments or outsourced to suppliers. In this case, smooth system integration can only be ensured
when the interactions among elements are taken into account and appropriate design specifications are
obtained for all subproblems.

Analytical target cascading (ATC), is a methodology for cascading system design targets to element
design specifications.1 Using the multilevel hierarchy of the decomposed system, an optimization problem
is formulated and solved for each element to minimize deviations of local responses from propagated tar-
gets. Solving the subproblems using appropriate coordination strategies yields overall system optimality and
consistency. Several case studies have demonstrated the usefulness of ATC, e.g., in automotive engineering
applications.2,3

In recent work, we extended the deterministic ATC formulation to probabilistic design in order to account
for uncertainties.4 Uncertain quantities were modeled as random variables, and we used the means of the
random variables as optimization variables. The ATC optimization problems were reformulated as reliability-
based design optimization (RBDO) problems. In RBDO, reliability is defined as the statistical estimate of
satisfying probabilistically formulated design constraints. Although reliability is a system design objective of
primary importance, probability of failure targets for these constraints are assigned more or less arbitrarily.
For example, the vast majority of RBDO methods require the specification of reliability targets Rtp for each
of the M probabilistic design constraints:

min
µX

f(µX) (1)

subject to P [gp(X) ≤ 0] = Rp ≥ Rtp p = 1, 2, . . . ,M,

where µX is the vector of the means of the random variables X, P [·] denotes probability measure and R
reliability. Two recently reported RBDO methods consider an aggregated system reliability constraint that
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allows flexibility regarding the satisfaction of the probabilistic design constraints as long as the overall system
reliability target is met.5,6 These formulations consider the probabilistic optimal system design problem as a
series system since the violation of just one of these constraints would correspond to a system failure. These
publications do not consider decomposition-based system design optimization, and thus do not address the
reliability target allocation problem.

Reliability allocation has been studied recently for parallel-series systems in the IEEE community.7,8

A parallel-series system consists of n subsystems arranged in series, each of which is comprised by mi

parallel components, where i = 1, 2, . . . , n. Given reliability target values Rti for each subsystem i, a
cost minimization problem is formulated to determine the optimal number of components mi∀i and the
required component reliability values Rtij

, where j = 1, 2, . . . ,mi (redundancy and reliability allocation).
Cost functions that are monotonic with respect to reliability were used, and it was shown that all parallel
components within a subsystem must have identical reliability. These studies, however, are not concerned
with design optimization. Furthermore, the system decomposition structure is limited to that of a parallel-
series system. Thus, the desired system reliability can not be “translated” to required reliability targets for
the elements of any arbitrary decomposition.

In this paper, we propose a multilevel optimization methodology for allocating reliability targets to the
subsystems, components, etc. that comprise a system whose design is being optimized under uncertainty.
Specifically, we extend the probabilistic formulation of analytical target cascading methodology to include
reliability in the vector of cascaded target values. Essentially, we introduce rigorous (i.e., mathematically
formal) negotiations among the elements of the multilevel hierarchy regarding their required reliability. That
means that we need to compute the reliability of each element taking into account both the probabilistic
design constraints associate with that element and the reliability of its “children” elements. To that end, we
employ the series system approach of Ref.6 to solve the RBDO problem associated with each element of the
decomposed system.

The paper is organized as follows. Section II provides a brief review of the deterministic and probabilistic
analytical target cascading formulations. Section III provides a description of the series system RBDO
approach that will be used to compute the reliability of each element of the decomposed system. Section
IV introduces the proposed methodology for reliability target allocation. Section V presents a simple yet
illustrative example used to demonstrate the proposed methodology, and Section VI provides concluding
remarks.

II. Analytical Target Cascading

Given a hierarchical decomposition such as the one in Figure 1, analytical target cascading (ATC) is a
mathematical methodology for translating (“cascading”) the pre-described system design targets to design
specifications for all the subsystems, components, etc. that comprise the system. The objective is to

system j=1

subsystem j=1 subsystem j=2

component j=1 component j=2 component j=m

subsystem j=n

level i=0

level i=1

level i=2

Figure 1. Three-level example of hierarchical multilevel decomposition

identify early in the design development process the relations and possible trade-offs among elements, and to
determine specifications that yield consistent system design with minimized deviation from design targets.
The ATC process is proven to be convergent when using a specific class of coordination strategies,9 and has
been applied successfully to a variety of optimal design problems, e.g., Refs.10,11 We refer the reader to
these references for a detailed description of ATC. Here, we will briefly present the concept and the general
mathematical formulation.
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ATC operates by formulating and solving a minimum deviation optimization problem for each element
in the hierarchy. Assuming that responses of higher level elements are functions of responses of lower-level
elements, it aims at minimizing the gap between what upper-level elements “want” and what lower-level
elements “can”. Similarly, if design variables are shared among some elements at the same level, their
consistency is coordinated by their common parent element at the level above. Assuming that element j at
level i has nij children, the aforementioned functional dependency is expressed as

zij = fij(z(i+1)1, . . . , z(i+1)nij
,xij ,yij), (2)

where zij are element’s responses, z(i+1)1, . . . , z(i+1)nij
denote children responses, xij represent local design

variables, and yij denote local shared design variables (i.e., design variables that this element shares with
other elements at the same level). The mathematical formulation of problem pij for element j at level i is

min ‖zij(z(i+1)1, . . . , z(i+1)nij
,xij ,yij)− zuij‖22 + ‖yij − yuij‖22 + (3)∑nij

k=1 ‖z(i+1)k − zl(i+1)k‖
2
2 +

∑nij

k=1 ‖y(i+1)k − yl(i+1)k‖
2
2

with respect to z(i+1)1, . . . , z(i+1)nij
,xij ,yij ,y(i+1)1, . . . ,y(i+1)nij

subject to gij(zij ,xij ,yij) ≤ 0,

where coordinating variables for the shared design variables of the children are denoted by y(i+1)1, . . . ,y(i+1)nij
,

and local design constraint functions are represented by gij . Superscripts u (l) are used to denote response
and shared variable values that have been obtained at the parent (children) problem(s), and have been cas-
caded down (passed up) as design targets (consistency parameters), cf. Figure 2. Note that although com-

optimization inputs optimization outputs

element optim  pij, 
where zij is provided by the 
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ization problem
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response and shared
variable values cascaded 

down to the children

Figure 2. ATC information flow at element j of level i

munication among levels, i.e., updating parameter values associated with the ATC process, is bi-directional,
functional dependency is strictly hierarchical. Assuming that all the element’s problem parameters have been
updated using the solutions obtained at the parent- and children-problems, Problem (3) is solved to update
the parameters of the parent- and children-problems. All the subproblems are solved iteratively according
to an appropriate coordination strategy until optimization variables converge (i.e., don’t change anymore).

A. Probabilistic ATC Formulation

The deterministic ATC formulation assumes that complete information of the system design problem is
available, and that design decisions can be implemented precisely. These assumptions imply that optimization
results are as good (and therefore useful) as the design and simulation/analysis models used to obtain them,
and that they are meaningful only if they can be realized exactly. In reality, these assumptions do not hold.
We are rarely in a position to represent a physical system without using approximations, have complete
knowledge on all of its parameters, or control the design variables with high accuracy. It is therefore
imperative to represent uncertainties and take them into account during the early design assessment process.

The ATC formulation has been extended to account for uncertain quantities by modeling them as random
variables (denoted by upper case Latin symbols).4 The means of the random variables are treated as
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optimization variables. Functions of random variables are approximated by their expected value, and design
constraints are formulated probabilistically, as in Problem (1). The probabilistic ATC formulation is

min ‖µZij
(µZ(i+1)1 , . . . , µZ(i+1)nij

, µXij
, µYij

)− µuZij
‖22 + ‖µYij

− µuYij
‖22 + (4)∑nij

k=1 ‖µZ(i+1)k
− µlZ(i+1)k

‖22 +
∑nij

k=1 ‖µY(i+1)k
− µlY(i+1)k

‖22
with respect to µZ(i+1)1 , . . . , µZ(i+1)nij

, µXij , µYij , µY(i+1)1 , . . . , µY(i+1)nij

subject to P [gij,p(Zij ,Xij ,Yij) ≤ 0] = Rij,p ≥ Rtij,p , p = 1, 2, . . . ,Mij

where Mij is the number of probabilistic design constraints and Rtij,p
is the desired reliability for each

constraint.

B. Uncertainty Propagation

In a multilevel hierarchy, responses of lower-level elements are inputs to higher-level elements. This is
an issue of utmost importance in design optimization of hierarchically decomposed systems under un-
certainty, since the solution of probabilistic optimization problems requires variance information of the
random optimization variables. Consider element j at level i. By solving Problem (4), we obtain op-
timal values µ∗Z(i+1)1

, . . ., µ∗Z(i+1)nij
, µ∗Xij

, and µ∗Yij
. Using the functional dependency relation Zij =

fij(Z(i+1)1, . . . ,Z(i+1)nij
,Xij ,Yij), we must estimate the standard deviations of the responses Zij since

they constitute parameters of the parent probabilistic optimal design problem (estimation of means is not
critical because they constitute optimization variables of the parent probabilistic optimal design problem;
accurate estimates provide merely good initial guesses for the optimization algorithm). This needs to be
done for all problems at all levels of the hierarchy. Depending on the computational cost of the required
evaluations, one can use either the Monte Carlo method, or efficient approximation methods such as those
presented in.4,12

Assuming that initial uncertainty information is available at the bottom level of the hierarchy, its prop-
agation through the hierarchy during the ATC process can be summarized as follows.

1. Starting at the bottom level of the hierarchy, where the probability density functions of the random
variables are assumed to be known, solve the RBDO problems. Since parameter values from the top
level are not available at this first iteration, one can use reasonable or “stretched” target values based
on knowledge of the problem.

2. Obtain the equivalent means and standard deviations of the response variables that are inputs to the
parent problems, and solve the latter.

3. Once the top level has been reached and the system RBDO has been solved, cascade updated targets
down the hierarchy using previous solutions to update parameters.

4. Keep iterating until all optimization variables in all problems have converged (i.e., are not changing
significantly anymore).

III. Component Reliability Estimation Using Series System RBDO

Since a component design has to satisfy all the constraints (there is no redundancy, i.e., violation of one
constraint leads to failure), it can be viewed as a series system. Therefore, to solve the RBDO problem (1) for
each element of the hierarchy, and estimate its reliability, we adopt the series-system RBDO method of.6 In
this method, the optimizer determines not only the optimal values of the original optimization variables µX,
but also the optimal reliability value for each probabilistic design constraint. Given a component reliability
target, the optimizer allocates reliability target values among the failure failure modes (a failure mode being
the violation of a probabilistic design constraint). Reliability allocation and optimal design are conducted
simultaneously. The reliability values Rj of the probabilistic design constraints are included in the set of
optimization variables. We must ensure that the “constraint” reliability RC , a function of the reliability of
all constraints, exceeds the desired component reliability Rt. According to Ref.6 this constraint reliability
is approximated by

RC = 1−

(
M∑
p=1

Pfp
−

M∑
p,q=1

max
q<p

Pfpq

)
, (5)
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where Pfp and Pfpq represent probability of failure of constraint p and joint probability of failure of constraints
p and q, respectively (where p, q = 1, 2, . . . ,M). Recall that reliability and probability of failure are linked
through the relation R = 1− Pf .

The series-system RBDO problem formulation then becomes

min
µX,R1,R2,...,RM

f(µX) (6)

subject to P [gp(X) ≤ 0] = Rp ≥ Rtp , p = 1, 2, . . . ,M,

Rt − 1 +
(∑M

p=1 Pfp −
∑M
p,q=1 maxq<p Pfpq

)
= Rt −RC(R1, R2, . . . , RM ) ≤ 0.

IV. Target Cascading for Reliability Allocation

In a decomposed system, the reliability of each element (subsystem, component, etc.) is determined not
only by its ability to satisfy the probabilistic design constraints (estimated using the approach presented in
Section III), but also depends on the reliability of its “children” elements. Specifically, the reliability RE of
an element with M probabilistic design constraints and N children is

RE = RC

N∏
k=1

REk
=

(
1−

(
M∑
p=1

Pfp −
M∑

p,q=1

max
q<p

Pfpq

))
N∏
k=1

REk
. (7)

Note that if an element has no children, then the product
∏N
k=1REk

does not show up in Eq. (7), i.e., for a
“childless” element we have RE = RC .

Let us consider the generic element j at level i of the hierarchy (cf. Figure 3). The reliability of the

element ij

element (i+1)1 element (i+1)2 element (i+1)nij

( 1)1iER
+ ( 1)2iER

+ ( 1)i nijER
+

( )( )( 1)1 ( 1) 2 ( 1),1 ,2 ,, ,..., , , ,...,
ij ij ij i i i nijE C ij ij ij M E E ER f R R R R R R R

+ + +
=

,1ijR
,2ijR

, ijij MR

ijCR

Figure 3. Reliability estimation for element j at level i of the hierarchy

element is a function of its “design constraint” reliability RCij
and the children reliability values RE(i+1)k,

k = 1, 2, . . . , nij , where nij is the number of children elements. In our proposed methodology for reliability
allocation, we exploit this functional dependency, and include reliability in the formulation of the ATC
subproblems as follows.

min ‖µZij
(µZ(i+1)1 , . . . , µZ(i+1)nij

, µXij
, µYij

)− µuZij
‖22 +

∑nij

k=1 ‖µZ(i+1)k
− µlZ(i+1)k

‖22 + (8)

(REij(RCij (Rij,1, . . . , Rij,Mij ), RE(i+1)1 , . . . , RE(i+1)nij
)−RuEij

)2 +
∑nij

k=1(RE(i+1)k
−RlE(i+1)k

)2 +

‖µYij
− µuYij

‖22 +
∑nij

k=1 ‖µY(i+1)k
− µlY(i+1)k

‖22
w.r.t. µZ(i+1)1 , . . . , µZ(i+1)nij

, µXij , µYij , µY(i+1)1 , . . . , µY(i+1)nij
, Rij,1, . . . , Rij,Mij , R(i+1)1, . . . , R(i+1)nij

subject to P [gijp(Zij ,Xij ,Yij) ≤ 0] ≥ Rij,p, p = 1, 2, . . . ,Mij(
1−

(∑Mij

p=1 Pfp
−
∑Mij

p,q=1 maxq<p Pfpq

))∏nij

k=1RE(i+1)k
≥ RuEij

The ATC process for reliability allocation is initiated at the bottom level, and follows the description
of Section II B. Bottom-level elements do not have any children: their reliability is equal to their “design
constraint” reliability, computed using the technique of Section III. These reliability values are then passed
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up to the next level, where they are used, together with local reliability values, to estimate the reliability
of the elements at that level, and so on. When the top level is reached, the system ATC problem examines
whether system reliability meets the desired reliability target. If necessary, the ATC problems are solved
again, this time going down the hierarchy, and the whole process is repeated until convergence. Note that it
is possible that the ATC process will converge without meeting top-level reliability (or other performance)
targets. The ATC process does not guarantee that top-level targets will be met; it guarantees that design
specifications and reliability targets will be allocated to all elements of the decomposed system so that the
design of the latter is consistent while trying to meet the pre-specified top-level system design and reliability
targets as close as possible.

V. Example

In this section, we demonstrate the methodology for reliability allocation using a two-level example,
which is a slight modification of the problem presented in Ref.1 The deterministic formulation of the three
subproblems of the two-level decomposed optimization problem are presented in Figure 4.
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Figure 4. Deterministic formulation of the two-level optimization problem

Let us now consider the case where there is uncertainty in the parameters p01, p11,1 and p12,2 (modeled as
normally distributed random variables P01, P11,1 and P12,2 ), which propagates through the hierarchy since
all responses and design constraints in bottom-level optimization problems depend on these parameters, and
because all responses and design constraints in the top-level optimization problem depend on bottom-level
responses. The RBDO formulation of the two-level problem with arbitrarily assigned reliability target values
for the probabilistic constraints is presented in Figure 5.

Introducing the reliability target variables into the ATC process using the series-system approach, as
described in Section IV, yields the two-level reliability allocation problem shown in Figure 6.

We obtained results for the following parameter values of the deterministic optimization problem

t = [0 0]T ; p01 = 0.87 ; p11 = [0.97 1.3]T ; p12 = [1.3 0.84]T,

while in the probabilistic optimization problem we considered a 5% coefficient of variation for each uncer-
tain parameter and required a top-level system reliability RT of 0.9 (or 90% percent). Table 1 summarizes
the obtained results. We used the Monte Carlo method to solve the reliability analysis problem for each
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Figure 5. RBDO formulation of the two-level optimization problem with arbitrarily assigned reliability targets
for the probabilistic constraints

probabilistic constraint in the optimization subproblems. We can see how uncertainty affects the solution of
the problem and increase the objective function value of the problem, since it is expected that, to accom-
modate uncertainty, the optimal solution changes to the detriment of optimality. The significant part of the
results is that we have obtained the required reliability targets for the probabilistic design constraints of the
bottom-level problems, and thus the required element reliability targets for these two subsystems, as well as
the required reliability target values for the probabilistic design constraints of the top-level problem so that
the system reliability target is met. These results are summarized in Table 2, which includes the verifying
calculations. Note that the system reliability RE01 meets the assigned target RT exactly.

VI. Concluding Remarks

We have presented an extension of the probabilistic formulation of Analytical Target Cascading (ATC)
to conduct reliability target allocation in decomposition-based system optimal design under uncertainty. We
have assumed that each element of the multilevel hierarchy that represents the decomposed system is a series
system, whose reliability depends on satisfying all probabilistic design constraints as well as on the reliability
of all its “children” elements. We have demonstrated the applicability of the proposed methodology using a
simple analytical example. Future work will investigate issues such as approximations made during element
reliability analysis and uniqueness of solutions.
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Figure 6. Reliability allocation formulation of the two-level optimization problem using ATC
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Table 1. Results for the deterministic and probabilistic formulations of the two-level optimization problem

Response or design variable Deterministic solution Probabilistic solution

z01,1 (E[Z01,1] in probabilistic case) 2.80 3.29
z01,2 (E[Z01,2] in probabilistic case) 3.03 3.21

x01,1 0.76 0.71
x01,2 0.95 1.02

z11 (E[Z11] in probabilistic case) 2.35 2.85
x11,1 0.87 0.69
x11,2 0.80 0.55

z12 (E[Z12] in probabilistic case) 2.79 2.91
x12,1 1.75 1.87
x12,2 1.54 1.61

Table 2. Reliability allocation results and verifying calculations

Reliability Value Verifying calculation (when applicable)

R01,1 0.940
R01,2 0.980
R11,1 0.991
R11,2 0.999
R12,1 0.984
R12,2 0.998

RE11 = RC11 0.990 = 1− (Pr[g11,1 > 0] + Pr[g11,2 > 0]− Pr[g11,1 > 0 AND g11,2 > 0])
= 1− (0.009 + 0.001− 0)

RE12 = RC12 0.982 = 1− (Pr[g12,1 > 0] + Pr[g12,2 > 0]− Pr[g12,1 > 0 AND g12,2 > 0])
= 1− (0.016 + 0.002− 0)

RC01 0.920 = 1− (Pr[g0,1 > 0] + Pr[g0,2 > 0]− Pr[g0,1 > 0 AND g0,2 > 0])
= 1− (0.06 + 0.02− 0)

RE01 0.900 = RC01RE11RE12 = 0.920 · 0.990 · 0.982
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