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Abstract

We consider the planning of production over the infinite horizon in a system with
time varying convex production and inventory holding costs. This production lot size
problem is frequently faced in industry where a forecast of the future demand must be
made and a production is to be scheduled based on the forecast. Since forecasts of the
future are expensive and difficult to validate, a firm would like to minimize the number
of periods into the future it needs to forecast in order to make an optimal production
decision today. In this paper, we first prove that under very general conditions finite
horizon versions of the problem exists that lead to an optimal production level at any
decision epoch. In particular, we show it suffices to solve for a horizon that exceeds
the longest time interval over which it can prove profitable to carry inventory. We then
develop a closed-form expression for computing such a horizon and provide a simple
finite algorithm to recursively compute an infinite horizon optimal production schedule.

1 Introduction

The production lot sizing problem is a model for the control of production over a multi-
period planning horizon (Denardo [1982]). It is one of the most frequently used single item
deterministic inventory planning models (Federgruen and Tzur [1991]). The objective is
to schedule production over the planning horizon so that demand is satisfied at minimum
cost. Standard assumptions are that demand is deterministic (i.e., known in advance) and
backordering is not allowed (i.e., demand cannot be satisfied by future production).

The fundamental economic tradeoff here is the balance of reductions in cost of production
against corresponding increases in costs of carrying inventory. In the presence of economies
of scale on the cost of production. it can prove profitable to produce more than the current
periods demand and carry inventory forward to satisfy future demand, thereby lowering
the average cost of production (cycle stock motive). Even in the absence of economies
of scale in production costs, the future cost of production may exceed the cost of current
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production plus inventory carrying costs again leading to current production that exceeds
current demand (speculative motive (Chand and Morton [1986])).

The choice of planning horizon to employ is a difficult issue since the system being mod-
eled typically has a long but otherwise indefinite lifespan. A resolution of this problem is to
utilize an infinite horizon to model the underlying long but unknown finite horizon lifespan
of the system. In the general case of time-varying demand and cost, the resulting model
presents a challenging problem to solve (the stationary case reduces to the classic economic
lot size (ELS) model (Harris [1990])). Early efforts to solve infinite horizon versions of
the problem were restricted to the case of stationary, and usually linear, production cost,
although demand was allowed to be time-varying (Kunreuther and Morton {1973, 1974].
Lee and Orr [1977], Modigliani and Hohn [1955], Morton [1978a,1978b], and Thompson
and Sethi [1980]). The so-called dynamic lot size version of the problem where produc-
tion costs are fixed-plus-linear and inventory holding costs are linear has been extensively
studied in the non-stationary case. Although the recent focus has been on computational
breakthroughs in solving finite horizon versions of the problem (see e.g. Aggarwal and Park
[1990], Federgruen and Tzur [1991], and Wagelmans, Van Hoesel and Kolen [1989]). the
properties exploited there have in some cases been used to establish conditions on finite
horizon versions of the infinite horizon problem that guarantee early decision agreement
with optimal decisions of the infinite horizon problem. Such a finite horizon is called a solu-
tion horizon. When the agreement does not depend on problem data beyond this solution
horizon, it is also called a forecast horizon since only data over this horizon needs to be fore-
casted to establish infinite horizon optimal early decisions (Bes and Sethi [1988]). Although
solution and forecast horizons may fail to exist here, Federgruen and Tzur [1991, 1992]
provided a stopping rule that is guaranteed to be met whenever they do exist. Specifically.
they exploited monotonicity of optimal cost differences to establish necessary and sufficient
conditions for a horizon N to be a forecast horizon. This monotonicity condition implies
monotonicity with respect to N in the last period with production. This last, property
has been extensively exploited to generate forecast horizon existence and discovery results
for variations on the dynamic lot size problem (see e.g. Wagner and Whitin [1958], Zabel
[1964]. Eppen et al. [1969], Thomas [1970], Blackburn and Kunreuther [1974], Lundin and
Morton [1975], Bensoussan et al [1983], Chand [1982], Chand, Sethi, and Proth [1990], and
Chand. Sethi and Sorger [1989]). See also Heyman and Sobel [1984] for a general review of
using policy monotonicity in homogeneous MDP problems.

In this paper, we consider the infinite horizon version of the general production lot
sizing problem under diseconomies of scale in production and inventory holding costs. This
convexity assumption is equivalent to the condition that marginal production and holding
costs be nondecreasing. For example, this includes the case where inventory costs are
linear and where a firm experiences a higher overtime rate for production exceeding the
standard capacity followed by a still higher unit cost for exceeding overtime capacity through
outsourcing.

The optimization problem to be solved falls within the class of doubly infinite convex
programming problems. There is an extensive literature on solution and forecast horizon
approaches to solving such general problems in infinite horizon optimization (see e.g. Bean
and Smith [1984. 1993], Bes and Sethi [1988], and Schochetman and Smith [1989, 1992]).
However a key assumption that guarantees that general purpose algorithms will successfully
discover an equivalent finite horizon problem is uniqueness of an infinite horizon optimal



solution. Although this condition is believed to be typically met in practice, it is difficult
to verify.

In this paper, we instead explore a novel algorithmic approach for finding solution and
forecast horizons that systematically exploits monotonicity of optimal early decisions in hori-
zon N. This focus on early decision monotonicity, as opposed to late decision monotonicity
as in the treatment of the dynamic lot size problem, leads to a closed form expression for
a forecast horizon guaranteed to yield optimal early production decisions for the infinite
horizon problem. As we will show, the length of the forecast horizon is the longest interval
of time over which it can prove profitable to carry inventory.

The paper is organized as follows. In Section. 2, we formulate the infinite horizon model
of the problem. In Section 3, we prove that under very general conditions, solution horizons
exist leading to finite horizon versions of the problem that yield optimal solutions to the
infinite horizon problem. In section 4, we give a closed-form expression for computing a
solution (indeed forecast) horizon and a simple procedure for computing an optimal infinite -
horizon production schedule.

2 Problem Formulation

Consider a single-product firm where a decision for production must be made at the begin-
ning of each period n,n = 1,2,.... We will adopt the following notation:

Constants and functions:

D, = the demand during period n (non-negative integers)
a = the discount factor for the time value of money (0 < a < 1)
Iy = the inventory on hand at the beginning of period 1 (integers)
cn(z) = the cost of producing z units of the product during period n (non-negative)
hn(z) = the cost of holding z units of inventory ending period n (non-negative)

Decision variables:

= the production level during period n

n
I, = the inventory on hand at the end of period n

We will use the superscript (*) to denote optimality.
With the above notation, we can formulate this infinite horizon problem, labeled Q, as

(Q) Minimize: " o™ ea(Pr) + ha(ln)] (2.1)
n=1

Subject to: I..+P,-D,=1,, n=1,2,--- (2.2)

PHZO-, InZO» n=12-- (23)

PnaIn integer, n=12,---

where I is given. As we can see from (2.2), if we know the production levels P, in all
periods. we can determine the inventory levels I,,. Therefore, it suffices to find an optimal
production schedule P* = Py, P;, P;,---. Note however that this is a doubly infinite integer
nonlinear programming problem and is therefore a formidable problem to solve.



3 Existence of Solution Horizons

We now investigate conditions under which a finite horizon version of the problem has an
optimal first decision which is in agreement with an infinite horizon optimal first decision.
If we can find an optimal infinite horizon first decision P} by solving a finite horizon version
of the problem, we can roll forward one period and form a new infinite horizon problem
with new initial inventory I} = Iy + P; — D; to obtain an optimal infinite horizon second-
decision for the original problem. This rolling horizon procedure can then recursively recover
an optimal infinite horizon production schedule.

In this section, we formulate the N-horizon truncated version of the problem and show
that optimal production levels of the N-horizon problem are increasing in N. We then
identify conditions under which an N-horizon optimal nth decision, 1 < n < N, converges
as N — oo to an infinite horizon optimal nth decision. Finally, we establish existence of a
finite horizon version for solving the infinite horizon problem.

3.1 The N-Horizon Problem

We formulate the N-horizon problem, labeled (Q(N)), corresponding to the original infinite
horizon problem (Q) as:

N
(Q(N)) Minimize: E a" en(Pn) + ha(l)] (3.5)
n=1
Subject to: In.1+P,-D,=1I,, n=12,--- N (3.6)
P20, I, >0, n=1,2,---,N (3.7)

P,, I, integer, n =1,2,---, N

Let S be the set of all feasible production schedules to (Q), S(N) the set of feasible
production schedules to (Q(N)), P(N) any feasible production schedule to (Q(N)).and I(N)
the ending on hand inventory resulted from the production schedule P(N), N =1,2,.--
The following lemma states that for the finite horizon problem, increasing the demands
does not decrease the optimal production levels. ‘

Lemma 1 (Veinott [1964]) Let P*(N) = (P;(N),Py(N),---,Py(N)) be an optimal solu- -
tion for a vector (D1, Do, -+, Dn) of demands and suppose production and inventory holding
cost functions are convezr. If one of these demands is increased by 1 unit, it is optimal to
increase one of these production levels by 1 unit.

The proof of this lemma can be found in Denardo [1982].

Consider now the demand profile for an N + 1-horizon problem where Dy,; = 0.
Since, without loss of optimality, we never leave positive inventory at the end of a horizon,
we conclude I3 = 0 at an optimal solution if Dy = 0. By the principle of optimality,

P{(N)=P;(N +1) (3.9)
with Dn4+1 = 0. Hence applying the lemma repeatedly, we have

PI(N)<S P}(N +1), for N=1,2,-- (3.10)



for any Dn4,. Following the same argument, we also have
PX(N)XPI(N+1), forall 1<n<N, N=12,---. (3.11)
Hence, we have proved the following Corollary.

Corollary 1 P:(N) is monotonically increasing in N for any fized n,1 <n < N.

3.2 Optimal Solution and Value Convergence of the N-Horizon Problems

Before we discuss convergence of optimal solutions of the N-horizon problems. we need the
following notation and assumptions. Let C(P) be the objective function of (Q) for any
given P € S and C* = C(P*). Also let C(P(N); N) be the objective function of (Q(N)) for
any given P(N) € S(N)and C*(N)= C(P*(N); N). Furthermore, we assume,

AO: c,(-) and h,(-) are convex functions for all n = 1,2,---.

Al: C(P') < o for some feasible production schedule P’ € S, i.e., there exists a finite cost
feasible production schedule to (Q).

A2: Ilim hn(I,) = o0, i.e., the cost of carrying inventories that increase to infinity itself
n—00
increases to infinity.

A3 : 0< b, <cn(Py)—cn(Pn—1) < 4n < oo for all integers P, >0and all » = 1,2,- -,

i.e., the marginal cost of production is bounded from above and bounded away from
zero foralln =1,2,---

We now show P (N ) converges to an infinite horizon optimal nth decision P} < oo for all n
(Theorem 1). That is, Nlim P;(N) = P; under the above conditions. We will achieve this
—00

first by showing that P;(N) converges to an infinite horizon feasible solution as N — o
(Lemmas 2 and 3) and then that value and solution convergence holds for all n = 1,2, --
(Lemma 4,and Theorem 1).

Lemma 2 There ezist finite production bounds P,, n = 1,2,---, so that P;(N) < P, < x
for all N. :

Proof: Suppose not. then there exists some n and subsequence N7, k = 1,2, - -, such that

kljm P> (N7) = 0. (3.12)
By assumption (A2),
kh'm ho(IL(NE)) = o0 (3.13)

where I;(N[') is the optimal on hand inventory at the end of period n following the nth
production decision P;(N}) and hence

klim C*(N}) = . (3.14)
However,
C(NZ) < C(P'(NL); NE) < C(P) (3.15)



where P'(N[) consists of the first N7 decisions in P’ and by (Al)
C(P') < ox. (3.16)
This contradicts equation (3.14).
0

By Corollary 1, at any decision epoch, 7, there exists a monotonically increasing se-
quence of decisions P;(N), N = 1,2,---. By Lemma 2, this sequence of values is bounded
from above. Therefore, P;(N) must converge as N goes to infinity, i.e.,

lim PI(N)= P < oo : (3.17)

exists foralln =1,2,--- _
It remains to show P is infinite horizon optimal.

Lemma 3 P€ S, ie., P is infinite horizon feasible.

Proof: Since )
NhlnooP;(N)an, n=1,2,---, (3.18)

for any € > 0. there exist integers N(n) >0, n = 1,2,---, such that
|PX(N)= Pyl <€, n=1,2,---, (3.19)

for N> Ne(n),n =1,2,--- Recall that production levels are integers. If we let € = 1, then
there exist integers Ny(n) > 0, n = 1,2,---, such that

PX(N)=P,, n=1.2,--- (3.20)
for ¥ > Ny(n), n = 1,2,---. Therefore, at any decision epoch, =,
n n n + |
Y B =Y PI(N)> (Z D; - 10) (3.21)
Jj=1 To\j=1 o

i=1

forall N > max {N1(j)}. Hence. P, is feasible for the infinite horizon problem.
<1<n

Lemma 4 A}im C*(N) = C~, i.e.. optimal value convergence holds.

Proof: For any feasible infinite horizon schedule P € S, the first N decisions P(N) are
feasible to (Q(N)). Therefore, since costs are non-negative, C*(N) < C*. Also, for any
feasible V +1-horizon schedule P(N +1), the first N decisions P(N ) are N-horizon feasible.
Therefore, C*(N) is increasing in N. This implies that Nhlnm C*(N) exists where

lim C*(N) < " < os. (3.22)



By (A1), we have P’ € Sand C* < C(P') < co. For every N, we construct the following
feasible infinite horizon production schedule P by setting

) Py(N) if1<a<N
Po=¢ P.+I,_, ifn=N+1 (3.23)
P! ifn>N+1

with corresponding ending inventory

i- { IXN) if1<n<N (3:24)

I, ifan>N+1
where I’ is the ending inventory following the production schedule P’. Then

C(P) = C"(N)+a"[ens1(Prns1) + hnver(Ingr)]
+{C(P') = C(P'(N); N) = a"[en41(Phg1) + s (Ing)]}
> ¢ -

where P'(N) is the first N decisions in P’. Since Nlim C(P'(N);N)=C(P') < 00 and by
(A3), we have

Jlim {C(PY = C(P(N); V) = o [enaa(Phry) + hrvea(Tvgy)]
+a [CN+1(PN+1) + hN+1(-fN+1)] }

Ah_in% QN [CN+1(]3N+1) - CN+1(P[’V+1) + hN+l(jN+1) - hN+1(I]’V+l)]

= Vﬁinoo o [CN+1(P1'V+1 + I}'v) - CN+1(PJlV+1) + hN+1(IIIV+1) - hN+1(IJIV+1)]
= N o™ [ens1(Pryy + Iy) = enga(Pisy)]
< lim oMyvaly

N—oc

= 0.
This implies ’ N o
lim C*(N)>C~. (3.25)
N—
(Combining (3.22) and (3.25), we have

lim C*(N)=C". (3.26)

-+ 00

O

We can now show our result that finite horizon optima monotonically converge upwards
to an infinite horizon optimal solution.

Theorem 1 The infinite horizon production schedule P* = ]\}im P*(N) where P*(N+1) >
—0o0

P*(N) is infinite horizon optimal, i.e., monotonic optimal solution convergence holds.



Proof: Recall that

lim Pi(N)= P, <

N—oo

for all n = 1.2, -+, and note that
N A ) .
Y @™ en(Pa) + ha(n)] > C(P*(N); N).

Therefore,

N—.oo N—=oco

Also, for any positive integer M,
Za" Yea(P) + ha(Fa)]

= hmoo {Z an—l[cn(P;(N)) + hn(Ir:(N))]}
n=1

N—o

N
< lim {Za""[cn(P;(N))+hn(I;(N))]}
e

Take the limit as M — oo on both sides of the above inequality to get

C(P)=qu{§:a" Yen(Po) + ha(l )]}gC'.

Combining (3.29) and (3.30), we have
C(P)=C".

From Lemma 3. P € S. Therefore, P is infinite horizon optimal.

{Za" Yen(B, +h,.(in)]} > lim C(P*(N);N)=C".

(3.27)

(3.28)

(3.29)

(3.30)

O

Theorem 1 allows us to easily extend Veinott’s monotonicity lemma to the infinite

horizon case.

Theorem 2 Suppose assumptions (A0) through (A3) hold. Let P* be an optimal solution
for a vector (D1,Ds.---) of demands and suppose production and inventory holding cost
functions are convez. If one of these demands is increased by I unit, it is optimal to

increase one of these production levels by 1 unit.



Proof: Let P* be the optimal infinite horizon schedule for a vector (Dy,--+,D; +1,--) of
demands for some j: We know from Theorem 1 that for any integer n > 0, there exists an
integer N, such that

Pi(N) = P;
and
PyN) = P;
forall N > N,,. By Lemma 1, ; _
B(N) 2 PL(N). (3.31)
Therefore, .
B> P (3.32)

O

The result of Theorem 1, (3.17) is called optimal solution convergence and that of Lemma
4, (3.26) is called optimal value convergence. Result (3.26) is analogous to the method of
successive approximations applied to homogeneous MDP problems (Denardo [1982]). The
latter may be viewed as equivalent to solving successively longer horizon problems as we
iterate (the initial guess of value function is seen here as a terminal value at the end of
horizon).

Optimal value convergence (3.26) says that for N large enough, the corresponding opti-
mal N-horizon plan P*(N) achieves a cost arbitrarily close to that achieved by an optimal
infinite horizon solution P*, i.e., P*(N) and P* are close in value. But P*(N) is not an
infinite horizon feasible solution. Optimal value convergence is therefore of limited use,
approximating infinite horizon optimal cost, but not solutions, while it is the latter we need
to implement. Still we may at times be able to extend P*(N) feasibly over the infinite
horizon at small cost to achieve an infinite horizon feasible solution with nearly the same
cost as P*. The solution convergence result of Theorem 1 is however far more powerful
since policies and not just costs are arbitrarily well approximated by sufficiently long finite
horizon optimal solutions. In fact. the approximation to early decisions is without error in
this case as we note in the next subsection.

3.3 Solution Horizons for Solving the Infinite Horizon Problem

By Theorem 1,
Nlim P (N)=P;, n=1,2,---. (3.33)

where P~ is an infinite horizon optimum. This implies that for any ¢ > 0, there exists a
horizon. N(n) such that

|P2(N)=P;| <€, forall N> N(n). (3.34)
Let ¢ = 1. Then
|Pi(N)-Prl<1 (3.35)
so that
P (N)=P; (3.36)



for all N > Ni(n). In particular,
Pi(N)=P;, forall N > Ny : (3.37)

so that N7 = Ny(1)is a solution horizon. That is, there exists a finite horizon Ny sufficiently
distant that an optimal finite production lot size for any horizon that long or longer yields
an infinite horizon optimal first period production lot size.

By forward dynamic programming, let f,(¢) be the present value of the optimal cost from -

+
n
period 1 to period n with ending inventory level 7 in period n, where ¢ > (Io -y DJ-> .
Then

falt) = ong,ngiIb,,+i{an_l[c"(P") + hn(i)] + fn—l(i + Dn — Pn)}

where fo(7) = 0 for ¢ = Iy and oo otherwise. If we knew the value of the solution horizon
NT, we could then solve for fn=(0) to get

Py = P{(Ny).

From optimal solution convergence (3.17), we conclude that large horizon optimal nth period
production lot sizes yield nth period optimal infinite horizon production lot sizes. We can
then recursively find (Py, P5,--+) = P* with zero error. We turn to the computation of
solution (and forecast) horizons in section 4.

4 Computing Solution and Forecast Horizons
We have shown in the previous section that there exists a solution horizon N such that
P} (N)= Py, forall N> N,

at any decision epoch n. In this section, we seek to find a method to compute solution
horizons for all n = 1.2,--- and a corresponding simple algorithm to compute the optimal.
infinite horizon solution P for all n.

To find a solution horizon N, we need to slightly strengthen assumption (A3) to include
an upper bound on marginal production costs, i.e. we require that

sup{ lim [cn(Pn) = cn(Pn — 1)]} = 51;11){7,,} =7 < o0. (4.38)

n>1 (fn—cc
Now consider P;(N) as N increases. By Corollary 1,
P{(N +1)> P{(N). (4.39)

Therefore. the optimal first decision either remains the same or increases as N increases.
Suppose
P;(N +1)> PX(N). (4.40)

Since moreover

P:(N+1)>P;(N), foral 1<n<N (4.41)

10



by Corollary 1, an additional unit of inventory is produced in period 1 and held for N periods
to satisfy a unit of demand in period N + 1. Evidently, by (4.40) it is then less costly to
satisfy a unit of demand in period N + 1 by production in period 1 then by production in
later periods. It follows that if N were a bound on the greatest number of periods it were
economic to carry inventory, then P;(N) cannot increase and must remain constant for all
N > Ny. Hence a solution horizon is provided by the largest period of time it can prove
profitable to hold a unit of inventory produced in period 1. For example, if inventory turns
over four times a year, N would correspond to a horizon of 3 months. In this case. solving
for optimal first production decisions for a planning horizon of 3 months or beyond would
yield an infinite horizon optimal production decision for period 1.

We turn now to deriving a formula for the computation of Ny. By convexity of the
production and inventory costs, the production cost of one more unit in the first period is

(PH(N)+ 1) = ey (PH(N)) > ex(1) (4.42)

and the inventory cost for carrying one unit to period N + 1 is bounded from below by
N
S~ a™ 1h,(1). Since producing one unit in period 1 and holding it for N periods to satisfy
n=1

one unit of demand in period N + 1 is by hypothesis optimal (i.e., it is more expensive
to produce one more unit in period N + 1) and by (A3) the marginal production cost is
bounded from above, we have

N
er(1)+ ) @™ ha(1) < M. (4.43)
n=1
Let
N
N = {N[Za"'lhn(l) > aN'yN—cl(l)}. (4.44)
n=1

Then any N € N is a solution horizon for the first decision, since it is prohibited to produce
in period 1 to satisfy demand in period N or beyond. Let

N, =min{N|N e N}. (4.45)

Bv (A3), NV is non-empty and therefore N, < oo. Note that N, is also a forecast horizon
since its value and hence P;(N,) = Py is independent of demand D, for n > N, (in fact,
its value is independent of all demand). That is, we need only forecast demand through
period Ny < oo in order to determine Py.
Now let us compute a forecast horizon. If we let
inf {hn(l)} =0,

n>1

then it is obvious that ¢ > 0 and

N N
1 -
S " A (1) > — g, (4.46)
= l-a
By (4.38),
o™y = e1(1) > Mgy = (1) (4.47)

11



Hence, if

_ N
1-o cr>aN7—-c1(1)
1-a
o (1-a)ey(1) +
— )y g
1 )
N> oga{ (=anto }
then

N

> a" ha(1) > ey = (1)

n=1

Hence, if we set

(1-a)e(1)+ GH

= - 1
Nl oga{ (1_0)7+0

(l-akd1%+g5{MJU}

Pp—o0

n>1

where [X] represents the smallest integer strictly greater than X, then

Py = P{(N])

= |log,
(1-a) sup{ lim [en(Ppn) = cu(Pr — 1)

} +inf {Aa(1))

(4.48)

(4.49)

(4.53)

is an infinite horizon first decision depending only on Dl,Dz,---,DN;. That is. Ny is a
forecast horizon for the first production decision. Following the same argument, we can
compute the forecast horizon for the second production decision, and so on. The following
is an algorithm for computing the first n infinite horizon optimal production levels for any

n=12---

A Finite Algorithm for Finding an Infinite Horizon Optimal Production Sched-

ule:

1. Compute Ny using formula (4.52);

2. Compute P*(Ny) and Snz(i) using the forward recursive dynamic programming pro-

cedure in Section 3.3.
Let i = 0 to get P; and P;(N;);
It =1y+ Py - Dy;

3.j=N+1;
k=2
Compute N};

4. While £ < n do begin
Repeat:
Compute f;(7) using f;_1(i);

Let i = 0 and choose P;(j) and P;,,(j) so that Pr>P(j-1);

J=J+L
until j = N},

12

k)



u

r| v |[12]14]1.6]18] 2
0202 1]2]3]4]5
0201 2[4]6]8]10
02 [0.05] 4 | 8 | 12|16 |20
01Jo2f 12 [3]4]5
01 o1 2[4]6]8]10
0.1 J0.05] 4 | 8 [12]16]20
005/ 02 1 |2]|3|]4]5
005[ 01 2| 4]6]8]10
0.05]0.05] 4 | 8 12]16]20

Table 1: The forecast horizon in days for the first infinite horizon optimal production level

k=Fk+1;
Compute NJ;
end;

Note that N7 is independent of all demands as well as the production and inventory
costs. It only depends on the value of bounds on the inventory and marginal production
costs. To get a feeling for the magnitude of our forecast horizon, we look at some examples.

In the simple case where production costs are stationary and linear over time,

sup{ lim [cp(Py) = cn( Py — 1)]} =¢(1)

n>1 n—00

and Ny = 1. In other words, as we would expect, we only need to know the demand in
the first period to make the optimal first decision regardless of the inventory costs since no. *
inventory is needed when production cost does not vary over time.

Consider now the case where the production costs are piecewise linear or even nonlinear.
In this case if we set ¥ = ucy(1), u > 1 (i.e., the marginal production cost will not exceed
ucy(1)) and ¢ = wvey(1) where v is the inventory charge as the sum of a proportion of
production cost, opportunity costs, taxes, insurance costs, the value loss over time (e.g.,
certain products have to be sold by discount), floor space rental costs, etc., then

Ny = [loga{(ll—__f)‘:—:z}]'

For various inventory charges v per day, discount factor a = m per day where r is the
interest rate per year, we computed Ny for u = 1 to 2. The results are shown in Table 1.
We chose inventory costs unusually high here to illustrate how short these forecast horizons
can be. However, even in the case of moderate inventory costs, forecast horizons can be
significantly reduced by a more detailed analysis using more precise cost information to

provide better bounds on the minimal forecast horizon.
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