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Optimal Plane Change During Constant Altitude
Hypersonic Flight
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In a previous paper, we addressed the problem of choosing constant values of altitude, speed, and angle of
attack such that the orbital plane change during hypersonic flight is maximized for a fixed amount of propellant
consumption. In the present paper, the restrictions of constant speed and angle of attack are removed. Necessary
conditions for solutions to the resulting optimal control problem are derived. Numerical solutions are obtained
for several specific cases under the assumption that the constant altitude trajectory that maximizes the plane
change is primarily a singular arc. We find that, under the condition of constant altitude flight, it is not, in

~ general, optimum to fly at constant angle of attack. The reduction in plane change capability resulting from a
constant angle-of-attack program increases as the range over which the flight takes place increases. On the other

hand, the optimum speed is nearly constant.

Introduction

UTURE spacecraft operating in the vicinity of the Earth
may use the atmosphere as an aid in changing orbits. The
pioneering work of London! established that significant pro-
pellant savings are achievable, for certain orbital transfers, by
employing a combination of aerodynamic force and propul-
sive force, rather than relying on propulsive force alone. One
example of an ‘‘aeroassisted transfer’’ is the synergetic plane
change, in which aerodynamc force is used in part to change
the orbital plane of a spacecraft. Two possible flight modes for
the atmosphere portion of a synergetic plane change are aero-
glide and aerocruise. Aeroglide implies that there is no thrust-
-ing. Aerocruise implies that there is thrusting within the
atmosphere. Moreover, steady aerocruise implies that the

. component of thrust along the velocity vector is adjusted to

cancel drag, andthereby hold the speed constant, and the ver-
tical components of thrust and lift are used to maintain con-
stant altitude. The lateral components of thrust and lift change
- the orbital plane. A previous study? determined how the or-
bital plane changes during steady aerocruise and what values
of the parameters that define steady aerocruise maximize the
plane change. Angle of attack, altitude, and speed were as-
sumed to be constant. Thus the optimization was of a paramet-
ric nature. Although the restriction to constant angle of attack,
constant speed, and constant altitude flight simplifies the
mathematical analysis, this restriction may compromise the
performance, i.e., it may be that larger plane changes for a
given amount of propellant are possible if these parameters are
allowed to vary.
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In the present paper, an intermediate case is considered,
namely, constant altitude, variable speed, and variable angle
of attack flight. With this generalization, we are faced with an
optimal control problem. The controls are taken to be the
angle of attack, angle of bank, and thrust magnitude. The
problem is to determine the control programs that maximize
the plane change achieved for a given amount of propellant
consumption. We develop necessary conditions for the opti-
mal controls based on the maximum principle and an analysis
of the singular thrust case. We then use the necessary condi-
tions to obtain numerically extremal solutions for the optimal
control problem. The solutions are characterized in physical
terms, and their optimality is assessed.

Constant Altitude Optimal Control Problem

We shall consider the flight of a thrusting, lifting vehicle of
mass m in the atmosphere of a central body. For the purpose
of showing clearly the qualitative behavior of the optimal con-
trols, a number of mathematically simplifying assumptions are
made. The central body is assumed to be nonrotating with a
gravitational field and a stationary atmosphere that depend
only on the radial distance from the body’s center. The trajec-
tory variables r,0,¢,V,v,y¥ are defined in Fig. 1, where r is the
radial distance, 6 the longitude, ¢ the latitude, V the velocity
magnitude, y the flight-path angle relative to the local horizon-
tal, and ¢ the heading angle relative to the local latitude line.
We assume that the thrust is aligned with the velocity vector V.
Under these assumptions, the equations of translational mo-
tion for the center of mass of the vehicle are?

?i—; = Vsiny (1a)
dé _ V cosy cosy (Ib)
dt r cos¢
d¢  V cosysiny
ot VA ot il 4 1
dt r (10)
|4 .

md—=T—D-mgsm7 (1d)
- dt
V2
mV% = L coso — mg cosy + r_nr_ cosy (le)
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Fig. 1 State variables and bank angle defined with respect to inertial
system OX. YZ.

Vﬂ L sine mVy?

ar = m - cosy cosy tang (1)
T (g
dt gl &

where T is the thrust, D the drag force, L the lift force, o the
bank angle relative to local vertical plane (see Fig. 1), I, the
specific impulse, and g the gravitational acceleration.

The drag and lift forces are given by

D =1 CpSpV?
L =%CSpV?

where Cp and C; are the drag and lift coefficents, respectively,
S a reference surface area, and p the atmospheric density. We
shall assume a parabolic drag polar for the vehicle

Cp = Cpo + KC} 2

where Cpq and K are assumed constant for hypersonic veloci-
ties. Then, rather than consider angle of attack as a control
affecting Cp and C;, we consider C; as the control. Denoting
the maximum lift-to-drag ratio by E*=C}/C3, it follows
from Eq. (2) that

CZ = VCD()/K
Cp =2Cpy

1
E* = (C,/Cplmax = —F——=
(L D)ax 2m

Consistent with the assumption of constant altitude flight,
we have

r =R = const, y=0

With altitude constant, it follows from the earlier assumption
on the gravitational field that the gravitational acceleration is
constant. Since dy/d¢ =0, we have the relation

1 V2
3 C.SpV2coso=mg — mT 3)

J. GUIDANCE

which shows that the vertical component of the lift force is
used to balance the weight minus the centrifugal force. Thus,
the lift coefficient (or, equivalently, the angle of attack) and
bank angle are not independent controls. Using Eq. (3), we
eliminate C; in the equations of motion, leaving the choice of
¢ as the sole means of controlling the aerodynamic force.

The dimensionless arc length s will replace the time as the
independent variable, where

—dt=— = — )
r

VZ
= —— 5
gR (Ga)
m
= — Sb
i, (5b)

The variable u is the square of the ratio of the speed to the

circular speed (or the ratio of the centrifugal acceleration to

the gravitational acceleration). We will refer to u, henceforth,

as the speed. The variable p is the ratio of the mass at the

current value of the arc length to the initial mass. Also, we

define the dimensionless parameters and controls as
Dimensionless altitude:

Z =pSRC}/2my, (6a)
Dimensionless specific impulse:
c =1I,(g/R)" (6b)
Normalized lift coefficient:
AN=C,/C} (60)
Dimensionless thrust:
T=T/myg : (6d)
Z is proportional to the density p and, hence, it is a parameter
defining the flight altitude.

Substituting the relations and parameters just stated into
Egs. (1), we obtain the dimensionless state equations

dé cosy
R i 7
ds cos¢ 72)
48 _ iy (7b)
ds ;
du 2r uZ a —u)zﬂz]
= L _ 2= - 7
ds u E*u [ * Z%u? cos’a (7e)
dv _(d-uw) tane — cosy tan¢ (7d)
ds
dp T
= Te
ds cVu e

The trivial equations for the constant altitude and flight-path

angle are not shown. The controls are the bank angle ¢ aqd the

dimensionless thrust 7, subject to the inequality constraints
0=<7=<7Tnax ®)

and

lo] sws—l[(—zl;—“’f] )
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At the initial time,

§=0, 6=0, ¢=0, ¢¥y=0, pu=1, u=u (10)
At the final time,
sy free, 0y free, uy given, p, given an

Since we want to maximize the inclination angle i,, we use the
performance index

J = —cosiy = —Cos¢y cosys 12)

We have shown,? under the assumptions of a nonrotating cen-
tral body with an inverse square gravity field and a stationary
atmosphere with density a function of radial distance only,
that no generality is lost by formulating the maximum inclina-
tion change problem with the initial conditions that were stated
earlier. What we are doing is redefining longitude and latitude
relative to the starting point in the initial orbit plane and
maximizinig the inclination change with respect to this plane,
i.e., maximizing the wedge angle. This is the first step of a
two-step optimization procedure?; the seécond step is analytic
and involves a transformation to coordinates relative to a dis-
tinguished plane (such as the equatorial plane). Regarding the
final conditions, we will examine how the maximum inclina-
tion angle i varies with p+. By specifying the final speed u,, we
ensure that the variation is continuously differentiable.

Necessary Conditions for the Optimal Controls

The maximum principle? states that, if the control functions
7 and g, piecewise continuous on the interval [0,5/], are max-
imizing, then there exists a nontrivial adjoint vector defined on
the samie interval whose components Py, Py, P,, Py, and P,
satisfy the differential equations

dPp,
Es-" =0 (13a)
dP, cosy cosy
d: =— P, o6 sing + P, c0s’e (13b)
dP, siny
Pl Py— cos¢ — Py cosy — P, siny tan¢g (13¢)
dP, PZ -u2] B, 7
ds E"' [ T Z%Wicosta| T w0 T 2eun (13d)
dp,  Puz[ a-upw] 2P, "
ds = E*p? Z2y? cos?a u? (13¢)
and the transversality conditions
Pa(Sf) =0 (14)
Py(sy) = sing, cosys @15)
Py(sy) = cosey siny s (16)

and the controls maximize, subject to the constraints (8) and
(9), the Hamiltonian

cosy/ P,uz (1 -u)u?
H = P,—¢ + P, siny — E'x [1+Zzu2cos2a
+ P‘b[(l —#) tano — cosy tan¢]
u
27 &]
+ N [\/E = e an
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at each point along the optimal trajectory. Since sy is free, the
condition

H(sp) =0 (8)

must also be satisfied. These conditions are necessary but not
sufficient. Trajectories and associated controls satisfying these
conditions and Egs. (7), (10), and (11) will be called extremal.

" Imtegrals of the Motion

There are four integrals of the motion, i.e., four relations

" among the state and adjoint variables that hold along extremal
- trajectories for the optimal control problem. Because of the

fact that dH/ds = dH/ds =0 and the final condition on H, we
have the Hamiltonian integral

H=Cy=0 (19)

As a consequence of the assumed spherical symmetry, we have
the integrals?

Pg = C] (203)
P, = C,sind — C; cosb (20b)
P, = C, sing + (C; cosf + C; sinf) cosd (20c)

From the transversality condition Py(s r)=0, it follows that

C=0

" Optimal Controls

Because of the form of H, the maximization with respect to

~ ris independent of the maximization with respect to o and vice

versa. Defining the switching function as
P,
S =VaP, - "Tj @1

the Hamiltonian as a function of 7 is maximized according to
the rules:

Boost arc:
If S$>0, then T = Tmax (22a)
Singular arc:
If S =0, then T= variabie (22b)
Coast arc:
If 8<0, then 7=0 (22c)

In the singular case, S =0 over a finite interval in s, the max-
imum principle does not yield the control 7.

With respect to the bank angle, the Hamiltonian is maxi-
mized when o= 4 o5 OF at an interior point. The first-order
necessary condition for an interior maximum is

oH
—=0
do

which leads to

E*ZpP,
2P, (1-u)u
This general formula is valid for all boost, coast, and singular

arcs. For H to be a maximum at a particular bank angle
satisfying Eq. (23), we must have

#H 2P,(1- u)’u
A ey | LI PT!
da? E*Zy cos®o 24)

tanc = (23)

This requires that P, >0.
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Along a coast arc (C arc) or a singular arc (S arc), the
last term in the Hamiltonian vanishes, and we can combine
Egs. (17), (19), (20), and (23) to obtain the following equation
for the optimal bank angle along these arcs

AX2-2BX+C=0 (25)
where
1-u
X = —— tano (26)
u
and
= (k cos# + sinf) cos¢ (27a)

B = (k cos +sinf) cosy sing + (cosf — k sinf) siny  (27b)

Z l 2 2
C= 7 [ 1+ (Z+)2] (k cosb + sinf) cos¢ (27¢)
and where

is a constant to be determined.
Along an S arc, we have over a finite s interval

uP,
P, =
¥ 2eVu

Taking the derivative of this equation and using the state and
adjoint equations, we obtain

29

Pytanc _ ZP, { (1-u)p? Vu
u?  2E*u {Zzuzcosza @+3)+0-u) c

- (1 + Q)} (30)
c -

Substituting Eq. (23) into Eq. (30), we obtain the optimal bank
angle control for the S arc

<Q—1>X2= 5:-<Q+1>— (1—_2”—) [(u+3)+(1—u)ﬂ]
c ¥ \c u c

@3

There are always two solutions to Eq. (31): one positive and
one negative. Going back to Eq. (23), because x and the ad-
joint P, are positive for an interior optimal bank angle, it
follows that X should always have the same sign as the adjoint
P,. Therefore, in numerical calculations, the sign of P, should
always be checked, at each time, to ensure that the vehicle is
banking in the correct direction. Except for the determination
of the sign, the optimal bank angle is given as a function of the
state variables only, i.e., in feedback form.

If we eliminate the bank control X between Egs. (25) and
(31), we have an equation relating the state variables along an
S arc

BZ<\/—; - 1> {5; <ﬂ + 1> ) [(u +3)
c ¥ \c u
+(1-u) ﬂ]}
: C

2 2
=A2{% (lu“)[(u )+(l—u)£]} (2)

Recall that 4 and B depend on the parameter k. For a given
value of k, this equation defines a four-dimensional hypersur-
face in the five-dimensional state space (9,0, a,!/, ,i) on which
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the S arc lies. By taking the derivative of this equation with
respect to s, and using the state equations (7) and the control
law (31) for the bank angle, we obtain an equation for the
variable thrust control

7=N/D (33)

where
z: 2 1 253 2)82
D == @*~5-1)+ — [(1-u)*63+3(1 —u?)b
» u

+(1+3u)—(3+u?)] €D

2z (Z2 1-
1?* {;;—u—zu[(l+u)+(l—u)6]}

X [a-"éz ;‘)(a+1)] |

uZ w2l -u)p @2
- —_— —_— __X2
2E* [H Zi? 72

z? 2.
X {—2(2-5 -5 [ -u?s2+ Qur—u +1)s
W u

2{5 _ 1\
-1+ uz)]} - Zu;f—A(j(.:l_l)i_) [A siny tang + (k sinf
2¢1 2 2
~ cosf) cos:;’/]X[ 1+ ﬂzlz—u’z‘l + %EXZ] 395)
and
5= g (36)

This is the thrust that ensures that along an S arc the vector
field given by Eqs. (7) with the optimal bank angle is tangent
to the hypersurface, and hence, the S arc does not leave the
hypersurface. X =(1 —u) tano/u is computed from Eq. (31).
Note that the thrust is a function of the state variables and the
as yet unspecified constant k = C,/C;.

Goh’s Higher-Order Necessary Conditions
If an S arc is to be locally maximizing, it is necessary that the

.matrix H,,, where v = (0,7) 7 is the control vector, be singular,

i.e., that det (H,,)=0. This condition is satisfied when the
thrust is singular. To gain further confiderce that the S arc is
locally maximizing, we can consider some higher-order neces-
sary conditions that have been derived by Goh’ for vector
cortrols on an S arc. These conditions are more conveniently
expressed in terms of the control vector w =(X,7)7, where X
is as defined in Eq. (26). Goh’s necessary conditions for con-
trols on an S arc to be maximizing are

R;i<0 37
Ry=<0 38
D=RR;-R}=0 (39)

where.
R, =®H/3X*= -CA/X
R;=C;A [zchuZ—4zzcu5/2—2ziu3+4E*Zc2u2g
+4E*ZcuS Y — 15032 — 6¢Vu 2 + 6 up? + 8cu®/y?

+C2uld(1+ X 2) - 2cu’ (1 + X )] /(2c2 Xu*pf)
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D= —ch 2Wu - c)2/(c2 u?)
—C}AYZ%c*u?—4Z%cus?—2Z%u* + 4E* Zcup
+4E*ZcuS 2y — 15c2p,2—6m/§u +6c2up?+8cud?y?
+c2up?(1+ X2 — 2cu™ (1 + X 3| /(22X *un?)

The first condition is the classical Legendre-Clebsch condition
for the nonsingular control X and is equivalent to that given in
Eq. (24) for the control o. The second condition is the general-
ized Legendre-Clebsch condition for the singular control 7.
The third condition is an additional condition that derives
from Goh’s transformation approach in the case of more than
one control variable. These conditions can be checked numer-
ically along extremal S arcs.

Application to Synergetic Plane Change

We are now ready to consider a synergetic plane change. In
such an orbital transfer, the vehicle deorbits and enters the
atmosphere at supercircular speed. In order for the formula-
tion and results presented earlier to be applicable, we consider
the atmospheric trajectory to be composed of descént, con-
stant altitude, and ascent segments. During the initial segment,
the vehicle descends to the cruise altitude. During the constant
altitude ségment, the plane of the orbit is changed. During the
ascent segment, the vehicle is boosted to the desired orbital
altitude. A periapse raise burn at orbital altitude completes the
transfer. This form of a synergetic plane change, in which
there is a constant altitude segment, corresponds to the case in
which a heating rate inequality constraint limits the penetra-
tion into the atmosphere. More general treatments of the syn-
ergetic plane change®’ show that, when the unconstrained op-
timal {rajectory violates the heating rate constraint, the
constrained optimal trajectory has a finite segment along the
constraint boundary, during which the altitude is approx-
imately constant. A more extensive discussion of optimal syn-
ergetic plane change can be found in Ref. 8. In the following,
we focus on the optimal execution of the plane change during
constant altitude flight. Our objective is to ascertain the qual-
itative nature of the optimal solution, especially for long dura-
tion flight.

Previous results? have shown that, for maximum plane
change, during constant speed, constant angle-of-attack cruise
at a given constant altitude, the optimal speed is finite—subcir-
cular at low altitude and approaching circular as.the altitude
increases. Thus, we expect that for long duration plane change
maneuvers it will be desirable to maintain the speed near this
optimal steady solution. Since this will require intermediate
thrust levels, it follows that the optimal constant altitude tra-
jectory for high altitude will be composed primarily of an S
arc. As we noted earlier, S arcs lie on a four-dimensional
hypersurface in the five-dimensional state space. In general, a
boost or coast arc will be required at the beginning and end of
the S arc in order to satisfy the boundary conditions on the
speed, i.e., in order to get onto and back off of the singular
hypersurface. In the following, we will determine the optimal
constant altitude trajectory under the assumption that it con-
sists primarily of an § arc. We will show that the resulting
trajectory and associated controls yield a larger plane change
than the optimal steady solution. Subsequently, the optimality
of the proposed solution will be discussed further.

We begin by considering the optimal constant altitude tra-
jectory to be a totally S arc. It follows from the initial condi-
tions

5(0) =0, 6(0) = ¢(0) = y(0) = 0, p@ =1 (40)
that the initial value of B [see Eqs. (27)] is
B(0) =0 @1)
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" Moreover, using the transversality conditions (14-16) and

Egs. (20), we obtain

sing c<.>s¢ y _ Kk sinb,— coso. ' @2)
cosoysinyy  cose (k cosby +sinby)
from which it follows that
B(sy)=0 “é3)
So, at both ends of an S arc, Eq. (25) gives the relation
X2= i [1+———(1;f): 2] @4

Substituting Eq. (44) into Eq. (31) for the optimal bank atigle
control gives the relation to be satisfied at the two ends of the
S arc

2 —
% uzu [(1+u)+(1—u)‘/—f] @5)

By setting p =1, we obtain a relation for computing the initial
dimensionless speed for the S arc

Zz=1—u;—[(l+uo)+(l uo)£] (46)

Similarly, the equation for the final dimensionless speed is

/4 [(1+uf)+(1—uf)% @7

We see that u and u, on an § arc are functions of the given
parameters Z, ¢, and py. In general, the values of u, and uy
given by Egs. (46) and (47) will not equal the specified initial
and final speeds in Egs. (10) and (11), and the optimal trajec-
tory must begin and end with a boost or a coast arc, as appro-
priate. By choosing u, in Eq. (10) consistent with the value
given by Eq. (46), we will begin our consideration of the opti-
mal trajectory at the junction of the initial boost or coast arc
and the S arc. We will attend to the final condition on u at the
end of the next subsection. For now, we will assume that the
optimal constant altitude trajectory is a totally S arc and ig-
nore the final condition on u«.

Combining Egs. (26), (41), (44), and (46) gives the initial
bank angle for the S arc

Vg 1+
tan?oy = 1 + 2 4 ~ 10 “8)
c 1-u,

Equation (46) shows that for high-altitude cruise, correspond-
ing to small Z, u, is nearly unity; hence, the initial bank angle
is nearly 90 deg.

Determining the optimal controls for the S arc, although the
constant k is all that remains to be determined, requires nu-
merical computation. We select a reference altitude by select-
ing a value of Z, an engine characteristic by selecting a value
of ¢, and the vehicle’s aerodynamic characteristics by selecting
a value of the maximum lift-to-drag ratio E*. We choose

Z = 0.080640,

c=0353612, E*=2387 (49)

which are the same values as used in Ref. 2. From the defini-
tion of Z [see Eqgs. (6)] the selected value of Z corresponds to
an altitude of about 75 km for a typical hypersonic vehicle, but
it can be a higher altitude for a vehicle with lower wing loading
myg/S or, conversely, a lower altitude for a vehicle with
higher wing loading. With these data, we compute the initial
speed for the constant altitude S arc from Eq. (46) and obtain
uy=0.996779. The integration of the state equations (7) is
performed using the initial conditions (40). The bank angle
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control is given by Eq. (31); the thrust magnitude is given by
Eq. (33). The thrust magnitude depends on the constant k,
which must be specified. We use Eq. (32), which is essentially
the Hamiltonian integral along an S arc, to check the accuracy
of the numerical integration. It should be noted that to avoid
numerical error in the evaluation of the bank angle, due to the
behavior of the terms (1 —«) tano and (1 — #)/coso when ¢ =90
deg, we use the definition (26) to express these terms in terms
of the control X in the state equations (7).

Maximum Plane Change Singular Arc .

The procedure outlined in the preceding paragraph gener-
ates an extremal S arc for a given value of k. For a specified
final mass ratio uy, & is adjusted such that the condition on the
final mass ratio and the transversality condition (43) are satis-
fied simultaneously. However, there are typically several val-
ues of k that will work, and, consequently, there are several
extremal S arcs that are candidates for maximizing the plane
change. We examine Figs. 2 and 3 to gain insight into this
situation.

For the selected altitude, two trajectories, corresponding to
. k=1.0 and 0.5, are plotted in the - plane in Fig. 2. (For
positive k values, the vehicle begins turning to the left.) Note
that the speed oscillates as the mass decreases, but it is never
far from circular speed (4 = 1). The local minima in the speed
occur at the points where a trajectory touches the curve labeléd
A =0. This curve has the following significance. Referring to
Egs. (20) and (27), we see that A is the same as the adjoint P,
except for the nonzero constant factor C;. Equation (23) indi-
cates that the bank angle is zero when Py, or A, is zero. This
occurs when the vehicle is near an apex of the osculating orbit
and the bank angle is midway through a continuous, but
quick, transition from +90 to —90 deg or vice versa, i.e.,
midway through a bank reversal. For 6=0, we have X =0;
consequently, Eq. (31) reduces to a relation between the di-

g

k-O.S

X,

0S5

DIMENSIONLESS MASS

0.40

— Y

) 0.8 Y7
DIMENSIONLESS VELOCITY U

Fig.2 Dimensionless velocity « vs mass p history and crossing points
(Z =0.080640).
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mensionless speed u and the mass ratio p at the bank reversal
points, namely,

i—; <g + 1> = 1;2“ [(3+u)+(1-u)1/c—a] (50)

This relation gives rise to the curve labeled 4 =0. Thus, inter-
sections of this curve and a trajectory indicate the occurrence
of a bank reversal.

As stated earlier, the constant k is selected such that, when
B =0, the prescribed final mass ratio is reached. We have also
determined that B =0 at the beginning of an § arc. Combining
Egs. (25) and (31), we obtain

2 —1
B(\/—;—1>X=A{£2-— Sl
c I u

When B =0, A4 is not neceSsarily Z€r0. Hence, we deduce that
when B =0 we have

[(1+u)+(l—u)g]} (62)]

Z? 1-u o Vu
;2-=7[(1+u)+(1—u)7] (52)

which is the same as Eq. (45). This relation between u and u
corresponds to the curve labeled B =0 in Fig. 2. Any totally
S arc should start and end on the B =0 curve. In the case of a
long duration trajectory (corresponding to small p), it may
touch the A =0 curve a few times and cross the B =0 curve a
few times. For a short trajectory, however, it may not touch
the A =0 curve at all, i.e., there may be no bank reversals. -

The value of & that yields, for each value of the final mass
ratio, the maximum plane change within in the class of pure S
arc trajectories can be determined from a direct performance
comparison between the candidate extremal solution. The
graph of the plane change achieved via an extremal S arc as a

- function of the final mass ratio, where at the final point B =0

&

21.00

-

PLR&J‘E' CHANGE ANGLE (DEG.)

1.08

8 — -~ .
%20 040 0.8 0.60
DIMENSIONLESS MASS
Fig. 3 Optimal plane change angle { (Z =0.080640).




JULY-AUGUST 1991

2

k-]

0.

k=05

DIMENSIONLESS MASS

0.40

;‘S.N Sé.!l léom TT?.IO
DIMENSIONLESS VELOCITY U (X109

OPTIMAL PLANE CHANGE MANEUVERS

%

Fig. 4 Dimensionless velocity u# vs mass u history and crbssing points '

(Z =0.010913).

" for the first time (not counting the initial point), is labeled first
line in Fig. 4. Each point on this curve indicates the plane
change and final mass ratio for an extremal arc corresponding
to some value of k. The optimal bank angle does not depend
explicitly on k; the optimal thrust does. As k decreases, the
thrust level increases and final mass ratio (when B =0) de-
creases. The only term in the expression for the optimal thrust
involving k is a homographic function of k, and, thus, as k
increases, the thrust law approaches asymptotically a form
independent of k.

Similarly, the graph of the plane change achieved via an
extremal S arc as a function of the final mass ratio, where at
the final point B =0 for the third time, is labeled third line, and
so on. Note that, between roughly us=0.32 and 0.67, selecting
a value of k such that the final mass ratio is reached at the
point where B =0 for the third time produces the largest plane
change. For values above this range, selecting a value of k such
that the final mass ratio is reached at the point where B =0 for
the first time produces the largest plane change. Just below
pr=0.32, the plane change is maximized by selecting a value of
k such that the final mass ratio is reached at the point where
B =0 for the fifth time. For still lower values of u, the seventh
B =0 point is best, and so on.

Connecting the segment of the first line from pr=1.0t0 0.67
to the segment of the third line from py=0.67 to 0.32, etc., we
obtain the graph of the maximum plane change as a function
of the final mass ratio. The graph is continuous but its slope
has discontinuities at the connection points. This is because we
have assumed that the optimal constant altitude trajectory is a
totally S arc, and, consequently, the final speed u; is deter-
mined from Eq. (48) and, in general, does not satisfy the
prescribed final condition (11). If we require u, to be the same
value for each trajectory, then ir, as a function of uy, will have
a continuous first derivative. If the specified common value of
us is higher than the value achieved on the pure S arc, for a
particular trajectory, then a final boost arc is required. In this
case, the fuel consumption on the S arc must be less than that
corresponding to uy in order to leave sufficient fuel for the
boost. If the specified value of uy is lower, then a final coast
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arc is required. The transversality condition, to be satisfied at
the final time, is still B, =0, but as given by Eqs. (27), rather
than by Eq. (52), which is only valid for an S arc.

To illustrate the point made in the preceding paragraph, we

 select a common value of u r=0.95 that is always less than the
. final value achieved on the § arc. Then, for each specified uy,

we guess the value of k and integrate the equations for a totally
S arc as before. When p attains ur with u >0.95, the switch is

- made to coasting flight, i.e., to 7=0, but now with the bank
" control X obtained from Eq. (25). At the final speed u;=0.95,

the transversality condition (43) is checked. This procedure is
repeated until the value of k that satisfies the transversality
condition is found. Carrying out the computations, we find
that the total plane change i is now higher, as shown by the
dashed line in Fig. 3, and there are no discontinuities in the
slope.

Comparison with Optimal Steady Cruise Solution

We are now in a position to compare the optimal constant
altitude solution, in which the bank angle (or equivalently, the
angle of attack) and the thrust are modulated, to the optimal
steady cruise solution, in which the angle of attack and the
thrust are constant. We consider the same altitude as previ-
ously, for which Z =0.080640, and specify that p;=0.6. The
S arc solution gives a plane change of i, =19.7 deg; the highest
lift coefficient required is about A=1.2. For the steady cruise
case, the bank angle is given by the equilibrium condition (3),
whereas the thrust is set to cancel the drag. Solving the para-
metric optimization problem to obtain the optimal speed and
lift coefficient, we obtain the optimum values u# =0.998 and
A=1.8. The bank angle increases from the initial value of 89.2
deg to the final value of 89.5 deg. The time of flight is shorter.
The resulting plane change is iy =17.6 deg.

However, the comparison is not complete since the steady
cruise speed is slightly higher than both the initial speed
y=0.9968 and the final speed u;=0.9912 for the S arc. These
differences are adjusted by adding an initial C arc to the S arc
and prolonging the steady turn by a final C arc. Consider the
two equations for # and ¥ in the new form

du uZ(1+M)
ds E*u
dy

Z\ .
— = — sing — cosy tan¢
ds i

(53a)

(53b)

Neglecting the small term in tan¢, we combine these equations
to obtain

dy E*\sino
du (1 +N)u S
The most favorable turn is conducted with A=1 and ¢=90
deg. Then, by integrating from u, to u,, we have

Aimay=Ellog™ (55)
b= h 2 & U,

According to this formula, the adjusted plane changes are
ir=19.7+0.08=19.78 deg for the S arc and i, =17.6+0.47
= 18.07 deg for the steady turn. Although the improvement in
plane change capability, attainable through angle of attack
and thrust modulation, is small for the altitude considered, it
becomes more and more substantial as the altitude increases.

Nature of Optimal Trajectories

In order to emphasize the characteristics of the variable
thrust, multirevolution trajectories, we consider a higher
altitude corresponding to Z =0.010913. The initial speed for
the S arc is uy=0.999940, almost circular. If A is the altitude
difference with respect to the previous flight level Z,
=0.080640 taken as reference, and 8 is the inverse scale height
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for an exponential atmosphere, the new value of Z satisfies the
equation

Bh =log(Zy/Z)=2

Hence the new altitude is about 15 km higher. Since the atmo-
spheric density is lower, we expect a longer range trajectory for
a given-amount of fuel consumption, in comparison to the case
considered earlier.

Fig. 4 shows that there is even less deviation from circular

speed than there was at the lower altitude, namely, 0.1% vs
3.0%. From the number of intersections with the 4 =0 line,
it is clear that, for a given amount of fuel consumption, more
revolutions are required at higher altitude to achieve thé plane
change, as expected. Figure 5 shows that the optimal num-
ber of revolutions increases as the propellant consumption
increases.

Representative plots of the optimal controls for the higher
altitude case are shown in Figs. 6-8. The value of p;is 0.6.
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Fig. 5 Optimal plane change angle i (Z =0.010913).
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Fig. 6 Comparison between bank angle and latitude along the opti-
mal flight path.
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For this case, it takes about five revolutions to achieve the
largest plane change via a totally S arc. The optimal plane
change is 17.8 deg, which is less than the 19.7 deg achievable
in the lower altitude case, for the same fuel consumption. The
optimal controls are nearly periodic. In Fig. 6, the latitude and
the optimal bank angle are plotted against the longitude. The
longitude is reset at 6=0 at the ascending node ¢=0 for a
typical revolution. The increase in the absolute values of the
maxima and minima of the latitude shows that the inclination
is increasing. The optimal bank angle is nearly bang-bang. The
optimal bank angle switches values at the apexes of the orbit.
It is +90 deg on the side containing the ascending node and
—90 deg on the side containing the descending node. A bank
angle magnitude of 90 deg ensures that all the lift force is used
for turning. The switching of the sign ensures that the inclina-
tion continues to increase.

Figure 7 shows the optimal normalized lift coefficient
(which is directly related to angle of attack), along with the
optimal bank angle, as functions of the longitude. It has been
noted that the lift coefficient and the bank angle are related
[see Eq. (3)]. Previous work?? has shown that for a given
heading angle change the corresponding inclination change is
maximized, if the heading change is made at a node. The

- behavior of the normalized lift coefficient is consistent with

this finding. We see that the lift increases to its maximum at

- the nodes. The reason the lift is not always at its maximum is

indicated in Fig. 8. Figure 8 shows the normalized thrust mag-
nitude as a function of the longitude. Since the lift vector is
essentially always in the horizontal plane, the altitude is kept
constant by flying at nearly circular speed. The control for
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Fig. 7 Comparison between bank angle and normalized lift along the
optimal flight path.
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maintaining nearly circular speed is the thrust magnitude. Al-
though maximum lift is good for turning, high lift means high
drag. Consequently, the thrust magnitude is seen to peak in
phase with the lift. The lift decreases to a minimum at the
apexes of the orbit because heading changes lose their effec-
tiveness in changing the inclination and because propellant can
be saved. In contrast, the steady cruise turn, because the lift
coefficient (angle of attack) and speed are constrained to be
constants, does not provide the freedom to compensate for the
spatial nonuniformity in the effectiveness of out-of-plane
forces to change the orbital plane and, consequently, the per-
formance of the steady cruise turn deteriorates at high altitude.

As a final note, Fig. 8 shows that only a low thrust capability
is required to fly the sustaining arc at high altitude and accom-
plish a substantial plane change.

Optimality Assessment

Under the assumption that the optimal constant altitude
trajectory is a totally S arc, i.e., that it lies on the singular
hypersurface, we have computed all the extremal solutions and
determined by direct comparison the one with the largest plane
change. We have been able to determine all of the extremal
solutions because an S arc is completely determined by specify-
ing the value of the single constant parameter k and because
the behavior of the S arc as a function of k is clearly identifi-
able from our graphical analysis. Besides the value of k, ex-
tremal S arcs are distinguished by the number of times 7 that
the oscillatory function B has passed through zero. The condi-
tion B =0 is a transversality condition that must be satisfied at

. the final time. Locations at which B =0 occur in between an
apex and a node of the osculating orbit; hence, there are four
occurrences per revolution. (We use the term revolution to
refer to travel from one crossing of the initial orbit plane in the
ascending direction to the next crossing of the initial orbit
plane in the ascending direction. During a revolution, the iner-
tial longitude may change by more or less than 360 deg if the
line of nodes is changing.) Consistent with the fact that the
effectiveness of a heading change for changing the inclination
is maximum at the nodes and minimum at the apexes, we find

- that the S arc that maximizes the inclination change always
ends at an odd-numbered occurrence of B =0. In other words,
it is never optimal to reduce the rate of fuel consumption in
order to pass through the upcoming apex, unless the flight is
continued through the subsequent node as well. Numerical
experience indicates that the maximizing S arc is achieved by
selecting the largest value of k for which the specified final
mass ratio and transversality condition (43) can be achieved
with n odd.

Thus, we have a combined graphical-numerical approach
for determining, for a given cruise altitude, the extremal S arc
that achieves the maximum plane change. In the original state-
ment of the optimal control problem, both the initial and final
speed for the constant altitude trajectory were specified. As
noted earlier, the initial and final speeds on the S arc are
consequences of the relations that hold along the S arc and will
not, in general, equal the specified initial and final speeds. By
choosing the initial speed consistent with the initial speed on
the S arc, we have avoided considering an initial boost or coast
arc. Under our assumption that most of the optimal trajectory
will lie on a singular hypersurface, we are focusing our atten-
tion on the various extremal S arcs that emanate from the
initial point on the singular hypersurface; the optimal non-
singular arc leading to this initial point will be the same for
each extremal S arc. On the other hand, to allow a meaningful
performance comparison between extremal S arcs and ensure
that the maximum plane change is a continuously differen-
tiable function of the fuel consumption, we have specified the
final speed. In our first numerical example, there were several

" extremal S arcs for each value of the fuel consumption, each
having a different final speed. By specifying the final speed to
be less than the smallest of these, we ensured that the final
speed could be achieved in each case by following the S arc by
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a C arc. Combining an extremal S arc with the required final
C arc, we obtain an extremal constant altitude trajectory, sat-
isfying all of the boundary conditions, that is, a candidate for

. maximizing the plane change within the class of constant al-

tiude trajectories satisfying the same physical boundary condi-

- tioms.

We now address the question, Are any of the extremal S
arc/C arc solutions maximizing within the constant altitude
class? For each of the extremal S arc/C arc solutions we have
computed, we find that the strengthened forms of Goh’s neces-
sary conditions are satisfied along the S arc and that the
Hamiltonian is maximized over the control set at each point on
the C arc. We also note that the necessary condition!© at the
junction of the two arcs is satisfied. Comparing the plane
change for neighboring S arc/C arc extremals that satisfy all of
the boundary conditions except the transversality condition on
B, we find that extremal S arc/C arc trajectories with n odd
(where n is as defined earlier) are locally maximizing, whereas
those with 7 even are locally minimizing. For each value of the
fuel consumption, the trajectory composed of the S arc, which

- maximizes the plane change within the class of totally S arc

trajectories, and the appropriate C arc yields the largest plane

" change among the extremal S arc/C arc trajectories. If the

constant altitude trajectory that maximizes the plane change is
primarily an S arc as we have hypothesized, it appears that we
have found the maximizing trajectories for the particular cases
we have considered.

Conclusions

Our interest in synergetic plane changes, with a constrained
heating rate, led us to consider the problem of maximizing the
orbital plane change during constant altitude flight. The prob-
lem has been formulated mathematically, and necessary condi-
tions for the optimal trajectories and controls have been
derived. In general, the optimal trajectories may be composed
of boost, coast, and singular arcs with respect to the thrust
control. Our previous results, obtained under more restrictive
assumptions, suggested that the maximum plane change at
high altitude would be achieved by flying at nearly circular
speed. Since this speed can only be sustained by using an
intermediate thrust level, we hypothesized that at high altitude
the optimal trajectory would consist primarily of a singular
arc. For the singular arc, the extremal controls could be deter-
mined in feedback form (in terms of the state variables), except
for a constant parameter. From this one-parameter family of
extremal controls, we determined numerically for two constant
altitude cases all of the members of this family that satisfied
the final conditions except for that on the speed. The maximiz-
ing singular arc was then determined by direct comparison of
the achieved plane change. In order to satisfy the final condi-
tion on the speed, it was necessary to follow the singular arc
with a coast arc. The singular-arc/coast-arc trajectory is an
extremal solution for the constant altitude optimal synergetic
plane change problem. Along the trajectory, we have verified
that the strengthened forms of Goh’s necessary conditions are
satisfied on the singular arc and that the Hamiltonian is max-
imized on the coast arc. By numerical perturbation, the singu-
lar-arc/coast-arc trajectory was found to locally maximize the
plane change. If our assumption that the optimal trajectory
consists primarily of a singular arc is correct, it is likely that we
have determined the globally optimal trajectory. In any case,
we have shown by direct numerical comparison that our solu-
tion yields a larger plane change than the optimal steady cruise
solution.

The primary physical conclusion of this paper is that, during
constant altitude flight, the maximum plane change is not, in
general, achieved by flying at a constant angle of attack, i.e.,
with a constant lift coefficient. The additional propellant con-
sumption incurred by maintaining constant angle of attack
grows as the range over which the flight takes place increases.
Thus, the advantage of variable angle-of-attack flight in-
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creases as the flight altitude increases. For very high altitude
flight, which might be chosen to reduce the heating rate, the
aerodynamic force is small, and it may take a substantial por-
tion of a revolution, or even several revolutions, to effect the
required plane change. In this case, the optimal angle-of-
attack control becomes near periodic. On the other hand, the
speed, although it has not been constrained to be constant, is
nearly constant and approximately circular. Circular speed is
advantageous because the vertical force balance required to
sustain constant altitude is achieved without aerodynamic lift;
the lift can thus be used exclusively to effect the plane change.
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