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This paper concentrates on two external collisionless gas flow problems. The first prob-

lem concerns collisionless gas flows expanding into vacuum, which have important appli-
cations such as free molecular cold gas jet formed from electric propulsion devices; the
second one considers collisionless flows over a flat plate. From a relation between particle
position and velocity, we obtain the corresponding exact solutions for the number density
and velocity distributions for both problems. Numerical simulation results obtained with
the direct simulation Monte Carlo method validate the analytical solutions. In general, the
comparisons between the exact analytical solutions and the numerical results are virtually
identical. The same procedure developed in this paper can be used to study many other
external collisionless flows.
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X,Y,Z

velocity distribution function

number density

polar coordinate variables

radius for a circular or an annular exit, or universal gas constant
macroscopic temperature

microscopic molecular velocity

macroscopic average velocity

a point on exit

a point in front of the exit

angle between the X-axis and a segment from (0,0) to (X,0,Z), or plate inclination angle
1/(2RTy)

specific domain in velocity space
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subscript
0 averaged property at exit, or free stream value

w wall property

I. Introduction

HIS paper concentrates on two collisionless gas flow problems, the first problem concerns collisionless
Tgas flows out of a circular or annular exit, and other considers collisionless flows over a flat plate. This
section briefly review the previous work in the literature.

These problems are relatively simple rarefied gasdynamic problems with mathematical significance and
real applications, and many researchers have studied both problems. High speed collisionless, or free molec-
ular, gas flows passing through small circular or annular apertures are fundamental problems with many
real applications such as neutral gas expansion out of Electric Propulsion (EP) devices. Usually the cold
plume flow out of an EP device is modeled by assuming free molecular flows with a nonzero, uniform average
exit velocity, Us. Even when the average bulk velocity of gas near the orifice is zero, the average velocity
at the orifice exit plane is not zero, it corresponds to an outflow with a half Maxwellian distribution. As
pointed out by Woronowicz,' for high speed plume flows, even though the number density at the exit can
be high, the relative velocity is very small, and intermolecular collisions happen very rarely. In the past,
analytical studies of similar problems were concentrated on true effusion problems with a zero average exit
speed. For example, Liepmann” reported the efflux of gases through circular apertures, which is an example
of a transition from the gasdynamic to the gaskinetic regime; Narasimha® obtained the exact solutions of
density, velocity and temperature distributions for a free molecular effusion flow, and the results for a nearly
free molecular effusion flow, expanding into vacuum through a circular orifice; Brook* reported the density
field of free molecular flow from an annulus, to study the gas leakage effect from a spacecraft hatch. Other
researchers reported many approximate methods or numerical simulations to study rarefied flows through
a slit, for example, Rotenberg,” Hasegawa,® Cercignani’ and Sharipov.® Recently, Lilly et al reported their
work on measurement and computation of mass flow and momentum flux through short tubes in rarefied
gas.” For the case of free molecular flows with a nonzero average velocity, usually the problems are very
complicated, and approximations are often exercised such as neglecting the details of the exit geometry or
assuming that free molecular flow is emitted from a point source.'® The other problem, high speed collision-
less external flow over a flat plate is also very important for space engineering, especially the aerodynamic
coeflicients, such as Cp, Cr, Cf, and heat flux rate are important for spacecraft design. For collisionless flows
over a plate, the earliest work may date back to Kogan;'' several more recent books discussed collisionless
aerodynamics over a flat plate as well, such as those by Bird,'” Gombosi'® and Shen.'* Especially, Bird'?
discussed plate surface properties for collisionless flows with both diffuse and specular reflections, and the
direct simulation Monte Carlo (DSMC) method is probably the most appropriate numerical tool to simulate
rarefied gas flows. Chen'® disccused the surface drag and heat transfer for collisionless flows over a plate,
cylinder and small sphere. It is also worthy to mention that Sun & Boyd'® reported a study of rarefied
gas flows over a 5% thickness flat plate with a hybrid method. However, in the literature, almost all the
collisionless flows over a flat plate were focused on the wall properties.

In our previous study,'” '®*we adopted a relation between velocity-directions and geometry-locations to
investigate free molecular plume flow problems. This treatment is more general than the solid angle treat-
ment,® which was widely used in studying true collisionless effusion flows with a zero average exit speed, but
is not applicable to collisionless flows with a nonzero average exit speed. In this study, we further investigate
collisionless flows out of a circular or an annular exit with a nonzero average speed; and we also discuss the
flows over a flat plate, especially for locations off the plate surface.

This paper is organized as follows: Section IT describes the first problem, the corresponding exact so-
lutions, approximate farfield solutions, and compares the analytical results with particle simulation results;
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Section IIT discusses the second problem by applying the same principles, and presents some validations
by again comparing the analytical results with particles simulation results; and Section IV summarizes this
study.

II. Problem 1: Plume Flow Problems and Solutions

A. Free Molecular Problems

The first problem involves the following free molecular gas flows expanding into vacuum from an exit:

(1) A circular exit with a radius of R, average exit velocity Uy that is greater than zero.

(2) An annular exit characterized by an inner radius R; and an outer radius Ra, average exit velocity Ug
that is greater than zero.

These two cases are closely related: if R; in the second case is set to zero, then it degenerates to the first
case. Because both cases have important applications, we discuss both and provide the complete solutions.

The thermal velocity at the exits are expressed with a Maxwellian distribution function characterized by
a number density ny and a temperature Tp:

3/2
f(u,v,w)dudvdw = ng (;) exp(—B(u? + v* + w?))dudvdw 1)
where 3 = ﬁ. Although the plume itself is in a highly non-equilibrium state, it is reasonable to assume
the flow is at equilibrium before it escapes from the exit. Using Ty and ng to describe this equilibrium state
is a natural selection widely used by many researchers in the past.'®
For this problem, we adopt the following coordinate systems: Denote the plume direction as the X-axis
direction, the direction normal to the X-axis as the Z-axis direction, and the circle center/annulus center is
the origin. The objective is to obtain the analytical plume field flow solutions, especially the number density
and velocities at any point downstream of the exits.

B. Collisionless Effusion Flow Solutions

Narasimha adopted solid angles to study a free molecular flow of gas escaping from an orifice, however,
this solid angle approach is not general enough to study effusion flows with nonzero average exit velocities.
Instead, a geometric relation between velocity and position was recently proposed.'”

For the circular exit case with a nonzero average exit speed, the relation between velocity and position
takes a new format. Suppose the average velocity at the circular exit is Up, from any point (0,y,2) on
the circular exit which is characterized by a radius of R, only particles with the following special velocity
components can arrive at a point (X, 0, Z) in front of the exit:

X Y-y Z-2z

= 2
u+ Uy v w (2)

where X > 0,Y =0,Z > 0. Combined with the geometry relations:
z=rsind =7 —Xw/(u+Up),y=rcosf =Y — Xv/(u+ Up) (3)

where r € [0, R], 6 € [0,27], the integrals for the number density and the velocities can be simplified using
the following change of variables:

dv  Bv 2
dvduw = ‘ o ot | arag = T g (4)
ar o0 X

The above change of integral variables transfers the integral domains from (—oo, +00) for v, w to finite spans
for r and 6.
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The final results of number density and velocities at a point (X, 0, Z) in front of the exit are:

n(X,0,Z) = f+°° du [T dv [+ dw (8 )3/ exp[—B(u? + v? + w?)]
=2(8 )3/2 o dtL fg/jQ db [T rdr exp[—f(t — Uo)? — B4 (r® + Z2*> — 2rZsing)]  (5)

= = (2)" [715, db [y exp (— BUR ezt g rKdr

3/2 pm R r2 2_ rsin
UX,0,2) = m [(g) / f—7/32 do ;" exp (- BUG X2+Jrrﬂz+z227Z228r s?nG)MTdT] (6)

3/2 rm rsin r? 2_2Zrsin
W(X7 07 Z) = W [(g) / f—7/r?2 de fR 27‘9 exp ( - IBUg X2+jZZ+Z22—ZQeriGn6)Mrdr:| (7)

where K = %exp(—BUgQ) + (25 + Q2U0),/ [ + erf(\/B U(])] = X2+Z2+5§2_2Zmin9, M =

3rr2 2
LI exp(—BQUZ) + % exp(=AQUE) + (2522 + Q3U§)\/*2[1 + er f(VBQUO)!.
Similarly the results for the annular case are straightforward to obtain by replacing the integral range
for the exit radius from 0 < r < R in Eqns.(5, 6, 7) by Ry <r < Ra.

C. Farfield Approximations

Although the above exact relations are accurate and convenient to evaluate via a computer program since
the integration over the infinite span of velocity space is complete, they are rather complex for practical
usage. Hence approximate farfield simplifications are developed. Here we provide these for the annular exit
case, and the circular exit case can be obtained by setting R; = 0 in the following formula. From the above
relations, with the far field approximation: Ry <r < Ry € VZ2+ X2, Q = % = cos? o and:

n(X,0,Z) = R2X2Rl cos® a1 — Xiﬁgzg (@ + Z%)]
8
(% cosa\/éexp(—ﬂUg cos’a) + (3 + M)[l + erf(+/B cos an)]) ®
2 2 2 2 2
U(X,0,2) = arxozyy/ 5 gxe cos' ofl — ¥og (T + 2%)] (9)
(cos® aUg + %) exp(—f3 cos® aUg) + (3esale 4 BUE cos® ) \/g[l + erf(v/B cos an)]]
2 2 2 2 2
W(X,0,2) = n(X10 7) \/ERgxfl cos* o[ £ — X(L)?(Z(erz% (RQ;Rl +2?%) - z()?g;fﬁ)zi)]
(cos® aUg + ) exp(=p cos® aUg) + (3esale 4 BUE cos® a) \/g[l + erf(+/B cos an)]]
(10)

The cosine function dominates in the farfield simplifications, and by retaining the geometry radius in the
expressions, these relations are more accurate than the results obtained by Narashima.' By comparison,
the point source solutions'? totally neglect the exit geometry, hence their accuracy should be inferior to the
above approximations.

D. Centerline Property Distributions

The centerline property distributions can be obtained from the exact solutions by setting Z = 0. The final
exact solution to the circular exit case is:

BR2UE X2

n(X,0,0) = —+ eTf (v/BUo) — XP(—m)[lJreTf( ﬁm%)] (11)

X
—F €
2v/ X2 + R2

4 of 15

American Institute of Aeronautics and Astronautics



1 R? exp(—BU¢) BR2UE Up X3 X2
= - - 1 -
U(X,0,0) 2”(X,0,0) \/,B_W(Xz + R2)+U0[1+erf(\/BU0)] exp( X2 + RQ)(X2 + R2)3/2 |: +6Tf( BX2 + R2
(12)
The corresponding solutions for the annular exit case are:
n(X,0,0) = e exp(~tap)[L + erf(x/ﬁ%ﬁzvo)] )
BR2U2 ra<

2 R2U? 3
U(X,0,0) = 2n(§,0,0) jﬁ—ﬂ(xzipg - Xz_l,_Rg ) eXp(_IBUg) + exp(— gzi,{’; ) (lefé)s/z [1 + eTf(\//BXz+R2 UO)]

272 3
- exp(—f(?i({{)g ) (X2[{£})§§)3/2 [1+ erf(\/ﬂWUo)]]

If Uy = 0, the centerline results degenerate to those for effusion flow problems.'®

(14)

E. Validation

Although the complete analytical results involve several integral terms that cannot be explicitly removed,
numerical evaluations are convenient via a computer program. The subroutine for the error function can
be found in many numerical computing books.'’ Because the flows are rarefied, it is appropriate to utilize
the DSMC method'? to validate the analytical results. In this study, we used a specific DSMC package
named MONACO?° to perform the simulations. The simulation domain and mesh are quite simple, and the
collision function in MONACO is turned off to achieve the collisionless effect. Under this situation, the value
of the number density at the exit does not produce any difference in the final normalized results and exact
free molecular flows are guaranteed.

Figure 1 shows comparisons of number density contours from the exact analytical solutions, shown with
solid lines on the top; the farfield approximation results, shown with dashed lines on the top; the point
source solutions,' shown with dashed lines at the bottom; and the DSMC results, shown with solid lines at
the bottom. The average exit velocity at the slit is set to +/2RTy and the exit temperature is set to Ty = 300
K. Generally the exact analytical results are almost identical to the DSMC simulation results. There are
some minor differences at the near field close to the exit, because the numerical evaluation of the exact
solutions contains very small denominator terms in these regions, especially close to the origin. It is also
very clear from the plot that the farfield approximation is not very accurate when X < 3R, but the accuracy
significantly improves when X > 3R. Another factor for the difference is that the farfield approximation
is the result by reserving the first expansion term from the integration kernel, the exponent function; more
terms can be included to achieve higher accuracy.The point source density contours have large discrepancies
at the origin, because the denominator contains a factor of r, hence, for the point source expression, the
density at the origin point approaches to infinity. However, for farfield locations, the point source solution
performs very well, and it has a more concise format than the exact analytical solutions and the farfield
approximations.'

Figures 2 and 3 show the corresponding results of velocity contours normalized with the characterized
thermal speed /2RT,. Similar conclusions to the density distributions can be drawn from these two pictures.
The flow patterns have a narrow zone where exit effects dominate, but in the farfield, the contour lines are
straight.

We also perform a simulation to validate the analytical results for the annulus case as well. In this
simulation, the inner and outer radii of the annulus are set to R; = 0.1 m and Ry = 0.2 m, respectively.

Figure 4 shows contours of normalized number density. In the whole simulation domain, the comparison
shows very close results between the exact analytical solutions and the numerical simulations, and the farfield
simplifications become very accurate when X > 3R,. Figures 5 and 6 show the velocity contours. Both
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comparisons are very satisfactory as well. In all of these three pictures, both the exit region and the slow
“cavity” region in the center, which is characterized by negative W, are clearly captured.

ITI. Flow Over a Flat Plate

A. Problem and Solutions

The second problem is illustrated by Fig.7: A zero-thickness flat plate AB is set with an inclination angle
/BOF = a, the plate length is L, and we set the coordinate center at the plate center. Collisionless gas,
assumed to be argon in this study, flows from the left to the right, with a macroscopic average velocity Uy, a
temperature of Ty and a number density of ng. To aid the study, we assume the outer boundary as a circle
with a very large radius. At each point on the circle, incoming particles follow a Maxwellian distribution
function characterized by the free stream parameters, Tp, Uy and ng. Suppose an arbitrary point P(z,y) is
off the plate, either in the front or the back side of the plate. In this study, we assume the reflections at the
flat plate are completely diffuse.

By following the same principles used in the first problem, we can solve this problem as well. From Fig.7,
on the large circle, at a point (X,Y"), of all particles with a thermal velocity (u,v), only those satisfying the
following relation can reach point P(z,y), if (X,Y) is visible from P(z,y):

(u+Uo)/(X —z) =v/(Y —y) (15)

If a particle’s velocity components satisfy the above relation, then it cannot miss passing through P(z,y)
neither, unless it is not on the same side of the plate as point P(z,y). Since all incoming particles on the
large circle follow the free stream Maxwellian distribution function, then with the above relation, the effects
of free stream can be described by the velocity space shown on the left side of Fig.8, within a domain Q.
With a similar relation,

u/(X —z) =v/(Y —y) (16)
the contributions to point P(z,y) by those diffusely reflected particles from the plate are described by an
Maxwellian distribution function with a domain, 22, shown on the right side of Fig.8. The boundaries of
these two domains, §2; and Q, are determined by point P(x,y), the two specific plate ends A(Azx, Ay)
and B(Bwz, By), and the above two equations. If we denote 61 = atan '[(y — Ay)/(z — Az)] and 6, =
atan"'[(y — By)/(x — Bz)], where atan! is a function with a value range of [—m, ], then from the two
equations, /ZNPO = LLOu = 6y and ZM PO = LKOu = 0>. From Eqn.15, we can conclude, point (—U,0)
belongs to domain ;. Hence, the boundaries for Q1 and Qs are completely determined by Eqns.(15) and
(16). When Uy = 0, then Q; and Q> do not overlap, a combination of these two domains leads to a complete
domain where u, v both have a range of (—o0, +00).

The velocity distribution function for point P(z,y) consists of contributions from two different Maxwellian
distribution functions:

fo(u,v) = no(ﬂo/w)3/2 exp[—Bo(u? + v + w?)], (u,v) € U (17)
Fuo(u,v) = Ny (Buw/7)*? exp[—Bu (U? + v + w?)], (u,v) € Qy (18)

where 8o = 1/(2RTp), Bw = 1/(2RTy,), and
N = 1o/ To/Twlexp(=52Sa) £ V7(SSa)(1 + erf(£55.))], (19)

the “4” sign is used for the front side and “-” for the back side, S = Uy/+/2RT} is the speed ratio, and
S, = Ssin(a). See the books by Kogan'' or Bird'? for details.
Integrating the above two velocity distribution functions, Eqns.(17) and (18), over 1,u,v, leads to the
macroscopic number density, U-velocity and V-velocity distribution functions:
n(X,Y) = [o fodudv+ [o fuwdudv

=ng —No exp(—ﬂoU02)[(02 - 01) + 7(/,30’}’(01, 02)]/(27’() + nw(02 — 01)/(2#) (20)
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where v(61,65) = f;f exp(BoUo? cos? 8) BoUs cos 8[1 + er f (v/BoUy cos 8)]db.

U(X,)Y) _
V) = (o, ufodudv + [y ufududv)

= e - el [V 7y (Ug cos® 0(1 + er f(v/BUj cos §)) exp(BUo” cos? 0)) 6 (91
+W(01702),/7r/ T Ualta=n) Uo(sin(Zazi—sin(291)):| + Pu(sinds—singy)

28Uo 4+/mn
V(XY
o = e (Jo, viodudv + [y, v fydudv)
= 4\/En exp(—BoUo? sin® 6;) cos 6, (1 + er f (v/BUy cos 1)) (22)
— exp(—BoUo? sin? 03) cos B2 (1 + er f (v/BU, cos 02))] + T (COST%COS(QZ))

Details of the integration processes can be found in our previous work for a similar problem.'® The effects
from the plate length, L, are implicitly contained in the parameters 6,,602. By comparison, the classical
surface properties of collisionless flows over a flat plate do not contain any plate length effects. The average
translational temperature result is very complex and is omitted here, but we will show the simulation result
for the temperature in the next section.

When Uy = 0, the above results are greatly simplified as:

n(z,y) = no + (ny — no) (02 — 61)/(2m) (23)
Uz,y) =V(z,y) =0 (24)
T(CL’, y) =Ty + (Twnw — Tono)(ez - 01)/(27’(?1) (25)

B. Validations

To validate the above analytical results, we perform four numerical simulations with the MONACO package.
The incoming flow is supposed to be argon, with a static temperature, To = 200 K, and the plate temperature
is set to T3, = 300 K. The simulation domain is 5 meters by 5 meters with a total number of 100 x 100 cells,
mainly to provide a high resolution. About 5 millions particles are used in each of these simulations, and
the four sides of the outer domain are set to inlet boundary conditions. The other parameters are:

Case 2A: Uy = 0 m/s, plate length L = 1 m, plate inclination angle a = 30°.

Cases 2B, 2C, 2D: Uy = 2RT, = 288.34 m/s, plate length L = 2 m, plate inclination angles are a = 0°,
30° and 90° respectively.

In the simulations, the plate thickness is assumed to be zero, but in the following pictures, a thick line is
added to each picture to clearly illustrate the plate location.

Figures 9, 10 and 11 show contours for the number density normalized by the free stream value, ng, the
averaged translational temperature, in Kelvin, and the pressure normalized by ngmRTy, for test case 2A. As
we can see, with a zero velocity in the free stream, the flow patterns are very simple, and the match between
the analytical and DSMC simulation results are very good with some minor discrepancies. The contours
shown in these three figures are actually circular, because along a circular line, the same solid angle is formed
by different points and the two plate ends. Correspondly, the velocity phase spaces contains the same portion
of solid angles for the free stream and the plate. Hence, the density, pressure and temperature must be the
same. For this case, the macroscopic velocity at any point in the flowfield is absolutely zero, hence, the DSMC
method cannot provide accurate velocity results due to the large statistical scatters, i.e., it is impossible to
reduce the statistical scatter in the sampled velocity results to a certain fraction of the physical macroscopic
averaged velocity value, say 5%. This explains the minor discrepancies between the analytical and DSMC
results for the temperature and pressure: in the DSMC results, the inaccurate velocity values contribute
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some effects to the temperature and pressure results, and they destroy the perfect symmetric patterns shown
in the analytical results. In fact, this test case is more expensive than the other three test cases. The current
Information Preservation (IP) method?! ?:2% 24 has problems to simulate this case as well, because currently
a specific step to accelerate particles’ preserved velocities according to preserved pressure is needed for the
IP method. As a result, the IP method may produce nonzero velocity results similar to the DSMC method.
This test case 2A provides a very good benchmark case to further develop the IP method as well.

Figures 12, 13, 14 and 15 show the results of normalized number density, and velocity components, and
temperature for test case 2B. Macroscopic properties of higher order moments of the distribution functions,
such as pressure and temperatures, are neglected here for simplicity, even though in principal they are
computable with more complex relations. The flow patterns for this test case are very complex indeed: a
source at the front tip and a sink at the rear tip are visible, the nonzero free stream pushes the contour lines
backward, and because the plate inclination angle is zero, the flow patterns are exactly symmetric about
the X-axis. These contours show excellent matches between the analytical and numerical results, and we
can confidently conclude that they accurately represent physical results. It is very evident that the contours
have very complex patterns; by comparison, the results for the front and back sides of the plate have two
specific point values, which are special cases of the general results from this study. For example, the front
surface properties are the special values obtained by 81 = o and 62 = a + 7. It is rather surprising that
such a simple collisionless flow can possess such complex flow patterns. The analytical solutions consist of
factors from geometry relations, the free stream number density, ng, mean velocity, Uy, temperature, Ty, and
the plate temperature, T,,. The anlytical result for temperature is difficult to obtain due to more complex
integrations, and here Fig. 15 only shows the simulation results. However, since temperature is a result of
integrations of the velocity distribution functions with a higher order moment, we can believe that the future
final analytical results should match the DSMC simulation results as well.

Figures 16, 17, 18 and 19 show the results of normalized number density, and velocity components, and
temperature for test case 2C. With a plate inclination angle of 30°, the symmetric patterns disappear as
expected. The plate facing the incoming flow has a higher density, and the leeward side has a lower number
density; the front side has smaller values of U-velocity due to the blocking effects by the plate, while the
back side has larger values of U-velocity as the gas experiences expansion. The temperature contours include
DSMC simulation results only and there are complex patterns as well. In general, the matches between
analytical and numerical results are almost identical.

Figures 20, 21, 22 and 23 show the results of normalized number density, velocity components, and
temperature for the last test case, which has a plate inclination angle of 90°. The density contours have only
two lines of value 1.0, while there are four for Cases 2B and 2C. The V-velocity contours have four specific
lines of zero-values, which are very evident in Cases 2B and 2C as well. Again, we can conclude that both
the analytical results and the simulation results are correct because the matches are excellent.

IV. Summary

The study for the first problem is a natural extension of the previous work!” aiming to seek analytical
results for free molecular plume flows from EP devices designed for spacecraft propulsion. We have reported
analytical solutions to two fundamental free molecular flows out of a circular or an annular exit with nonzero
average speed and validations with particle simulations. More specifically,

1). The analytical results indicate that the solutions are composed of complex geometry factors and the
average exit velocity Up. Even though the formulae are complex, we evaluated the analytical results and
compared them with the DSMC simulation results. The excellent match between the numerical results and
the analytical results indicates that the treatment in this study was correct. The accuracy of the exact
solutions provides a solid foundation for farfield approximations and centerline property distributions.

2). The far field solutions of number density and velocities contain the exit geometry factors. Hence they
are more accurate than the point source solutions obtained by Narasimha.'® Comparisons with numerical
simulation results indicate that the farfield approximations are accurate when X > 3R for a circular exit
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and X > 3R, for an annular exit.

We have reported a study of collisionless flows over a flat plate at different inclination angles as well,
by applying the same principles used for the first problem. The collisionless flows over a plate have very
complex density, velocity and temperature patterns, and the almost identical matches between the analytical
and DSMC simulation results indicate the approach we used in this study is correct.

The approach used in this study is general and very heuristic, and can be used to study other collisionless
external flows over objects of different geometries. Further, these results can be used as base solutions to
solve for less rarefied flow situations, for example, with a linearized Boltzmann equation method.
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Exit, Uy = v/2R1p). Ry = 2Ry, Up = v/2RTp, Dashed Line: Analytical

Farfield Approximations).
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Second Problem.

11 of 15

American Institute of Aeronautics and Astronautics



Eo
>
-1
-2
3 LSS e o S e e
-1 0 1 2 3
X, m
Figure 9. Case 2A: Normalized Density. Solid Figure 10. Simulation Results of Temperature, in
Line: Analytical, Dashed Line and Flood: DSMC. Kelvin, for Case 2A.
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Figure 11. Contours of Normalized Pressure for Figure 12. Contours of Normalized Number Den-
Test Case 2A. Solid Line: Analytical, Dashed Line sity for Test Case 2B, Solid Line: Analytical,
and Flood: DSMC. Dashed Line and Flood: DSMC.
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Figure 13. Contours of U-velocity, in m/s, for Test Figure 14. Contours of V-velocity, in m/s, for Test
Case 2B, Solid Line: Analytical, Dashed Line and Case 2B, Solid Line: Analytical, Dashed Line and
Flood: DSMC. Flood: DSMC.

Figure 15. Simulation Results of Temperature, Figure 16. Contours of normalized number den-
Kelvin, for Test Case 2B. sity, for Test Case 2C, Solid Line: Analytical,
Dashed Line and Flood: DSMC.
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Figure 17. Contours of U-velocity, in m/s, for Test Figure 18. Contours of V-velocity, in m/s, for Test
Case 2C, Solid Line: Analytical, Dashed Line and Case 2C, Solid Line: Analytical, Dashed Line and
Flood: DSMC. Flood: DSMC.
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Figure 19. Simulation Results of Temperature, in Figure 20. Contours of normalized number den-
Kelvin, for Test Case 2C. sity for Test Case 2D, Solid Line: Analytical,

Dashed Line and Flood: DSMC.
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Figure 21. Contours of U-velocity, in m/s, for Test Figure 22. Contours of V-velocity, in m/s, for Test
Case 2D, Solid Line: Analytical, Dashed Line and Case 2D, Solid Line: Analytical, Dashed Line and
Flood: DSMC. Flood: DSMC.

Figure 23. Simulation Results of Temperature, in
Kelvin, for Test Case 2D.
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