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ABSTRACT

We consider the infinite horizon problem of minimizing discounted costs over a
set of feasible strategies whose component decisions are from arbitrary metric
spaces. We provide conditions for the existence of finite and infinite horizon
optimal solutions, develop the notion of generalized algorithm and its
convergence, give necessary and sufficient conditions for the existence of solution
(i.e planning) horizons for an algorithm, establish a stopping criterion for solution
horizon determination and conclude with application to doubly infinite, non-linear

programs.
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1. Introduction

Consider an infinite sequential decision problem where each decision belongs to
some general decision set. Any such sequence of decisions, called a strategy, is
assumed to extend over the infinite horizon. In general, not all strategies will be

feasible.

Suppose that for any feasible strategy there is an associated cumulative cost and
cumulative revenue which are functions of time; the cumulative net cost of a
feasible strategy is then the difference of these two functions. Since these functions
are unbounded in general, in order to compare them, we will continuously discount
them to time zero relative to some suitable interest rate. The basic problem we
wish to solve is the following infinite horizon optimization problem: find a strategy
that minimizes continuously discounted cumulative net cost over the set of feasible

infinite horizon strategies.

Associated with our problem is a continuum of finite horizon optimization
problems. Specifically, for each future time, minimize the corresponding finite
horizon continuously discounted cumulative net cost over the set of initial segments
of the feasible strategies up to the future time. Since we can in general solve only
finite horizon problems, our plan is to approximate solutions to the infinite horizon
problem by a sequence of finite horizon solutions. In particular, since the first
decision is the one which has to be made initially, we would like to find a near-
optimal first decision to a sufficiently large finite horizon problem, and then repeat
this process, each time being assured that the previously chosen decisions remain
near-optimal. Thisisthe familiar forecast horizon approach to infinite horizon

optimization.



In [3], Bhaskaran and Sethi argue that a more appropriate term for the finite
horizon used is solution horizon, since no a priori bound on the length of finite
horizon required is known in general. We agree with this point and have chosen to

use the term solution horizon in place of forecast horizon.

The above approach to our problem has also been followed by several other
authors. Originally, Bean and Smith [1] studied this problem in the context of finite
decision spaces, obtaining a somewhat restrictive solution horizon theorem.

Grinold [4] earlier considered similar issues in the context of infinite convex
programs. In [2], Bes and Sethi investigated a stochastic version of the problem
which was characterized by discrete time as well as finite decision spaces. In [7],
Hopp, Bean and Smith studied a non-homogeneous Markov decision process version

of the problem, also with discrete time and finite decision spaces.

Our main goal here is to obtain conditions which guarantee the existence of
solution horizons (relative to a finite horizon solution algorithm) for the infinite
horizon optimization problem in the context of very general (possibly non-finite

and non-discrete) decision spaces within a continuous time framework.

Throughout this paper we will make the following assumptions. In addition to

requiring that all quantities be deterministic, we will assume that:

A. Atany decision epoch, the possible decisions constitute a compact subset of a

metric space.

B. Allstrategies extend over infinite time.

C. Agiven strategy'sinfeasibility can be determined by observing only finitely

many initial decisions.



D. The cumulative cost and revenue functions are non-decreasing and eventually

bounded by an exponential function.

E. Costand revenue functions are continuously discounted.

F. Two feasible strategies which are the same through a given time have the same

cost and revenue functions through that time.

G. Assignments of cost and revenue functions to feasible strategies satisfy a certain

continuity condition.

In section 2, we define the space of feasible solutions and verify thatitis a
compact metric space. Insection 3, we introduce the cost structure and establish
some important and useful properties. Under our assumptions, the finite and
infinite horizon discounted costs are shown to be continuous functions in section 4,
thus guaranteeing the existence of finite and infinite horizon optimal solutions. In
section 5, we introduce the notions of algorithm, algorithm convergence, as well as
the set of algorithmically optimal solutions. An example shows that this set can be
significantly smaller than the set of all optimal solutions. Thisis important because
itis the smaller set which plays the central role in solving the infinite horizon
problem by the finite horizon approximations. In section 6, we define the notion of
solution horizon and study the existence of such. Specifically, we give necessary and
sufficient conditions for solution horizons to exist for an algorithm in terms of the
associated set of algorithmically optimal solutions. In section 7, we give our
generalization of the stopping criterion established by Bes and Sethi in [2]. Finally,
in section 8, we provide an application to solving doubly-infinite, nonlinear

programs.



2. The Space of Feasible Strategies

Suppose (Zj,pj) denotes a metric space and Yjcz; the set of all possible decisions
available afterj previous decisions have been made, wherej=1,2,... . Each element

yj of Yj will be called a jth policy.

Assumption A. Yjis a compact space for all j.

We may assume each p; is bounded by 1. There is no loss in generality in making
this assumption since every metric is equivalent to one which is bounded by 1.
Moveover, if Yjis finite, then we may also assume (without loss of generality) that

the minimum distance between distinct pointsin Yjis 1.

Some important special cases for Y; are:

(i) a finite set.
(i)  aclosed, bounded interval of the real line.

(i)  more generally, a compact, convex subset of R".

Let Y denote the produce space 11;Y;. The pointsy = (yj) of Y will be called
strategies. Since not all strategies are feasible in general, we will denote the subset

of Y consisting of feasible strategies by X , which we assume to be non-empty.

The strategy space Y is naturally equipped with the product topology which
makes it compact (Tychonoff Theorem [5, p- 146]). The space Y also inherits a metric

from the Y;j as follows:

|/«

plx,y) = P, (xj ,yj)/QJ, xn,y€Y .

1

.
I

It is easy to verify that p isindeed a metric on Y which is also bounded by 1.



Lemma 2.1. The product and metric topologies on Y are the same. Hence, Yisa

compact metric space.

Proof. LetIdenote the identity mapping from Y (with the product topology) to Y
(with the metric topology). Then | isa mapping of a compact space onto a
Hausdorff space which is one-to-one. Thus, to show that the two topologies are the
same, it suffices to show that the mapping | is continuous [6, p.207], which is easily

done.

Remark. It follows from the previous lemma that we may abandon the metric p and
work exclusively with the product topology on Y. In fact, our problem can be
generalized to the setting where the Zj are assumed to be Hausdorff spaces, i.e. not
necessarily metric spaces. However, we will keep the metric p for ease of

exposition.

The next two results relate closeness of strategies in the space Y with closeness of

policies in the spaces Yj. Their proofs are straightforward. Forycy, let,y =(y;....y,)-

Lemma2.2. Let0<5 <1. Ifp(x,y) <&, forx,yinyY,then
pj(xj,yj)<6%, lSjS—élo‘gzﬁ.
In particular, if Yjisfinite, 17 j==k,and & = 1, then yx = yy.
Lemma 2.3 Let§>0and suppose k is a positive integer. If p (x,y) < 6/2k, then

Ly )< b =1,.. k.
pj(aj,.yj) , J=1..,

If Yjis finite, 1= j= kand §= 1, then  x=y.

For each positive integer k, define



kX = {kx:xéX}.

For x¢, X, let T, (,x) denote the time of implementation of policy  x (i.e., the  th
decision epoch) given that policies x,, ..., x,_, were implemented before x,. Then T,
is a mapping of (X into the non-negative reals, since T, (;x) =0 for all x in X and

'I‘k(kx)<’1’ (

et pgr®)h ¥EXR=12,

Assumption B.

’I‘k(kx)—m, ask—o, forallx€X.

Of special interest is the case where
Tk(kx):k’ X€EX k=12, ,

which corresponds to a discrete time problem.

For each T>0, Assumption B allows us to define
n, (x)= max {n: ’1‘”(”1‘)S'I'}, x€X,

which is the index of the last policy in strategy x which isimplemented no later than
timeT.

Recall that the feasible strategies form a non-empty subset of Y. For the main
purposes of this paper, it will be important that X be compact. We next turn to the

question of what assumptions on X will make it compact.

Proposition 2.4. The following are equivalent:

(i) X is compact.
(i) Xisclosediny.

(i)  Xiscomplete relative to the metricpon Y.

Proof. Omitted.



Assumption Crequires that the feasibility of a given strategy can be determined
by observing only finitely many initial policies. The exact meaning of this is the

following:

Assumption C. Ifycy, y¢X, then there exists 5>0 and a positive integer k having

the property that if z¢ Y is such that pj (zj,y;) <8 for 1= j=k, then z¢X.

Assumption Crequires that if yeY is infeasible, then all strategies z near y are also
infeasible; i.e., that the complement of X in Y is open. Thus, it is necessary and
sufficient for X to be closed, and hence compact, in Y. Consequently, X is a compact

metric space.

3. The Cost Structure

We next turn to the problem of assigning values to the feasible strategies. For
each xin X, let K(x,t) and R(x,t) respectively denote the cumulative cost function and

cumulative revenue function associated with strategy x, where t= 0.

Assumption D. Foreach xin X, K(x,’) and R (x,") are non-negative, non-

decreasing and there exist To>0, y ~ 0 and B>0 such that
max (K(x,t),R(x 1) < Bew, forall LZ'I‘U, x€X.
Note that without loss of generality, we may assume To = 0. (If not, replace B by

BeY™,)

We define the corresponding cumulative net cost function for x by

Cl,h =K@t = Rxt), (=0



Then, foreach xin X, C (x,) is a function of locally bounded variation.

Assumption E. All costs incurred at time t are continuously discounted by the factor

e-rt where the rate of interest r is greater than 0.

The T-horizon discounted net cost for x in X is defined by the Stieltjes integral

T

C~(x,r,'1')=[ e "dCx,T), r=0,T=0.
0

The T-horizon discounted cumulative cost and revenue functions, K~(x,r,T) and

R™(x,r,T) respectively, are defined analogously, Moreover,

C ,r,T)=K (x,r,T)-R™ (,r,T) , x€X,r=0, T=0 .

Our T-horizon problem is then:

min e.\'(’ (x,r, 1.

Since the minimum need not exist in general, define
VT = infxEXC (x,r, ), T>0 .

Since the T-horizon discounted costs associated with a strategy x truncates the
cash flow at time T, it will be useful to identify strategies that agree in policies
through time T. To this end, for each T>0, define the equivalence relation ~pon X as

follows.

If x,yeX, then x ~ pyif:

(i) na(x) = nyly).

() xj=vy, i=1,..,np(x).

In this event, since nx =pny, for n =ng(x), we have that

Tk(kx) = Tk(ky), ISkSn,I.(x),

i.e., xand y have the same decision epochs throughout time T.

10



Each ~p-equivalence class consists of those elements of X which are identical

through time T, and the space
XT = X/~T
of equivalence classes may be identified with the set of all distinct feasible

strategies through time T.

Assumption F. If x~yy, then K(x,t) =K(y,t) and R(x,t) =R(y,t) for0=t=T.

From Assumption F,

Cix,) = Cly,t), 0=t=<T,
and consequently,

CN(I".,Y') :C~ (.)',":T) ’

i.e. the T-horizon objective function is constant on the ~r-equivalence classes in X.
Thus, we obtain a function

E-CTERT)
on Xp, where

CT&r=C"(x,rT),  x€E,

and our T-horizon problem may be written:
’"/aex,,.c &,r,.
On a more concrete level, let
XTZ{xT:xEX},
where
T_
X = (xl,x,z,... X

n(x
T

Observe that xT is the T-horizon initial segment of x. We have seen above that

C~(x,r,T) depends only on xT, so that we may define

ol =@, x€X.

1"



Consequently, our T-horizon problem may be written:

inf ., €' nT)
1 €X

where X7 consists of T-horizon feasible strategies of finite length which are
extendable to elements of X. In particular, if we have a discrete time problem so

that
T"(x):n, x€X, n=12,..,

then XT=qX,forT=1,2,3, ... .
The infinite horizon discounted net cost for x in X is defined by the Laplace -

Stieltjes Transform

C (r)= J e "dC (),
where ’

C” ()= lim C ,nT),

Tow

provided this limit exists. The infinite horizon discounted cumulative cost and
revenue functions, K™ (x,r) and R™(x,r) respectively, are defined similarly. The next

result answers the question of existence.

Proposition 3.1. If r>y, then C™(x,r), K~ (x,r) and R~ (x,r) exist for all x in X. Moreover,

C~(x,r) =K~ (x,r) -R™ (x,r).

Proof. See Bean and Smith [1]

Forr>y, the infinite horizon problem is then:

infxe-\. C (,r).

As above, define

v (r) :infxéx C w,r).

12



The following result will be extremely useful in sections 4 and 7. Define

rB
a(rt)= —
r—y

Y >y 120,

Then a(r,t) >0 and, foreachr,a(r,t)-0,ast-> «.

Theorem3.2. ForxinX,r>yand T 0, we have:

0<K (x,n = K ,r,T)<a(r,T),

0<R n-R xrN<a@D)

and

IC” 0= C @, |<atr,).
In particular, it follows that

lim |C” (,r)=C (x,r, ]| =0

Tow

uniformly with respect to x in X.

Proof. For each x, K (x,") is a non-negative, non-decreasing function. By Theorem

4b of Widder [9], we have :
S ‘ ‘ S
[ K (x,1) die™™) = K(x,S)e—r5 - K, T ’ e "dK (x,0)
T T
thatis
S
K™ (x,r,S)— K™ (x,r, 1) = ‘ e " dK (x,0)
T
~y ” S
=KuxSe ™S -K wMe T+ r[ K e "dr,
where '
S S
rJ Kixne "dt < r[ BeY™" dt,
T T
< rB Iely—rlS _ e(y—r) Tl
y—r

13



=a(r,T)-a(rS).
Thus

K (x,r,S)— K~ (x,r,T) < BV TS _ Kx,T) e T +a(r,T)-a(rS).
Taking the limit as S»~ on both sides yields:

K (x,r) =K (x,r,D<a(r,N-Kx,T) T
<a(r,T) .

The claim for R is proved similarly. The claim for C then follows from the fact that

— IR &) =R (x,r,M =C (x,r)-C~ a,r, ) <K (x,r) =K (x,r,T) .

Proposition 3.3. For0=T=Sand r>y, we have

VS sV T +alrD.

Proof.In general,

T S

e~ "dCx, 0 + ! e~ "dClx, 1)

C («,rS) = [
T

0

S S

e~ "dKx 1) — [ e "dR (x,0)

=C (x,r,T) + {
T

T
S

<C™ (x,r, + I e~ " dK (x,1)
T

Vo)

<C” (x,r,T) + ' e "dK (x,0)
T

=C"a,r, ) +K ) = K~ (x,r, D,
that s,

Cx,rS)sC arD+arD), x€X,

by Theorem 3.2. Taking the infimum over x on the left yields

V*(r,S) <C (,r,D+ar,]), x€X.

The proof is then completed by taking the infimum over x on the right.

14



4. Existence of Optimal Solutions

In order to ensure existence of optimal solutions, it isimportant that the
discounted cost and revenue functions be continuousin x. Thus, we are faced with
the question of what reasonable assumptions to make about the original cost and
revenue functions so that this is the case. A detailed examination of Helly’s
Selection Theorem and Helly's Convergence Theorem [8] strongly suggests the

following:

Assumption G. If xn—x in X, as n -, then there exists a subsequence {xk} of {xn}

independent of t for which

K=K, 0st<w,

as k—»w. Thisistrue for example if K(x,t) is a continuous function over X for all t =" o.

We make the same assumption on R; hence, it is true for C as well.

We will see that this mild assumption on K and R is sufficient to guarantee the

continuity over X of the discounted costs and revenue functions.

In order to establish these results we require the next two lemmas.

Lemma 4.1. Let T=0. Then the family of functions {K (x ‘) : x¢X} is of uniformly

bounded variation on the interval [0,T]. Similiarly, for Rand C.

Proof. Since K (x -) is non-decreasing, its variation on [0,T] is equal to K (x,T) -

k (x,0) = K (x,T) which is bounded by Be'?, x¢X.

Lemma 4.2. Fix T=0. Suppose the real sequence {rc} converges to r monotonically
from the left or right. Then the sequence of functions {e-rxt} of t converges

uniformly to the function e-ton [0,T].

Proof. This follows from Dini’'s Theorem [6] .

15



For convenience, let I denote the open interval (y,«). The following are our main

convergence results.

Theorem 4.3. FixT>0. Then the mapping (x,r)=C™~ (x,r,T) of X xI' into the real

numbers is continuous. Similarly for C replaced by K or R.

Proof. It suffices to prove the theorem for K. Suppose (xn,ry) = (x,r) in XxI', as n—o.
If the theorem is false, then there exists ¢ >0 and a subsequence {xm,rm)} of {(xn,ry)}

such that

|K~ (xm,rm,T)—K~(x,r,T)] zeg, m=12,...

Since ryy —r, there exists a subsequence which converges to r from either the left or
right. In turn, there exists a subsequence of this one which converges monotonically
tor from either the left or right. Let {rx} be such a subsequence, so that ( xk, ry) -
(x,r) and

IKN(xlc ,rk,T)—K~(x,r,T)| =ze k=12,....

By Assumption G, there exists a subsequence {xi} of {xk} for which K (xi,t) - K (x,1),
0 -t <w, as j»». Thus, the subsequence {K (xi,-)} has uniformly bounded variation
on [0,T] (Lemma 4.1) and converges pointwise to K (x,) on [0,T]. Hence, by Helly's

Convergence Theorem, it follows that

T

T
[ e'”dK(r’,t)—>I e " dK (x, 1)
0 0

K & rt)=»K (1), joo.

Since ri—r monotonically from the left or right, it follows that the sequence of
functions {e-fjl} of t converges uniformly to the function e-rt on [0,T] (Lemma 4.2).

Consequently,

16



-r.l —rl)

(e 'j —e -0, asj> o,

We then have:

T T
e”TjHdK (1) - J e”"dK (x,1)]

|K~ (xj,rj,T)— K™ @nT)| =] ’
0

0

T T T
s|[ (e7 j'= e ")k (1) +|] e K (1) - J e” " dK (x, 1))
0 0 0
_<.max0<t<T(e_rjl—e_”)Var(K(xJ,- ),10,T])

T T
+ ]’ e dK 1) - } e "dK(x, 1)].
0 0

The difference of the integrals on the right goes to 0 as j»« (Helly’s Theorem) and
the other term on the right also goes to 0 as j»«, since the variations indexed by j

are uniformly bounded. Hence

K™, r, 1=K @D, asj-e,

which is a contradiction. Thus, the mapping (x,r) K~ (x,r,T) is continuous. Similarly,
the maping (x,r)>R™(x,r,T) is continuous as is (x,r)-C~(x,r,T), since it is the difference of

continuous mappings.

Theorem 4.4. The mapping (x,r) =C~(x,r) of X x I'into the reals is continuous.

Proof. Let(xn,ry)— (x,r)in X xI. Then r>v implies there exists ro such that y<ro<r.
Without loss of generality, we may assume ro = rp, all n, since ry - r. Let:>0. By

Theorem 3.2, there exists T, > 0 such that

K™ (y, ru) - Ky, ru,Tc)<d3, y€X.
Then

K~ " r) — K ,n|<|K &"r ,T)- K™ (x,r,T)|
n n £ ty

17



+ Ko"r)- K &"r ,T)
n n €

+ K (x,r) - K~(x,r,'1'£).
But

K " r)= K" r T)sK ", r)=K &",r,T)<e¢/3, alln,
n n £ 0 0 €

and
K ,r) =K (x,r,T)<K (x0)=K (x,r,T)<el3.
£ (4 0 t

Moreover, by Theorem 4.3, there exists n, sufficiently large such that
K~ G"r, T)-K (x, r,T )I<v3, nzn_.
Hence,
| K~ (x",rn )= K (x,n|<g,n=n .

so that K™ (xn,rn)—=K™~(x,r), as n» ». Hence (x,r)-»K~(x,r) is continuous as is (x,r)-»R~(x,r) by
a similar arguement. The result then follows since (x,r)=C™ (x,r) is the difference of

continuous mappings.

Theorem 4.5. Suppose xn-xin X, rn»rinTand Tp - «in [0,«). Then

C~(xn,rn,Tn) »C™(x,r), as n - «. Similarly for K and R.

Proof. Suppose once again that y<ro<rnforall n. Let¢>0. Once again, choose

T.>0 sufficiently large such that
K™ @,r)~ K ,r,T)<e/3, yeX.
Choose m, sufficiently large so that T, = T, forn = m,. Then, for such n, we have :
K™ G, TY= K™ )| <| KT 6" r ,T) = K &r,T)|

+1K & r,T)y= K " r T+ IK (x,n = K~ (x,r, T ).
n n n t t

18



But

" r,T)— K " r , TH<IK ",r )= K "r,T)]
n £ n n t

< |K™ (", ru) -K@&", ry TC)]

<el3, nzmt,
and

LK™, =K (x,r,T)ISIK Gr)= K &r,T)I
£ 0 0 e
<el8.
Therefore,
| K~ &", ro '1'n) - K n|<| K (x",r”, 'I‘E) - K~ (x,r,TE )| +2¢3, n=m.
By Theorem 4.3, there exits k, = m, such that

K™ &"r, T)— K nT)|<e3, nzk .
Hence,

K™ &"r , T )= K n| <e,nzk,

and the proofis complete.

Remark. This theorem says that the mapping (x,r,T) »K™(x,r,T) is continuous at any
point of the form (x,r,) in X x ' x [0,]. This raises the question as to whether this
mapping is also continuous at any point (x,r,T), where 0=T<w. We believe that this
is false in general. However, we conjecture that itis true if and only if K(x,) is left-

continuous atT.

Let us summarize what we have accomplished thus far.

Theorem 4.6. (Solution Existence) Under Assumptions A through G, for r>y and

T =0, there exist optimal solutions for the T-horizon and infinite horizon problems.

19



IfX* (r,T) and X * (r) respectively denote the sets of such optimal solutions, then

these sets are non-empty and closed in X. Hence, they are also compact.

Proof. A continuous function on a compact set attains its minimum and the set of
points where this occurs is necessarily closed.

Corollary4.7.  We have:

V*(r) =minIEX C™ (x,r)

and

V*(r,'l') =min__.C” @,rT) T=0.
x€X

The next lemma is a key result for the analysis to follow.

Lemma 4.8. Fixr>y. Let {Tn} be a sequence of positive times such that T, as
n-w. Foreachn=1,2,..,letx" be an arbitrary element of X* (r,T,,). Then there
exists a subsequence {Tx} of {T} and an element x* in X* (r) such that xk—x*, as

k.

Proof. Thisis proved asin Bean and Smith [1].

Thus, an arbitrary sequence of finite horizon optimal solutions has a sub

sequence which converges to an infinite horizon optimal solution.

Theorem 4.9 (Value Convergence). Fixr>y. Then V* (r) = lim v* (r,T).

T—ow

Proof. Suppose not. Then there exists a sequence {Tn} and : >0 such that T,~» and

|V‘(f, T) —V‘(r)'Zc, n=12,. .

For each n, let xn be an element of X* (r,T,) and let x* be an element of X*(r). Then:

Vi, T)=CTGNET ), n=120

and

V*(r):C~ (x*,r],

20



so that

[C™ «"r, T )- C” &', r) |=e n=12,.. .
By Lemma 4.8, there exists a subsequence {Tx} of {Th} and x" in X*(r) such that xk—x’

and

ARt T)-C &\ r)|ze k=12

.....

By Theorem 4.5,

6T )W =T,

¢ k

which is a contradiction.

Remark. Bes and Sethi [2] establish an analogous result in the stochastic setting for

the case of discrete time and finite policy spaces.

5. Algorithms and their Convergence

For the remainder of this paper, we fix r>y. Consequently, it will be convenient
to suppress the reference to rin our notation. For >0, recall that X* (r,1) = X* (T)

ISa non-empty set.

Suppose we have a (finite horizon) algorithm A which solves the T-horizon
problem by providing a non-empty, closed subset A (T) of X* (T) for all T>0. More
formally, A is the generalized sequence {A(T), T= 0}. If each A(T) is a singleton, then
we call A asimple algorithm. In general, when A(T) is a subset of X*(T), we call A a
setalgorithm. If A(T) is all of X*(T), we call A the maximal algorithm. For example, if
X™ (T) denotes the set of optimal solutions of a linear program, then A(T) could be a
single extreme point optimal solution, the set of all extreme point optimal solutions

or the set of all optimal solutions. Note that if each finite horizon problem has a
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unique optimal solution, then the only finite horizon set algorithm is the maximal

one.

If A1, Az are two algorithms, it will be convenient to write A1 = Az whenever
A1(T) c A2 (T) for all T>0. Clearly, if A . denotes the maximal algorithm, then

A= A,, for all algorithms A.

For any A, define X*, to be the set of all accumulation points of the algorithm A,
that is, the set of all x in X for which there exists a sequence Tp—~ and x* (Tp) € A (Tn)
for all n, such thatx* (Tp) »x,asn - w. Clearly, if Ay = A2, then X*4, C X™4,. In

particular, if we write X*(») for X*5_, then X*, C X*(@), for all algorithms A.

Theorem 5.1. For each finite horizon algorithm A, the set X* 4 is a non-empty,

closed, and hence compact subset of X*.

Proof. For each T>0, let x* (T) € A(T). Then {x*(T) : T> 0} is a generalized sequence
in X. Since X is compact, there exists a convergent subsequence which converges to

some x in X. Therefore, by definition, x¢X*4, so that X* is non-empty.

Let x be an element of X*,. Then there exists Tn—oand x* (Tp)€ A (Tp), all n, such
that x* (Tn,)—-x. If x¢X*, then there exists a neighborhood W of x disjoint from X*
such that the sequence x* (Tp) is eventually in W. By Lemma 4.8, there exists a
subsequence x* (Tx) which converges to some x* in X*. But then x* =x, since X is

Hausdorff. Contradiction. Consequently, X*, CX*.

To show X*, is closed, let x in X be a limit point of X*,. Let {x"} be a sequence in
X* » which converges to x. Be definition of X*,, for each n, there exists a sequence

Th, k==, as ke, and a corresponding sequence xn.keA(Tp, k) such that x"k—x", as
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k—». By a familiar diagonalization process, we may extract a subsequence which
convergesto x. Thus, x is an element of X*,, which is necessarily closed and hence,

compact.

Proposition 5.2. For any algorithm A,

X\ =U{X. :A'=simplealgorithm, A'< A)
In particular,

X'@)=U{X, : A=simplealgorithm)

Proof. If x* ¢X*,, then there exists T, >« and x* (Tp) € A (Tp) such that x* (T) - x*.
For each T=Tp, let x* (T) € X* (T) be arbitrary. Then the resulting algorithm A" =

{{x*(1)}: T>0}issimple and x*¢X* ... The reverse inclusion is clear.

Since X*(») is the maximal subset of X* which can be obtained as limits of
sequences of algorithmic solutions, we call it the set of algorithmically optimal
solutions for the infinite horizon problem. This set was originally introduced by
Hopp, Bean and Smith [7] in the particular context of discrete time and finite policy

spaces. There, its elements were called periodic forecast horizon optimal solutions.

It is clear from the above discussion that the only elements of X* we can
approximate by finite horizon optimal solutions are those in X*(«). Thus, itis
important to know if X*(«) is strictly contained in X* in general, that is, if there exist
solutionsin X* that are notin X*(»). Asthe next example will show, the answer is

emphatically yes and the difference can be substantial.

Example 5.3. Foreachi = 1,2,..., letZ; be the real numbers with the Euclidian
topology and Y = {0,1,...,.9} with the discrete topology. Assume X = Y = 11Yj, so
that X with the product topology is automatically compact. For each x = (x;) in X,

define p (x) to be the infinite decimal .x1x2... . Then p is a mapping of X onto the
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compactinterval [0,1] which implies that X is uncountable. Moreover, the mapping
piscontinuousand p-1(0) = {6}, where 0is defined to be the element of X given

byoi=0,alli.

Let y>0 be arbitrary and r>y. For each xin X, define K (x,) = F (p (x), -) and

R(x,’) = 0, where, for0:==s=1,F(s,) isdefined by

0, 0st=1

Fis,t) = O=rsi+rs+s—1, 1<

Define C (x,) = K (x,") - R(x,’) as usual. Since K (x,’) is eventually linear, it is
eventually bounded by any exponential, i.e. y can be chosen arbitrarily.
Furthermore, the mapping x— K (x,’) is pointwise continuous since p is continuous.

For each xin X, we may verify that

C &, ")y>C ®Nn T=1,
and

N 1
C x)= — .
re’

Thus, the finite horizon problem has the unique solution 0 for 7= 1, i.e. for any

algorithm A, we have A(T) = {8}, T=1. Thisimpliesthat X*(«) = {6} also. On the

other hand, since C™(x) is constant in x, it follows that X* = X, which is uncountable.
The same cost structure can be associated with strategies from continuous policy
spaces to yield the same conclusion.

Example 5.4. Foreachi=1,2,..., letY; = [0,1] thistime and X = Y = I1Y; as before.
Define p:X—[0,1] by

1]
—
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for x = (xj) so that p is continuous, onto and p-1 (0) = {6}. If we setK (x,") and

R (x,?), forxin X, as before, then we obtain the same conclusions.

Remark.The reader should note that Examples 5.3 and 5.4 do not satisfy Assumption
F; the other assumptions are satisfied. However, this can easily be remedied as

follows. In each example, let X denote the diagonal in v, i.e.

X:{xGY:xlzxzzA.,}.

In each case, define p: X—[0,1] by p(x) = x1, x¢X. Then p is continuous and

as before. (In Example 5.4, p is also onto [0,1].) In each example, for each T>0, the

~r-equivalence classes are trival, i.e.

X~y ifandonlyif x=y.

Hence, Assumption Fis satisfied automatically. Moreover, in each case, X*(») = {0}
and X* = X. However, in Example 5.3, X has ten elements, while in Example 5.4, X is

uncountable.

We next discuss convergence of algorithms.

Theorem 5.5. Let A be a simple algorithm with A(T) = {x*4(T): T>0}. Then the
generalized sequence of points {x*4 (T)} in X converges to a pointin X*4 (in the

product or metric topology) if and only if X*, is a singleton.
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Proof. Suppose x* 5(T) = x*, as T — «,so that x*¢X* 4. If xeX*, also, then there exists
Tn -~ and x* (Ty) in A (Tp), all n, such that x* (T,) =X, as n -»«. Since X is Hausdorff

and x* (Tp) »x* also, it follows that x = x*, i.e. X*, is a singleton.

Conversely, suppose X*, = {x*}. If x*, (T) does not converge to x*, then there
exists a sequence Tp »w such that x*, (T) is bounded away from x*. By Lemma 4.8,
passing to a subsequence if necessary, there exists x in X* for which x*, (Tp) —=x, i.e.

x€X*a. Thus, x =x* and we have a contradiction.

Recall that in trying to solve the infinite horizon problem by finite horizon
approximations via some algorithm A, the only solutions we can hope to
approximate are those in X*,. These in turn are limits of sequences of elements from
the A (T), T>0. Itisimpractical to expect a planner to be able to select a particular
sequence of times T, and to then be able to select x*, (Tn) in the A (T) which
converge to some element of X*,. Realistically, we need to know that for any
choice of horizons T and any solutions x*4 (T), these converge to the same x* in X*,
In view of this requirement and the previous results, we define an algorithm A to be
convergent if the set X*, is a singleton. In particular, if the maximal algorithm
converges, i.e., X*(w) is a singleton {x*}, then every algorithm converges to {x*}. In
particular, thisis true for simple algorithms. This last comment is the conclusion of
the Planning Horizon Theorem of Bean and Smith in [1], where it is required that X*

be asingleton.

6. Solution Horizons and Their Existence

For the purposes of this section, it will be convenient to adopt the following

notation. Ifyey, Pcy,§>0and kis a positive integer, define:

Wk(y,S)Z{zé Y:pj(zj,yj)<6, 1<j<k}
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and

W, (P81 = | W, (8.
veP

In particular, if xeX and PcX, define:

Uk (x,6) = Wk (x,6) NX
and

Uk(P,S) = W}z (P,8)NX.
It is not difficult to verify that the sets

{Wk(y,S): y€Y,8>0,k = pos. integer}

form a base for the product topology on Y, while the sets

{Uk (x,8):x€X,6>0, k = pos. integer}
form a base for the relative product topology on X.

The following properties are also easily verified:

(1) yeWg (x,6) if and only if xe Wy (y,8).
(i) x€Wg (y,8) and yeWy (z,¢) implies xéWy (2,6 + ¢) (triangle inequality).
(i) s=scimplies Wi (y,8) € Wi (y,e).

(iv)  kx = kY implies Wi (y,8) = Wk (x,8).

Suppose a decision maker wishes to determine the first k decisions x1*,---,
xk* of some infinite horizon optimal strategy x*. (Typically, k =1.) If he uses
algorithm A to solve the finite horizon problem for some T>0, he gets the set A(T).
Ideally, for sufficiently large T, and arbitrary x* (T) in A (T), he would like x* (T); to be
equalto x;*, for all j. However, since we are dealing with continuous policy spaces,
we only require that the x* (T); be close to the xj*, 1=j<k. Accordingly, we make the
following definition. Let A be an arbitrary algorithm, k a positive integer and §>0.

We say that there exists a -solution horizon of order k for A if there exists xk.6in X*
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and Tk 5>0 such that A (S) ¢ Uk (xk:,8), for S= Ty 5, i.e. for each S= Ty ; and for each

x* (S)in A (S), we have
pj(x*(S)j,xf.‘d)<6, 1<j<k.

We say there exist solution horizons of order k for A if, for each §>0, there exists a §-
solution horizon of order k for A. If this is the case, then solution horizons exist for
all algorithms A’ such that A= A. The next theorem says that xk, can be chosen to

be independent of .

Theorem 6.1. There exist solution horizons of order k for A if and only if there exists
x* in X* 4 such that for each §>0, there exists Ty >0 satisfying A(S)c U (x*,5,) for all

S Ty, 5.

Proof. The sufficiency is clear. For the necessity assume that for each >0, there
exists xk.s in X* and Ty s >0 such that A(S)c Uy (xk.8,8), for all S= Ty 5. The generalized
sequence {xkid:5>0} has a convergent subsequence xk.Sp—yk, asn— » where yk ¢x*

and , —0. Lete>0. Choose n,sufficiently large such that s, </ and

p(xk‘an,yk)<d2k+l, n=n.

t

Then xk.8n€ Uk (yk, ¢/2), forn -~ n, (Lemma 2.3). Fors = on,, let Ty, = Tk ; and xk.« =

x k. Then xk.e €Uy (yk, ¢/2) and for S= Ty ., we have

AS)CU, (x"'“,an )gUk(xk‘t,t‘/iZ).
L

Therefore, by the triangle inequality, it follows that

ASICU, Y e), $=T,
£

It remains to show that yk may be chosen in X*,. Let x* (S) be an arbitrary

element of A(S), for each $>0. Then {x*(S)} has a convergent subsequence
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x*(Sn)—x*, where x*€X*, and S, »», asn - . Let >0 be arbitrary. By the previous
argument, there exists Tk 52 such that S= Ty g2 implies A (S) Uy (yk,6/2). Let ny s be
sufficiently large such that n = ny s implies p (x* (Sp), x*) <§/2k+1,i.e.

x" (Sn) €Uk (x*, 8/2), and Sp = Ty /2, i-e.x* (Sn) €Uk (yk, 8/2). Therefore, by the
triangle inequality, pj (ykj, x*j) <8,1<j<k. Since §is arbitrary, it follows that \y=yx’,

i.e. Uk(yk,e) = Uk (x*,e). This completes the proof.

Corollary 6.2. Suppose each Yj is discrete, 1= j= k. Then there exist solution horizons

of order k for A if and only if there exists x* in X*4 and Tx >0 such that

LAS) = {kx b, S§= T,

Proof. For the necessity, let x* in X*, be asin the theorem. Choose § = 1 and let
Tk = Tk,1. Then

A(S)gUk(x 1), Ssz.
Consequently, by hypothesis, kx* (S) = kx*, for each x*(S) in A (8).
Lemma 6.3. Let A be an arbitrary algorithm, k a positive integer and §>0. Then

there exists Ty s >0 sufficiently large such that

A(NC Uk (XA,S), Tsz,B .

Proof. If not, there exists a sequence Ty—» such that
A('I'n) g Uk (XA,B), alln.

Then, for each n, there exists x*(Tn) €A(Tr) such that x* (Tp) €Uk (X*4,6),1.e., {x*(Tn)}

isasequence in the compact complement X/Ux(X* 4, 8). Passing to a subsequence if
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necessary, we may assume there exists x in X/Ug (X* 4, 8) such that x*(T)-x. Thus,

x€Uk(X*a,8). But xeX*, by definition and X*, CUk(X*4, 8). Thisis a contradiction.

Theorem 6.4. Let A be an arbitrary algorithm and k a positive integer. Then

solution horizons of order k exist for A if and only if ((X*,) is a singleton.

Proof. Suppose k(X*,) is asingleton {xx*}, for x*¢X*,.

Let§>0. Then
Uk(XA,G): Uk(x ,6).

By Lemma 6.3, there exists Ty ; sufficiently large such that

A(T)guk(x*A’S)’TZTk,B’

so that solution horizons of order k exist for A.

Conversely, suppose this is the case and X*, is not asingleton. Then there exist x*
andy®inX",,8>0and 1= j= ksuch that pj (x*j, y*j) 2 8. Let T >, Sm>wo, x* (Tp)
€A(Tp), all n, y* (Sm) €A (Sm), all m, be such that x*(Tp)>x*, asn >« and y* (Sm) -Yy~,
asm > . By hypothesis, there exists z* in X* 5 and T, >0 such that A(T)cUk(z*,6/4),

forT = Ty,;. Suppose n,; is sufficiently large so that m,n= ny s imply that T, Sy =

Tk, 1.€. A(Tn), A (Sm) C Uk (z*,6/4) and

pLx(T ), x) <82,

p(y'(Sm),y‘) <52kt

i.e.x* (Tn) € Uk (x*,6/4) and y* (Sm) € Uk (y*,8/4) (Lemma 2.3). Therefore, by the
triangle inequality, we have that x™¢ Uk (y*, 8), i.e. pj (x*}, y*j) <8, 1=j= k, which isa

contradiction. Hence k(X" a) is a singleton.
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Corollary 6.5. There exist solution horizons of order k for all algorithms A’ = A if and
only if k((X*4) is a singleton. In particular, there exist solution horizons of order k for

all algorithms if and only if  (X*(=) ) is a singleton.

Theorem 6.6. Let A be an arbitrary algorithm. Then there exist solution horizons of

all orders k for A if and only if X*, is a singleton, i.e. A is convergent.

Proof. Observe that X*4 is asingleton if and only if ((X*4) is a singleton, for each

positive integer k.

Corollary 6.6. There exist solution horizons of all orders k for all algorithms A’ = A if
andonlyif X*, isa singleton. In particular, there exist solution horizons of all orders
k for all algorithms if and only if X*(=) is a singleton.

7. A Stopping Criterion

Let A be any algorithm. Fix k a positive integer and §>0. Our objective in this
section is to find Ty ;>0 which is a 8-solution horizon of order k for A. (Recall that
such a horizon exists for all §>0 if and only if ((X*4) is a singleton.) More
specifically, we wish to determine an algorithm which finds a 6-solution horizon of
order k for A in terms of finite horizon information. Such an algorithm was
obtained by Bes and Sethi in [2] for the case of discrete time and discrete policy
spaces. In thissection, we generalize their results by allowing continuous time and
continuous policy spaces.

Before proceeding, we require some additional notation. If PCX, then X/P will

denote the compliment of Pin X. In particular, if P = Uy (x,6), for x in X, we write

Xk (x,6) = X/Uk (x,8).

More generally,

X, (P = X/Uk (P.5).
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= [ X, 8.
If T>0, then let xek
infC~ x,r, 1, P2Q ,
V(P,T) = x€P
o P=g.

Clearly, v (P,T) =V¥(T) = VIX,T). In particular, if P=Xi (A (T), §) then we write

VA(k,ﬁ,T) =V (Xk A, 6,n.

Recall that

rb .
a([) - -—p(‘ r)t
r—y

and we are suppressing notational dependence onrr.

) r>\”t20’

The next two results constitute our extension of Theorem 5.2.1 of Bes and Sethi

[2] to the continuous setting.

Theorem 7.1. Let A, k, 6 be as above. If T>0 satisfies
V, (k8T = V(1) = 2a(T-1),
then forall S=T, we have

X*(S)QU,E (A(T),8).

Proof. If not, there exist S>Tand x*(S) in X*(S) such that x*(S)¢ U (A (T), 6),

i.e.x* (S) € Xk (A (T), 8). Consequently,

CTGS, M=V, (k81

which implies
CEESN-VD= V., k8, 1) = V(D)

= 2a(T-1)
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>2a(T),

by hypothesis. On the other hand,

*

ViS)=C" (" (8),8)

>CT W (S), TV —all) (Thm.3.2)
and

Vi) sV D +a  (Prop.3.3).
Subtracting, we see that

0=C" G (S, T = V(T =2a(T),
which is a contradiction.

The next theorem is our stopping criterion.
Theorem 7.2. Let A, k,§ be as above. Suppose T>0 satisfies:
(i) kA(T) is a singleton.
(i) Va(k,6/2,T)-V¥(T) 22a (T-1).
Then Tis a §-solution horizon of order k for A.

Proof. By the previous theorem,

X'(8)c U, (AD),6/2), $=T.

By (i), kA (T) = {kx*(T) }, for any x*(T) in A(T). Thus,

U, (A),82) =U, (1), 8/2)

and

A cx (S)CU, '(1),8/2), S=T.

Now let x™ be any element of X*,, Sp->«, Sh=T, and x* (Sp) € A (9), all n, such that

x* (Sn) > x*. Let:>0. Then there exists n, sufficiently large such that

33



p (x* (Sp), x*) < e/2k ,i.e. x* (Sp) € Uk (x*,¢), forn= n,. Butalso,

£ (8 )€U, (' M,82), n=12,...
By the triangle inequality,

Y U, W, 82+¢),

where cis arbitrary. Hence,

3 (.r* ('1')j,x:) <§/2, 1 <j<k.
Applying the triangle inequality again, we obtain

AS)C X (S)C U, «,8), S=T,

which completes the proof.

Remark. The set kA(T) will be a singleton under each of the following conditions:
(i) Aisasimple algorithm.
(i) Avyieldsaunique solution for the T-horizon problem.

(i) The T-horizon problem has a unique solution.

Proposition 7.3 If vjisdiscrete, 1=j= k, and k(X*,) is a singleton, then ¢A(T) is a

singleton for sufficiently large T.
Proof. Set§=1and apply Lemma 6.3.

The next theorem gives a condition which is sufficient to guarantee that (ii) of
Theorem 7.2 will be satisfied eventually. Itis our extension of Theorem 5.3.2 of Bes
and Sethi [2] to the continuous setting. Letb be any function satisfying b(t)>0,t = 1

andb(t) -0, ast »«. For example, b(t) = 2a(t-1) has these properties.
Theorem 7.4. Let Ak,6 be as above. If (X" is a singleton, then there exists a positive
integer N satisfying

V, (k,8/2,N) - vV N) = b (N).
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Proof. By hypothesis, k(X*4) is asingleton. Thus, by Theorems 6.1, 6.3, there exists

x* in X*, and Ty s such that ( X* = {x*} and

AMDCU, & o0/4), T = Tk,b’

Hence,

X € m{uku‘m,am; (M €AY,

x € Uk(A('I’),8/4), T= Tk,ti'

Now suppose that

v, k82,T) - Vi < b,

forall T>Ty s In particular, thisis true for all integers N Ty ,. Hence, for each such

N, there exists xN in X (A(N), §/2) such that

0<C™ &V, N - v, (k,82,N)

<bN =V, k82, - V' (N,
so that

0= C™ Y, N = VN < bV,

Since X is compact, there exists a convergent subsequence x¥n = xn—x, where x¢X,
and Np-w, asn »« . Thus, there exists ny s sufficiently large such that n -~ ny s implies
Nn= Tk, s0 that

0<C "N )=V N)<b(N ),

n

by above. But
b(N )—-0,

n
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(o (x",N")—>C~ ), (Thm.4.5)
and

v*wn)—w*, (Thm.4.9),

as n »». Consequently, taking limits yields C~ (x) = V*, which implies x¢X*, i.e. kx =
Kx*.
Now let 0<:<8/4. Since xn- x, there exists ni , - ni s such that n=ny . implies

p(xn,x) <elok, i.e.xne Uy (x,c), where

Uk(x,c) = Uk(x L) = Uk (x,8/4).

Since x* € Uk (A (Np), 6/4), by the triangle inequality, xn¢ Uy (A (Np), 8/2), foralln=

Nk,.. Butxne Xi (A (Np), 8/2), all n. Contradiction.

Remark. By repeating the previous argument for M= N, we see that there exists an

infinite sequence of positive integers which satisfy the condition of Theorem 7 4.

We will say that the algorithm A is eventually k-simple if there exists Tx >0
sufficiently large such that ¢ A(T) is a singleton for T= Tk. The following is our

extension of Theorem 5.4.1 of Bes and Sethi [2] to the continuous use.
Theorem 7.5. Fix A, k be as above. Suppose:

(i) Ais eventually k-simple.

(i)  kXx"isasingleton.

Then, for each §>0, there exists T; >0 such that T; is a § solution horizon of order k

for A.
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Proof. Apply Theorems 7.2 and 7.4 with b(t) = 2a (t-1).

Remark. If vjisdiscrete, 1=j=k, and k(X",), is asingleton, then \X*(T) is eventually a

singleton (Prop. 7.3). Hence, in this case, every algorithm is eventually k-simple.

Theorem 7.2 gives the following algorithm for determing a §-solution horizon of

order k for eventually k-simple A. (Compare with [2].)

Algorithm
1. SetT=1.

2. Solve the T-horizon problem to get V*(T) and A(T).
3. Determine the set X (k,6/2, T) and evaluate V, (k,8/2, T).
4. If the cardinality of kA(T) is 1 and

V., k8/2,T) - Vi = 2a(T=1),
gotob.

5. Otherwise, replace Thy T+ 1 and go to 2.
6. Stop. Tisas-solution horizon of order k for A.

Note that this algorithm will eventually stop if we know that (X* is a singleton.
8. Application to Infinite Programs
In this section we show that our general infinite horizon optimization model

includes a very general class of infinite programs (continuous and integer) as a

special case.
For eachj=1,2,~, let 2j be njdimensional Euclidian space Rnj, Yj a compact

subset of Rnj and ¢j a real-valued function defined on Yj. Let pj be the usual

Euclidean metric on 7 bounded by 1. As before, let Y =11Yj and for x, y in Y, define
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p(x,y) asin section 2. In addition, for eachi=1,2,-, let bj be a real number and

ajj a real-valued function defined on Y;. Consider the discounted, doubly-infinite,
non-linear program given by:

min > ¢ (y)a’
J=1
subject to
\7‘ ! ':
> a”UJ)ZbI i=12,...,
j=1
y €Y , j=12,.,

where a<1is the discount factor of the form e-r corresponding to the interest rate

r>0. If theyj are to have integer values, then the Y; are finite discrete spaces.

Our first objective is to find reasonably general conditions on the cost and

constraint functions which will guarantee convergence of all the infinite series.

Assumption H. For each i, suppose there exists a positive sequence {ojj:1<j<w} and
an index J; sufficiently large such that

N <
and
for

y€ Yandjzdl .

For example, this is the case if the qjj are eventually 0 for each i, i.e. each constraint
contains finitely many terms.

This assumption implies that, for each i, we have a real-valued function g;
defined on Y by
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where

J. -1

, N
la, o)1+ 2 la, ()

J=1 J=1 12d,

1

N = N
) Iau. (yJ.)I

J. -1

1
- ’
—— —

) Iu”(ylll+ N

Jj=1 jZJZ

so that the series is absolutely converent forally in Y.

Assumption |. For eachiand j, the function a;is continuous on Yj. For example, this

is the case if a;; is matrix multiplication or if Yj is discrete.

Proposition 8.1. Assumptions H and | imply that the function g; is continuous on v,

alli.

Proof. Fixiandletx,ybe elementsof Y. Then

g, () —g ()l =1 N )= a ()l

<

| /e

la. . (x)—a (y)l.
1 Yy Yy

]

J

Let:>0. By Assumption G, there exists j, " J; such that

N 0. <¢/4.
— 1y
1>,
Then
jﬁ
o e N oy , AN Y ,
lg, () —g 1= 2 Ial.j(xj) ain_/)hL A Iau(xj.) aU(\J)l,
J=1 J2J,
where
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Since ajj is continuous, there exists §>0 such that p;(xj,y;)<8 implies
IaU (xj) -a, Lyj I < L‘/QJL_ .

Lets = min {8;:1<j<j.}. Then by Lemma 2.3, p(x,y) = 6/2), implies

(. y)<$§ 1<j<j
pj(xj,yj) 8, 1=j=j,
so that
X)) - <2 .
!ul.j(xj) au(‘)j)l w2j,
Hence,
J

3

Noa )—a () <2,
o -

—

J=1
Consequently,

Ig‘.(x) - glly)l <e,

which completes the proof.

Now observe that the set

|/

Xl = {y€Y: a, (vj) = bl}

1

(.
1}

is the inverse image of the closed interval [bj,») by the continuous function g;.
Hence, each X; is closed. Furthermore, the space X of feasible solutions is equal to
Nx; which is also closed. Therefore, X is a closed, compact subset of Y as required.

We will assume X is not empty. A necessary and sufficient condition for this to be
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the case is that the Xj have the finite intersection property, i.e. each finite
subcollection has non-empty intersection [5, p.127].
For each x in X, we must define K(x,*), R (x,") and C (x,-), where the first two

must be eventually exponentially bounded.

Assumption J. Suppose there exists B>0, >0 and Jg= 1such that

n
Noe I <BX", x€X,n=d_ .
—_ ) 0
J=1

For each x in X, define:

K(.’X’,[):{ 0, 0st <1,

+( ) + + +( ) 1<t
' ot . 1=t
a0 (t] 1)

Rxf) = { 0. 0t <1

X 0+ - e tx, ), 1Sy,
‘1 [e] el

and

Ca=Kah-R,p, 0s1¢,

where [-] is the greatest integer function and f +,f- denote the positive and
negative parts of the function f respectively. The functions K (x,’) and R (x,*) are

non-negative and non-decreasing. Furthermore, fort-:Jg, we have:

K <Be', xeX.

The same is true for R (x,t).

Assumption K. For each j, the function ¢j is continuous on Yj. Hence ¢+ and ¢ are

also continuous. For example, thisis true if the ¢j are linear or if the Y; are discrete.
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Proposition 8.2. The mappings x—K (x,”) and x =R (x,*) are continuous from X

into the space of functions on [0,<) equipped with the topology of pointwise

convergence. The same is true for x -C (x,*).

Proof. Supposes xn—xin X, so that xn j-x;, allj. Lett=0. Ift<1, then clearly

K(xn,t)-K (x,t). Thus, supposet = 1. By assumption J,

+ .n +
c. ()= (x),asn—wo
J o b

forallj=1, -, [t]. Hence,

The remainder of the proof is obvious.

We have shown that Assumptions A through G are satisfied by this model.
Hence, all the results of sections 2 through 7 are valid. In particular, by Proposition
3.1, the quantities K™(x), R™(x) and C~(x) exist for all x in X, aslong as r>y. Let us see

what these represent in this application. For T>0, we have:

,
K &1 = ] e " dK (x,0)
0

I7]
=N c].+ (x’.)

J=1

=

1/

¢ al, x€X .
J

[
1]

Similarly,
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[T
R D= N ¢ )al,
b

j=1
so that
17} |
CTwN= Y cwal, X,

1=1

Observe that C™(x,T) = C™(x,N), for N- T<N + 1, N a positive integer. Similarly for
K~and R~. Moveover, note that C™(x,N) is the objective function in the N-horizon

infinite program given by:

subject to

Recall (section 2) that

In this application

Tk(k.r) =k, k=12,

i.e.the “decision epoch” of each “policy” xk is its index. Thus, for any positive

integer N,

nN(x) =N, x€X,

and the equivalence relation ~y is given by:

X~y ifand only if X =y, 1</<N.
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Therefore, each ~y-equivalence class consists of those elements of X whose first N
components are the same, i.e. Xy = X/~y may be identified with those distinct
N-tuples in Y1x...xYy which are extendable to elements of X. The N-horizon

problem is then:
N
SN RN A
min rj(xj.)a '.\"‘EX!\'[

J=1
Assumption L. Suppose that for each positive integer N, the set Xy is the solution set

to the following system of inequalities:

This assumption is satisfied whenever it is possible to feasibly continue any solution
which is feasible for a finite horizon problem.

Under this assumption, the N-horizon problem becomes:

N
min > ¢ (x)a’
-

~.

x €Y, j=1,. N
J J

If we replace N by [T], then we get a family of such programs which are equal to the
previousone forall N=T<N + 1.

ForT = «, we have:
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and

CW= D> ¢, x€X,
j=1

Under assumptions H through K, the infinite program with which we began this
section is an example of our general infinite horizon optimization problem. In
particular, the function x - C~(x) is continuous on the non-empty compact set X of

feasible solutions. By Theorem 4.9, it follows that

« N
Vie min i c, (x])af: lim min }_ c (x)a’.
Cox€X =1 Now x€X =1

The set X* of optimal solutions to the general problem is clearly the set of
optimal solutions to the infinite program. Moveover, for each positive integer
N, X*(N) is the set of optimal solutions to the N-horizon program. Thus, X* and
X* (N) are non-empty and compact, for all N. Since X* (T) = X* (N), for all
N° T<N + 1, in this application, it makes sense to think of an algorithm A as being a
mapping of the form N—A(N), where A(N) CX* (N),N=1,2,--, 1.e.it is a sequence
of non-empty, closed sets. For each A, X*, is the non-empty, compact subset of X*
consisting of those x* which are limits of sequences of elements from subsequences

of the A(N). If A is the maximal algorithm, then X*, = X*(®) . It seems likely that
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X*(=) is a proper subset of X* for the case of infinite programs. Algorithm A is

convergent if X*, is asingleton.

If k is a positive integer and 6>0, then a §-solution horizon of order k for Ais a

positive integer Ny s satisfying

P, (.t*(M)J ,x*j ) <86, 1 SjSk,x*(MKA(M),

forall M - N, where x* is some element of X*4. In this application, not only do we
want § to be arbitrary, but we also want k to be arbitrary in order to get close
agreement in many of the variables x;. If the infinite programis integer, then the
elements of A(M) have to eventually agree with x* in the first k variables, fors= 1. If
A is convergent, then for sufficiently large N, we can get close agreement between

the elements of A (N) and some x* in X*, for as many decision variables as we like.
y

Finally, the algorithm of section 7 translates directly into an algorithm for

finding solution horizons for our infinite program.
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