RANDOM METHODS FOR IDENTIFYING
NONREDUNDANT CONSTRAINTS
by

1

Robert L. Smith
Jan Telgen2

Technical Report No. 81-4

1. Department of Industrial and Operations Zngineering
The University of Michigan, Ann Arbor, Michigan,
48109.

2. Center for Operations Research and Econometrics,
1348 Louvain-la-Neuve, Belgium.

April 1981






RANDOM METHODS FOR IDENTIFYING

NONREDUNDANT CONSTRAINTS

by

Robert L. Smith and Jan Telgen

Abstract

A method to generate uniformly distributed points in a
bounded region is used to develop a class of random methods to
identify redundancy in systems of linear constraints. Non-
redundant constraints are identified directly and the remaining
constraints are labeled as redundant. Bounds on the probability
that constraints are incorrectly labeled as redundant are de-
rived. As a result, a formula is constructed giving the number
of iterations of the method necessary to guarantee that within a
given probability all constraints will be correctly labeled.
Experimental results with some computationally attractive var-

iants of this class of methods are presented.
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1. INTRODUCTION

Various methods to identify (non)redundant constraints
in systems of linear (in)equalities have been suggested in
the literature. Most of these are somehow based upon the
simplex method, usually via the minimization of slack vari-
ables (e.g., Thompson, Tonge and Zionts [1966], Lisy [1971],
Gal [1975, 1978], Telgen [1979]). Other methods invoke the
simplex method to enumerate all extreme points of the set of
feasible solutions (e.g., Balinsky [1961], Mattheis [1973]),
and use this information to identify redundant constraints.

Since all methods mentioned above require the complete
updated simplex tableau at every iteration, their usefulness
is limited to very small problems. Therefore preprocessors
have been developed that work with the original problem data
(e.g., Brearly, Mitra and Williams [1975], Bradley, Brown and
Graves [1980]). One drawback of these preprocessors (e.g.,
the REDUCE option in many commerical mathematical programming
packages) is that they generally do not identify all redundancy

since they are restricted to very simple operations.



Here we consider methods to identify redundant constraints
based on procedures to generate random interior points in a
bounded region. Basically, from such an interior point the
methods search in a randomly generated direction. The constraint
hit first can be shown to be nonredundant. After a great number
of trials (i.e., random directions) from different interior
points, the constraints that have not been hit are labeled as
redundant.,

The first such method was suggested in Boneh and Golan
[1979]. 1Independently Smith [1980] developed part of the same
method as a procedure to generate uniformly distributed points
in a bounded region. 1In this paper we build upon the latter
results to give a class of random methods to identify non-
redundant constraints.

Section 2 contains a statement of the general method and
the theorems required to establish its validity. Also in that
section we prove that the hitpoints are uniformly distributed
over the boundary of the polytope. This result enables us to
conclude that the probability of hitting a given constraint is
proportional to the area of the corresponding facet of the feasible
polytope. As a consequence we construct stopping criteria for
the method, guaranteeing (with a prespecified probability)
identification of all nonredundant constraints with facets of
a minimum prespecified size.

In Section 3 we give some experimental results for

computationally attractive variants of the method, such as



the one in which only coordinate directions are taken. The
test problems are taken from Karwan, Telgen and Zionts [1981],
an extensive computational study on redundancy identification,
where results for other methods are readily available.

The random methods perform relatively well; in only a
fraction of the time reguired by the fastest of the other
methods, our method identified more than (80%) of all nonre-
dundant constraints. Moreover its relative performance
is much better on larger problems,

In the conclusion we discuss possible extensions of this
approach to other areas (e.g., nonlinear systems) and to other

problems (e.g., optimization).

3. THE ALGORITHM AND ITS PROBABILISTIC ANALYSIS

We start with a feasible region S defined by a system of

inequality constraints
(2.1) gi(x) < bi' i=1, 2,...,m

with x ¢ R* and bi € R for all i. We :could require a regularity
condition on the gi's so that the region S had content and
surface area. However, to simplify the exposition we will
restrict discussion here to the case where S is defined by a

system of linear inequalities

(2.2) Ax <D



with A ¢ Rmxn’ b ¢ Rm, and x ¢ Rn. Rows of A will be denoted

as af, i=1, 2,...,m and without loss of generality we will

assume that llaill = 1, We define the feasible region

(2.3) s = {x¢ Rn| Ax < bl.

A point x°e R® is called an interior point of S if
Ax° < b. It is assumed that such a point exists; if some of
the constraints fofm implicit equalities than a point in the
relative interior of S will suffice.

Now the algorithm consists of three parts: the genera-
tion of interior points of S (Steps 1 and 3), the identifica-
tion of nonredundant constraints (Step 2), and a stopping
criterion (Step 4).

The algorithm proceeds by passing lines through interior
points and identifiying constraints struck by the lines as
nonredundant. The points of intersection of the lines with the

boundary of S are called hit points. The lines generated

serve the dual purpose of providing the next interior itera-

tion points.

Intialization: Find an interior point: x°. set k = 0.

Step 1: Generate a random Direction Dk uniformly

distributed over a Direction Set D

(a centrally symmetric subset of the

boundary of a unit hypersphere).



Step 2: Determine:
bi - a}‘Xk
(2.4) >\i= ——-—T—-;——— i=1, 2,...,m
al k
(2.5) A= min (A, | A > 0T AL
i i
(2.6) A o=

mgx {Ai | A < 0} = A;-

Identify constraints it and i~ as

nonredundant

Step 3: Generate U € R from a uniform distribu-

tion on the interval (0, 1) and set:

S oK om roat -y ok

Step 4: If a stopping criterion is satisfied:
stop; otherwise set k = k + 1 and

proceed with Step 1.

Several comments are in order. (1) Determining a point
uni formly distributed on a unit hypersphere (or a part thereof)
in Step 1 may be accomplished by setting Bk = N/||N|| where
N is a n-component vector of standard normal random variables
(Knuth [1969]). (2) THe proof that the constraints identified
in Step 2 are nonredundant is very simple and therefore omitted
(see also Boneh and Golan [1279]). 1In fact it can be shown more
generally that the constraint clesest to an iteration point

of S is nonredundant; then by considering the hit points as



limiting cases of iteration points the result used here follows
immediately. Obviously uniqueness of the minima in (2.5) and
(2.6) is required but that is true with probability one for

the points generated by the random method. (3) The points

xo, Xl, X2,..., correspond to the iteration points, while

YE = Xk + X+Dk and Yf = Xk + A_Dk correspond to the hit points.

Differentvchoices for the direction set D lead to different
versions of the algorithm. The version of Boneh and Golan
[1979] corresponds to D equal to the entire hypersphere.
Several versions are explored as to their relative computational
mérits in Section 3. 1In any case, so long as D is centrally
symmetric (i.e., - d € D , whenever d € D), then the iteration
points are asymptotically uniformly distributed within S
[Smith [1981]).

More important for our purposes however is that the hit points
are asymptotically uniformly distributed over the boundary of S.
A case where this is directly evident is where we restrict itera-
tion points to a e-strip around the boundary of S. Letting ¢ =+ 0,
the iteration and hit points coincide and the uniformity of the
hit points over the boundary follows. This algorithm informally
referred to as "Shake and Bake" incidentally may have considerable
computational merit. The result below will serve as the basis for
establishing stopping criteria for the general class of random

algorithms.

THEOREM 1: The hit points Yt and Yf of the Algorithm are asymp-

totically uniformly distributed over the boundary of S.



PROOF: We shall argue the result separately for the two
sequences < Yf > and < Yf > . Without loss of generality,
consider the sequence Yk = YE. YO, Yl, Yz,... is a continuous
state Markov chain and by a result in Smith [1981] it suffices
to show that the transition probability density function

f(yl, y2) > 0 is symmetric, i.e., that f£(p, q) = £(q, p) for
all g, p on the boundary of S. Let W, U, and V be the
iteration points giving rise to the two successive hit points
p and g (see Figure 1). Now we go from hit point p to hit
point q (in that order) iff we go from iteration point W to
iteration point U to iteration point V (in that order). But
the order W to U to V is just as likely as the order V to U

to W since the direction set D is symmetric., Hence the likeli-

hood of going from p to g is the same as the likelihood of

goint from g to p, and the result follows. "

Figure 1

It is immediate from Theorem 1 that the probability Py of
identifying constraint i as nonredundant during a given itera-
tion'is proportional to the surface area oy of that facet
(this presumes that the algorithm has iterated long enough to

achieve uniformity). In fact, we have

(2.7) pn = —— i=l, 2,.00,2



where there are ﬂ'f m nonredundant constraints in all. It

is argued in Smith [1981] that a random permutation of the
indices of the points generated Y(O), Y(l), Y(z),...,Y(s)

for a large sample size s will behave as if they were inde-
pendent as well as identically distributed uniform. Since
our algorithm for nonredundant constraint identification is
permutation invariant, we may model the hit points Yk for
large s as i.i.d. random variables. 1In particular, the events
corresponding to constraints identified as nonredundant are
modeled as independent over the iterations.

Let K be the number of independent and uniformly distri-
buted hit points Yk over the boundary of S necessary to
identify all % facets (nonredundant constraints) of S.

(Since the two hit points YE and Yﬁ are strongly correlated,
we will be conservative and identify only one hit point per

iteration).

Theorem 2: The cumulative distribution function of K is

* k k
(2.8) F(k) =P(R <k) =1- £ (1-p)¥ + £ (1-p,-p.)
- : i . it
i=1 i<j
k k
- Z (l_p-_p-—p ) +.o-+ (l-p -'p e e o™ p )
i<y<n  PiP3Pn 1 7P g

(Note: the last term is zero) and the expected
number of iterations E(¥) necessary to identify all

facets is:



“ -1 -1
(2.9) E(R) = % (p;) = = I (p; +ps) "
i=1 i<j J
+ I (p. + p.+p )-l + 0
i<j<h * Jh U

Proof: Let 5 be the number of points that identify facet i

out of a total of k points. Then K > k if and only if

q; = 0 or 9, = 0 or ceeqy = 0 thus:

p(K > k) = p(q1 =0orgq, =0or... q, = 0)

Let 51 = plg; =0) = (l_pi)k
5 = plg, =0 and q., = 0) = (1_p__p_)k
ij 1 J i%5
= plg, =0andq, =0 and q_ = 0) = (L-p,=p,-p, )"
Pjjp= Pla; =0 and gy =0 and q, = 0) = (1-p;-p;-py
etc.
L
Let Q, = '21 B,
1=
Q, = I P..
2 i< ij
Q, = I B. .
3 i<j<h l:]h

%
Note that Ql has % terms in all, Q2 has ( > terms Q3 has
2

(zd terms, etc.
3
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Then from the exclusion ~ inclusion theorem (see Feller [1968]

Vol. 1, p. 99) we get

p(ql=00rq2=00r...qg=0)=Q1‘Q2+Q3""1'Qg-
From

F(k)

1 - Q +Q, - Q3+ .ev ¥ 0Q
our first result (2.8) follows.

As for the second result

e
E(K) = I P(K > k)
k=0
© m
= 1 [z (1-p)¥ - I (epp )4z (1-p;-p;-p,)"
k=0 i=1 i<j J i<j<h J

k
= e e e i' (l-pl - p2 e e ™ pgl) ]0

Interchanging the order of summation, which is justified since

all terms are nonnegative, yields

mo® k > k
E(R) = I I (l-p;) - I r (l-p;-p.)
i=1 k=0 i<j k=0 J
x k
+ Z z (l-pi-p .-pk) = e e e
i<j< h k=0 J
+ I k

0 (l—pl - pz = e ee = pg') .
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The result then follows from the fact that

[o o]
: x = for |x| <1. W
k=0 l-x
Theorem 3:

m

(2.10) E(K) < © 1/p.
- . l
i=1

Proof: Since the negative terms in (2.9) are larger than the
next positive terms, we get an upper bound on E(K) by neglect-
ing the second and all succeeding terms. Hence (2.10) follows.

Note: this bound could be obtained more directly by consider-

ing E(K) for a specific sequence of identified facets, say
i=1+2+>3> s> % Then E(K) is the sum of § (indepen-
dent) geometric random variables and the result follows.

We can also provide a lower bound on E(K) that is more

restrictive than the obvious lower bound of 2.

Theorem 4:

(2.11) E(R) > % ¥ ¢1ln & for large &

N ™M=
*"'I“'

Proof: First observe from (2.9) that E(K) will attain its

minimal value if all p; are equal, i.e., p; = % i=1, 2,i0.,%.

We are then reduced to the so-called (coupon) Collector's

Problem. See Feller [1968], Vol. 1, o. 225 for a proof that

E(K) takes on the form stated. ‘l
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Using Theorem 2 and with knowledge of Pyr PyrecesPyr We
could establish a minimum number of iterations k necessary to
identify all nonredundant constraints with probability 1 - a.
However, neither the p;, nor even ¢ is typically known. An

alternative is establishing such a k when all P, 2P where

min

Pp is prespecified and small. The following lemma is a

in

first step toward that goal.

Lemma 5:

(1-p)" < F(K) <1 - k

1 i

([ e R

k
(1-p.)° + I (l-p.-p.)

= F(k). The error ¢ involved in estimating F(k) by F(k) is at

most

k

e < () (1-2p_. )",

min

Proof: The first line of inequalities follows from the

Bonferroni Inequalities (Feller [1968], p. 110). The bound

for € = F(k) - E(k) < F(k) - F(k) = I (l-p,;-p.)" k1

< (&) (1-2p
i<j J

)

min
The error involved in the estimate F(k) = F(k) is by

Lemma 5 negligibly small in most cases. For example, for

% = 100 constraints and Puin = 0.01, € < 0.001 for k > 750.

We shall employ this approximation in the theorem below.

Theorem 6: Let k* be the number of iterations necessary to

identify all # nonredundant constraints with probability 1 - a.

Set r = ( % )/p Then, for large r,

min, *
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k* < y(r, a, &) £ 1n %

where Y(r, o, &) =r(1l + 1n é-/ln L),

2
PROOF: We want F(k) > 1 - I (1-pi)k >1 = &(1 - 1/(ra))® >1 - a.
i=1

Hence k* < 1n(a/2)/1n(l - 1/(x%)) = 1ln(a/2)/(-1/(r%)) for r large.

Therefore k* < ri(lnk - 1n a) = r(l + 1n(1/a)/1n £)2 1n 2. B

Theroem 6 provides a stopping rule on the number of iterations
to perform k*. Note that y(r, o, %) is the inflation factor

of the number of iterations required for a regular polytope case
of P; = 1/% for all i =1, 2,...,% which we know to vary as

2 1n 2. Note also that y(r, a, &) % r for large %; that is, if
the smallest facet area is %th of the average for a regular
polytope, then the number of iterations required is r times

as great. The order of magnitude is however still % 1ln &.

As an example, for % = 100 nonredundant constraints, r = 10,
and o = 0.05, we get k* < 7600 iterations. Finally, we should
mention that the dimension of the space, n is of no influence

on any of the results derived here.

4, EXPERIMENTAL RESULTS

To apply the method described in the previous section
we need an initial interior point in S. If not readily avail-
able, this may be obtained from a simplex Phase I procedure.
Such a procedure is required as well if there are (explicit

or implicit) equality constraints in the system,
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The experimental results given below are taken from
Karwan, Telgen and Zionts [1981]. The tests involved both
randomly generated problems and structured problems taken
from the literature. The random testproblems were generated
using a modified version of LPGENR (Michaels and O'Neill

[1975]) according to the following table.

No. of No. of Degen-~ Planned

Set Variables Constraints 'era¢y, Redundancy

1 10 20 None None

2 10 20 50% None

3 10 30 None 10 Constraints
4 10 30 50% 10 Constraints
5 10 30 None None

6 10 30 50% None

Table 1: Randomly Generated Testproblems

Notes: - 50% degeneracy means that in two different extreme

points only 5 variables have a nonzero value.

- sets 3 and 4 were obtained from sets 1 and 2
by the addition of linear combinations of con-

straints.

- each set contains 5 problems.

The characteristics of the structured problems are summarized

in Table 2,
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No. of No, of
Problem Variables Constraints Source

A 12 26 Disbursement problem,
Nykamp and Spronk [1978]

B 10 22 Disbursement problem,
Nykamp and Spronk [1978]

C 20 29 Diet problem,
Dantzig [1963]

F 15 37 Production planning
Meyerman [1979]

G 23 59 Production planning
Meyerman [1956]

I 5 29 Production planning,
Tischer [1968]

Table 2: Structured Testproblems

Admittedly these testproblems are very small, but most redun-
dancy identification methods are not efficient on much larger
problems. In Karwan, Telgen and Zionts [1981] it is concluded
that the method by Lotfi [1981] using components from the
methods by Zionts, Gal and Telgen performs best in identifying
all redundant (and nonredundant) constraints. We will use this
method to compare with the following variants of the ran-

dom method developed in the preceding section:

(a) "basic version": purely random directions (D equal
to a unit hypersphere) determination of hit points

along generated direction only.
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(b) "simple coordinate version": random directions
parallel to coordinate axes (D equal to the
intersection of a unit hypersphere with the
coordinate axes), determination of hit points
along generated direction only.

(c) "multiple coordinate version": random directions
parallel to coordinate axes, determination of

hit points in all coordinate directions.

We started the random methods from an interior point obtained
from perturbing the starting point of Lotfi's procedure (a

feasible extreme point of S), In neither of the tables below
where the results are summarized do we take into account the

time and effort to obtain a starting point,
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In addition to the results mentioned in Tables 3 and 4 we

found that most of the nonredundancy identified by the random
method was identified in the earlier stages of applying the
method. As typical, we mention the percentages of nonreduncancy
found in the first quartile (.25 seconds) of a?plying the random
method to the randomly generated testoroblems: for variants (a),
(b) and (c) these were 88.6%, 96.0% and 96.8% respectively
(averaged over 30 problems)., Also the last nonredundant
constraint identified on the structured problems was identi-
fied after only .11l seconds on the average.

In evaluating these results it is immediately clear that
variant (a) is dominated by variants (b) and (c) as a conse-
quence of the computational savings achieved by using coordi-
nate directions. (See also Karwan, Telgen and Zionts [1981])
Variant (b) performed slightly better than variant (c), which
may be caused by the generation of more iteration points in
variant (b).

In comparing the random method with Lotfi's method on
the randomly generated problems, we see that at least 80% of
all nonredundant constraintswere identified in 0,25 seconds
CPU time, whereas Lotfi's method took an average of 0.56 seconds
to find all nonredundant constraints. On the structured
problems the random method took an average of 0.1l seconds
to identify 90% of all nonredundant constraints, whereas Lotfi's
method took an average of 0.58 seconds. In conclusion there-

fore it is possible to identify a large part of the nonredundancy
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(say 80%) in a small amount of time (20% of that required to
find all redundancy).

In these experiments we did not use any of the stopping
criteria developed in Section 2, It is interesting to note
however what their application would have implied. Since these
stopping criteria require input on uncertain parameters, it
is important to note the influence of approximating certain
values, Therefore we used Theorem 6 to construct the follow-
ing table of upper bounds on k* (the number of iterations
required to identify all nonredundant constraints with proba-
bility 1 - a) for a = .05. To illustrate these bounds we used

the characteristics of the randomly generated testproblems,

r =25 r =10
Problem _
Set 2 = m True ¢ £ =m True %
1 599 564 1198 1129
2 599 461 1198 923
3 960 564 1919 1129
4 960 461 1919 923
5 950 777 1919 1554
6 960 599 1919 1198

Table 5: Bounds on k*
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From Table 5 it is seen that it is relatively easy to
find all facets with a "large" area (small r). Also the esti-
mated number of nonredundant constraints should not be too far
away from the true value of % (as in sets 3 and 4) since that
induces too many unnecessary iterations,
Finally note that it is possible to derive the magnitude of the
facet areas that have been hit with probability 1 -oa after

k iterations:

_k
E]_n.&
o

For example if k = 360, a = ,05 and & = 20, then r > 3.

5. CONCLUSION

Thus far the random methods have been viewed as prepro-
cessors that are capable of identifying nonredundant constraints.
The nonidentified constraints can then be omitted in an opti-
mization algorithm although the solution has to be checked for
feasibility afterwards, since the omission of some constraints
may not be justified, As an aid in this process we have de-
veloped stopping criteria and derived probability statements
for the random methods, This approach can be extended further
by the inclusion of Bayesian arguments; we hope to report on
this in the near future.

In addition to an application as a preprocessor, the ran-

dom methods could also be used as integral parts of an
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optimization procedure, especially in the Bayesian mode
approach. This topic is currently under investigation.
Although we described the random methods entirely in terms
of linear constraints, they are applicable to nonlinear con-
straints as well, Boneh and Golan [1979] give an example of a
problem with quadratic constraints that could be handled only
after removal of the redundant constraints, Furthermore, with
some minor modifications, nonconvex feasible regions (and even
disconnected ones) can be treated by the same class of random

methods.
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