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Abstract

We consider the question of convergence of a sequence of closed (non-empty) subsets of a compact metric
space in the space of all such subsets equipped with the Hausdorff metric. We obtain equivalent conditions
for convergence in terms of (1) equality of liminf and limsup sets and (2) pointwise convergence properties
of continuous set selection mappings defined on the metric space of closed subsets. We then apply these
results to obtain necessary and sufficient convergence criteria for the finite horizon optimal solution sets
encountered in a general infinite horizon optimization problem.

Key Words and Phrases

Compact metric space, space of closed subsets, Hausdorff metric, limit sets, selection, uniqueness point,
nearest-point selection, infinite horizon optimization, finite horizon optimal strategies.

1 Introduction

In recent years a number of authors have studied various versions of infinite horizon optimization problems.
Of particular interest to us are the papers by Bean and Smith [2], Bés and Sethi [3] and Schochetman and
Smith [10]. In each of these cases, as well as others, we have a compact metric space (X, d) of feasible infinite
horizon strategies and a discounted cumulative net cost function C(z) defined for z in X. The problem is to



find

inf C(z).

Jnf C(z)
Under varying hypotheses, the infimum is attained, thereby giving rise to a non-empty, closed (hence com-
pact) subset X* of X consisting of optimal strategies. The finite horizon approach to approximating the
elements of X* consists of truncating the cost function C(z), for each z, at finite horizon times T > 0, thus
giving rise to the problem of finding

: inf C(z,T),

zeX

for each T > 0, where C(z,T) is the T-horizon truncated cost C(z) for z in X. These infima are also
attained, yielding non-empty, closed subsets of X denoted by X*(T'),T > 0. Consequently, we are led to the
problem of defining and determining convergence of the X*(T') to X*.

More generally, this suggests the problem of studying convergence of closed sets. Problems of this type,
in different contexts, have been studied in the past by several authors. Of particular interest to us are the
papers by Michael [9], Fell [6] and Effros [5]. Our motivation is to extend the results of these authors so as
to give relevant answers to our infinite horizon closed set convergence problem.

In section 2 we discuss the Hausdorff metric D (corresponding to d) on the space C(X) of closed, non-
empty subsets of X and compare the underlying metric topology on this space with two other possible
topologies—the finite topology of Michael [9] and the H-topology of Fell [6]. Given a sequence {F;} in C(X),
Effros [5] defines two limit sets, liminf F; and limsup F;, for this sequence. In section 3, we characterize
each of these sets in a form amenable to our problem of interest and establish various additional properties.
In section 4, we show that a sequence in C(X) converges with respect to D if and only if its limsup and
liminf are equal, in which case the limit of the sequence is this common set. For purposes of approximating
an infinite horizon optimum, it is more important to be able to obtain a corresponding sequence of points
{2;} from the sequence {F;} of sets which converges to a point z in the limit set of the sequence. This
suggests the study of selections defined on C(X) and their continuity properties. Particular selections, which
we call nearest-point selections corresponding to “uniqueness-points,” play a special role. This is the subject
matter of section 5. Finally, in section 6, we apply the main results of the previous sections to the closed
sets X*(T'),T > 0, of our infinite horizon optimization problem, obtaining several equivalent conditions for
the X*(T') to converge in the Hausdorff metric.

2 Topologies for Closed Subsets

Let (X,d) denote an arbitrary compact metric space and C(X) the set of all non-empty, closed (hence
compact) subsets of X. For each z in X, the mapping y — d(z, y) is continuous on X. Thus, for each K in
C(.X), the minimum of d(z, y), for y in K, is attained and we may define

d(z,K) = ;1(15111} dz,y), z€XKEeCX).

Moreover, for each such K, the mapping z — d(z, K) is also continuous on X [4, Theorem 4.2]. Hence, for
each C in C(X), the mazimum of d(z, K), for z in C, is also attained and we may therefore define

h(C,K) = rrzaé(d(z, K), C,K €((X).

Although h is not a metric on C(X) (it’s not symmetric), we can obtain a metric D on C(X) if we define

D(C,K) = max(h(C,K), h(K,C)), C,K €C(X).



This is the well-known Hausdorff metric on C(X) [4,7,8,9]; it satisfies

D({.’L‘},{y}) =d(.’c,y), w,yEX.

Moreover, (C(X), D) is a compact metric space [9, Theorem 4.2].

In additon to this topology on C(X), there is the finite topology of E. Michael [9] and the H-topology of
J. M. G. Fell [6]. However, as observed in [6,9], the finite topology, the H-topology and the Hausdorff metric
topology are all the same on C(X), since X is compact and Hausdorff. Thus, for the remainder of this paper,
it will be convenient to discuss convergence in C(X) in terms of the Hausdorff metric D only.

3 Limit Set Results

Since C(X) is a metric space, it is first countable (in fact second countable), so that it suffices to consider
convergence for sequences in C(X). Although we will ultimately be interested in convergence for a family
of closed sets indexed by the positive reals, this poses no difficulty, since all our results are valid for such
families as well. Thus, there is no harm in considering convergence for the more appropriate and convenient
case of sequences in C(.X).

Let {F;} be a sequence in C(X). As in [5], define liminf F; (resp. limsup F;) to be the set of all z in X
such that every neighborhood of z is eventually (resp. frequently) intersected by the F;. In general,

liminf F; C limsup F;;

also liminf F; and limsup F; are closed in X. In fact, limsup F; is an element of C(X), since it must be
non-empty (the F; are non-empty and X is compact). However, liminf F; can be empty; for example, if
X ={0,1}, Fao; = {0}, F2i41 = {1}, then liminf F; = 0.

Lemma 3.1 Let z be an element of X. Then z belongs to limsup F; if and only if there ezists a subsequence
{Fi,} of {Fi} and a corresponding subsequence {z;,} such that z;, € F;,, all k, and z;, — z, as k — co.

Proof: Let z be an element of limsup F;. For each k = 1,2,..., let B(z,1/k) denote the open ball of radius
1/k centered at z. By definition of limsup F;, there exists i; > 1 such that

F;, NB(z,1/1) # 0.
Suppose we have chosen indices i} < i5 < ... < i1 such that
>3, Jj=1..,k=-1,

and
Fi;NB(z,1/5)#0, j=1,... k-1

Then , for j = k, there exists an index i such that ¢, > k, 4,_; < 4} and
F,, NB(z,1/k) #0.
In this way, we obtain a subsequence {F;, } of {F;} having the property that
Fi, NB(z,1/k)#0, k=12....

For each k, let z;, be an element of F;, N B(z,1/k). It is easy to see that z;, — z, as k — oo.
Conversely, suppose {F;, } and {z;, } are as in the statement of the lemma. Let N be any neighborhood
of z. Then there exists ky sufficiently large such that z;, € N, for k > ky, i.e.

F;kﬂN#@, k>kn.



Since {F;, } is a subsequence of {F;}, it follows that N is frequently intersected by the F}, i.e. z belongs
to limsup F;. ®

A similar result holds for liminf F;.

Lemma 3.2 Let z be an element of X. Then ¢ belongs to liminf F; if and only if for each i, there ezists z;
in F; such that z; — z, as i — oo.

Proof: Suppose z is an element of liminf F;. Let B(z,1/k) be as above, for k = 1,2,.... As in the previous
proof, we may obtain a sequence of indices

1<ipg<...<% <...

such that ¢ > k and
F,'ﬂB(%',]./k')#@, iZik,k=1,2,....

(Recall that B(z,1/k) is eventually intersected by the F;.) For each k = 1,2,..., choose z; in F; N
B(z,1/k), for 4 < i < iryy. For i < iy, choose z; in F; arbitrarily. Then {z;} is a sequence such that
z; € Fi, all i, and z; — z, as i — 0.

The reverse implication is obvious. ®

The next lemma follows immediately from the previous two lemmas and the fact that liminf F C
limsup F;.

Lemma 3.3 The following are equivalent for the sequence {F;}
() liminf F; = limsup F;.
(ii) For every z in limsup F;, there ezists z; in Fi,i=1,2,..., such that z; — z, as i — oo.

More generally, we have

Theorem 3.4 Let {F;} be a sequence in C(X) and F an element of C(X). Then the following are equivalent.
(i) F = liminf F; = limsup F;.
(i) F D limsup F; and for every z in F, there exists z; in F;,i=1,2,..., such that T; — T, as 1 — 00.

Corollary 3.5 Iflimsup{F;} is a singleton {c}, then liminf F; = {z} also. In this case, z;—z, as i — oo,
for all choices of z; in F;,i=1,2,....

Proof: Let z; € F;, all i. If &; /4 z, then there exists a subsequence {z;,} of {z;} and € > 0 such that
d(z;,,z) > ¢,n = 1,2,.... Passing to a subsequence if necessary, we may assume there exists y in X
such that z;, —y, as n—oo. Therefore, {z;,} is a sequence in the {F;, } which is a subsequence of {F}},
so that y € limsup F;, which is equal to {z} by hypothesis, i.e. y = z. Hence, z; —z, as n—oo and
{z;.} is bounded away from z. Contradiction. Thus, z;—=z, for all choices of {z;} in {F;}, so that
liminf F; = {z} also. =

Before concluding this section, we establish the following useful result.

Lemma 3.6 Let {F;} be a sequence in C(X). If {F;;} is a subsequence of {F;}, then

liminf F; C liminf F;; C limsup F;; C limsup F;.
i j j i

Proof: This follows from Lemmas 3.1 and 3.2. n



4 Hausdorff Metric Convergence

Recall that (C(X), D) is a compact metric space, where D is the Hausdorff metric. In this section we
will show, amongst other things, that the conditions of Theorem 3.4 are equivalent to convergence in the
Hausdorff metric.

Lemma 4.1 Let {F;} be a sequence in C(X)and F an element of C(X).
(1) If F D limsup F;, then F; — F if and only if h(F, F;) — 0.
(i) If F C liminf F;, then F; — F if and only if h(F;, F) — 0.

Proof: From the definition of D, it follows that h(F;, F) — 0 and h(F, F;) — 0, if F; — F, as i — co. Thus,
in each case, it suffices to verify the reverse implication.
(1) Suppose F D limsup F;. By definition of h, we have

h(F;, F) = max d(z, F),

where the function = — d(z, F) is continuous and each F; is compact. Thus, for each i, there exists z;
in F; such that
h(Fi,F)=d(zi, F), 1i=1,2,....
Suppose d(z;, F) /> 0. Then there exists ¢ > 0 and a subsequence {F;;} of {F;} such that
d(z;;, F)>¢, j=12,....

Since X is compact, passing to a subsequence if necessary, we may assume that there exists z in X
such that z;; — z, as j — oco. Since z belongs to limsup F; by Lemma 3.1, we have that z is in F by
hypothesis. Hence,

d(zij)F) = gg}} d(zijyy)

IN

d(zi;,z), j=12,...,

which implies that d(z;;,F) is eventually less than €. Since this is a contradiction, it follows that
h(F;, F) — 0 automatically in this case. Consequently, h(F, F;) — 0 implies D(F}, F) — 0, as i — co.

(i1). Now suppose F' C liminf F;. This time we have

h(F,F}) = r;leafzgd(y, F),

so that, for each'i, there exists y; in F such that
WF,F)=d(y, F), i=12,....
If d(y;, Fi) # 0, then there exists a subsequence {F;;} of {F;} and € > 0 such that
d(yi;, Fi;) >¢,  j=12,....

Since F is compact, passing to a subsequence if necessary, we may assume there exists y in F such that
Yi,—Y, as j—oo. But by hypothesis, we have that y is in liminf F; necessarily. Therefore, by Lemma
3.2, there exists z; in F;, for each i, such that z;—y, i.e. z;;—y, as j—o0. Consequently,

d(yi,'; Fi,) = zré]}{l’ d(yij’ Z)

S d(yi,') xij)
S d(yi,‘)y)+d(y7xij);



which implies that
d(yi,';Fi,')_'O’ as j—00.

Since this is a contradiction, it follows that h(F, F;)—0 automatically in this case. Hence, it follows that
D(F;,F)—-0 if h(F;,F)—0. n
Theorem 4.2 Let {F;} and F be as above. The following are equivalent:
(i) F = liminf F; = limsup F;.
(ii) Fi—F in C(X), as i—oo.
Proof: Suppose (i) is true. Then by the proof of the previous lemma, we have that h(F;, F)—0 and
h(F, F;)—0, i.e. D(F;, F)—0, as i—co.

Conversely, suppose (ii) is true. We will show that F C liminf F; and F D limsup F;. Suppose z is in
F. Then, for each 1, there exists z; in F; such that

d(:l,', :E,') d(.’t, F,)

d(y, F;
maxd(y, ;)

h(F,F), i=12....

IA

Necessarily, d(z, z;)—0, as i—oo so that z is in liminf F; by Lemma 3.2. Thus, F C liminf F;.
Now suppose z is in limsup F; but not in F. For each y in F, there exists §(y) > 0 such that

B(z,6(y)) N B(y,6(y)) = 0,

where B(z,6) is the open ball of radius 6 centered at z. The collection

{B(y,6(y)) :y € F}

is an open cover of compact F. Therefore, there exist yi,...,y, in F such that
n
F ¢ | B(y;,6(y;)-
j=1
For convenience, let §; = 6(y;),j =1,...,n and define
1 .
6 = =min{éy,...,6,}.

2

Then
B(z,68) N (Uj=1 B(y;,6;)) = 0.
Since z is in limsup F;, by Lemma 3.1, there exists a subsequence {F;,} of {F;} and a corresponding

sequence {z;, } such that z;, € F,, all k, and z;, —z, as k—oo. Hence, there exists k; sufficiently large
such that

z;, € B(z,9),

d(zi,,z) <6, k> ks.



Moreover,
h(F;,,F) = yrg%‘i d(y, F)
Z d(:c,-k,F), k=1,2,....
For each k, let z;, be an element of F' such that
d(zi,,2;,) =d(z;, F), k=12....
Necessarily, each z;, belongs to some ball B(y;,,4;,). Thus,
d(z,y;,) < d(z zi,)+d(zi,,2,) + d(z,, ¥5,)
< 6+ d(xik’ zik) + 5.1');1

ie.
d(ziy, 2i,) 2 d(z,y5,)—6—6;, k=12,....
But, for each j =1,...,n, we have
B(z,6;) N B(y;, &) = 0,
so that

d(z,y;) > 26;.

In particular, this is true for j = j;. Consequently,

d(zimzik) 2 6]'»-6’
> 4,

since 65, > 26, k=1,2.... Hence,
d(z;k,F) >4,
so that
h(F;,,F) > 6, k=1,2,....

This implies that h(F;, F) 4+ 0, i.e. D(F;,F) 4 0. This is a contradiction, so that limsup F; C F. =

Remark The reader should note that Theorem 4.2 may be constructed from [5,6,9] by piecing together the
appropriate results. We are giving an alternate proof which is direct and self-contained.

Corollary 4.3 Suppose F; is a singleton {z;}, for i sufficiently large. If z is an element of X, then z;—z
if and only if limsup F; = liminf F; = {z}.

Proof: This follows from the fact that
D({z;},{z}) = d(zi,2), i=1,2,....

Corollary 4.4 Let {F;} be an arbitrary sequence in C(X). Any accumulation point F of {F;} (i.e. any
limit F of a subsequence of {F;}) satisfies

liminf F; C F C limsup F;.
Proof: If {F;,} is a subsequence of {F;} such that F;, —F, then, by the theorem,
F =liminf F;, =limsup F;, .

Now apply Lemma 3.6. n



5 Selections and Point Convergence

In this section, we consider the convergence of F; to F versus the convergence of some z; in F; to some z in
F. Roughly speaking, we will see that convergence of the F; to F is equivalent to convergence of the z; to
z for smooth choices of the z; and z.

In this regard, we define a selection on C(X) to be a mapping S : C(X)—X such that

S(F)eF, FeC(X).

Note that selections need not be continuous as is the case in [9]. Our objective will be to equate convergence
of F; to F' with convergence of S(F;) to S(F). before we can do this, we need two more concepts.
Let p be an arbitrary point in X. For each F in C(X), there exits at least one z in F such that

d(p,z) = d(p, F).

If, for each F' in C(X), we define Sp(F) to be any such z in F, then we will call S, a nearest-point selection
defined by p. Of course, there exists more than one such selection in general for a given p in X. Now fix F
in C(X). If pis such that there exists a unique z in F as above, then we will say that p is a uniqueness point
for F (relative to d). In this case,

d(p,z) < d(p,y),

for all y in F different from z. Let F! denote the uniqueness set for F, i.e. the set of all uniqueness points
for F. If p € F! and S, is a nearest-point selection defined by p, then Sp(F) is uniquely determined in F.
In general,

FCF'CX

and 0 # F! # X. Note also that F! being equal to X is a generalization of F being a singleton.

Lemma 5.1 Let F' be an element of C(X) and p a point in F'. IfS, is a nearest-point selection defined by
p, then S, s continuous at F.

Proof: Suppose F;—F and Sp(F;) #+ Sp(F). Then there exists a subsequence {F}, } of {F;} and € > 0 such
that

d(S,(F, ), Sp(F)) 26, k=1,2,...

But {S,(Fi,)} is a sequence in compact X. Thus, passing to a subsequence if necessary, we may assume
there exists z in X such that Sy(F;,)—z, as k — 00. Since S, is a selection, it follows that z is in
limsup F;, which is in turn contained in F by hypothesis (Theorem 4.2). We then have that

€ < d(Sp(Fi,), Sp(F))
< d(Sp(Fiy), 2) + d(z, Sp(F)),
where
d(Sp(Fy, ), 2)—0, as k — .
Therefore,

d(z,5p(F)) 2 ¢,
also, i.e. z and Sp(F) are distinct elements of F. Consequently,
d(p, Sp(F)) < d(p,2),
since p € F!. Define
7= 31d(p,2) ~ d(p, Sy(F)



Then

d(p, z) — d(p, Sp(F)) > n,
so that

d(p, SP(F)) <d(p,z)—n.

Since the function y—d(p,y) is continuous on X, there exists an open ball B(S,(F),é,) of radius 0 <
6y < n centered at Sp(F) such that

d(p,y) <d(p,z)=n,  y€ B(Sp(F),6y).
We claim that D(F;,, F) > é, if k is such that
Fiy N B(Sy(F),6,) = .

To see this, observe that
d(Sp(F),w) 26y, wEF,,

Le.
d(Sy(F), Fi) 2 6,
so that
h(F? Fu) 2 6’7'
Consequently,

D(F;,, F) 2 &,

for such k.
By our hypothesis, F;, —F, so that there exists k, sufficiently large such that

D(F,,F)< by, k>k,.
By the previous claim, we must have that
Fiu, NB(Sp(F),80) #0, k> ky.
For each k > ky, let z;, be an element of F;, N B(Sp(F),6,), so that
d(Sp(F),z:,) < 6y.

For such k, we have:

d(p’ SP(Fik)) S d(p, xik)

< d(p, Sp(F)) + d(Sp(F), i)

< d(p, Sp(F)) + by

< d(p,Sp(F))+n
But

d(p, SP(F)) +n= d(p, Z) =7
so that
d(p, Sp(Fi,)) < d(p,2) —n,  k2>k,.

Also,

d(p, Sp(F3,))—d(p, 2), as k — oo,



since
Sp(F;,)—z, as k — oo.

Consequently,
d(p,2) < d(p,z) -1,
which is a contradiction since 7 > 0. Hence, Sp(F;)—Sp(F) and Sy is continuous at F. m
Theorem 5.2 Let {F;} be a sequence in C(X)and F an element of C(X). Then the following are equivalent.
(i) Fi—F, as i—c0.

%) F D limsup F; and S,(F;)—S,(F), as i—oo, for all nearest-point selections S, on C(X) defined by p
T P P P
in F1.

Proof: Suppose (i) is true. Then, for each p in F!, S, is continuous at F by Lemma 5.1, so that
Sp(Fi)—Sp(F), as i—oo. The rest of (ii) follows from Theorem 4.2.
Now suppose (ii) is true and it is not the case that F;—F. Since F' D limsup F;, by Lemma 4.1, it must
be true that h(F, F;) 4> 0. Thus, there exits ¢ > 0 and a subsequence {F;,} of {F;} such that

h(F,Fi,)>€, k=12,....
Let z;, be an element of F for which
h(F,Fik)=d(:l:,'k,ng)2€, k=1,2,....

Passing to a subsequence if necessary, we may assume that there exists z in F such that z;, —z, as
k—o0. Consequently, z € F!. If S, denotes any nearest-point selection defined by z, then, by our
hypothesis, we have that S, (F;)—S;(F). Since {Sz(F;,)} is a subsequence of {Sz(F;)}, it follows that

Se(Fi )—Sz(F), as k—oo,

where
Sz(F;,) € F;,, all k,
and
r=S,(F)€F.
Therefore,
d(zi,,Fi,) = min d(zi,,y)
yers,
< d(zi,, S:(F))
< d(zik ) .’L‘) + d(x! Sﬂ-’(Fik))’
where
d(z;, ,z)—0, as k — oo,
and
d(z,S;(F;,)) = d(Sz(F),S:(F;,))—0, as k — oo.
Consequently,

d(z;,, F;,)—0, as k — oo,

which is a contradiction. Hence, F;—F,asi1—00. &

10



Corollary 5.3 The following are equivalent:

(i) F;—F, as i— oo.

(i) F D limsup F; and S(F;)—S(F), for all selections S on C(X) which are continuous at F.
Corollary 5.4 If F! = X, then the following are equivalent:

(i) Fi—F, as i — co.
(1)) Sp(F;)—Sp(F), as i — oo, for all nearest-point selections S, on C(X) defined by p in X.
(i) S(F;)—S(F), as i — 0o, for all selections S on C(X) which are continuous at F.

Example 5.5 Let (X,d) be an arbitrary compact metric space having at least two distinct elements.
Suppose z;—z and y;—y in X, as 1 — 0o, where = # y. Define

Fiz{zi’yi}: i=1,2,...,

and
F ={z,y}.

Then it is easy to see that F' C liminf F; and F D limsup F;, so that they are equal. Hence, F;—F in C(X),
as 1 — 0o0. Moreover,

F'={z€ X :d(z,2) # d(y, 2)}.

The following example of an infinite, non-linear mathematical program is much more interesting.

Example 5.6 Let X denote the product of countably many copies of the unit interval [-1,1]. The compact
product topology is metrizable by the metric given by

d(x,y)zzgiﬂl‘i—yil/y, xayEX’
where z = (2;),y = (vi). Let 0 < @ < 1 and consider the following infinite horizon mathematical program:
(MP) maxy o, o'z}

subject to
II,‘ISI, i=1,2,....

Let X* denote the set of optimal solutions to (MP). It is easy to see that
X*'={e€X: :z;==1, all i},

so that X* is uncountable. One interpretation of this is that for every discount factor «, there exist un-
countably many infinite horizon optima for this problem. Now let N be a positive integer and consider the
following N-horizon modification of (MP):

N
(MP)y maxz o'z’
i=1

subject to
lz;| <1, 1=12,....

11



If X} denotes the set of optimal solutions to (MP),, then it is obvious that
Xy={z€eX:z;=21,1<i<N}, N=12,...

Thus,
X1DX3D2X3D...0XNyD...0X".

We leave it to the reader to verify that
X* =liminf X} = limsup Xy,
so that Xy —X™ in C(X), as N—oo. In fact, one may verify that
DX}, X" <2V N=12,...
The uniqueness set of X* is given by
(X*Y'={zeX:z#0, all i}.

Let p be an element of (X*)'. Then a nearest-point selection Sp defined by p satisfies:

FR\ 1) ifpi>0y
Sp(X )z“{ 1, ifp <0,

and
1, ifl1<i< N andp >0,
Sp(XN); =4 -1, f1<i< Nandp <0,
z;, ifi>N.
Note that S,(X} ) is the unique element of X» having the property that
d(p, Xy)=d(p,Sp(Xy)), N=12,...

Of course,
Sp(X3)=S5(X"), a5 Nosoo,

as required by Theorem 5.2.

6 Application to Infinite Horizon Optimization

We are now ready to apply the main results of the previous sections to our general infinite horizon optimiza-
tion problem studied in [10]. We refer the reader to this reference for the details of what follows.

As observed in section 1, we have a compact metric space (X, d) of feasible infinite horizon strategies (or
solutions), a closed, non-empty subset X* of X consisting of the optimal infinite horizon solutions and, for
each T' > 0, a closed, non-empty subset X*(T") of X consisting of the T-horizon optimal solutions. In [10], we
observed that only the elements of limsup X*(T') could be approximated by elements of the X*(T'), T > 0.
Accordingly, we defined X*(c0) to be limsup X*(T'). More generally, we defined a finite-horizon solution
algorithm to be a mapping T—A(T) on the positive real numbers for which A(T) is a non-empty, closed
subset of X*(T'), T > 0. For each such A, we analogously defined A(c0) to be limsup A(T), so that A(co) is
a closed, non-empty subset of X*(00). In particular, if

AT)=X"(T), T>0,
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so that A(co) = X*(00), then we called A the mazimal algorithm and X*(co) the set of all algorithmically
optimal infinite horizon solutions. If A(T') is a singleton {z%(T)} in X*(T), all T > 0, then we called 4 a
simple algorithm.

As before, let (C(X), D) denote the compact metric space of closed, non-empty subsets of X with D
the Hausdorff metric corresponding to d. Then, for each algorithm A, A(co0) is an element of C(X)and
{A(T) : T > 0} is a generalized sequence in C(X).

As in section 5, we are interested in selections S defined on C(X); in particular, we wish to concentrate
on nearest-point selections S, defined by points p in X. If A is an arbitrary algorithm, it will be convenient
in this setting to denote Sp(A(T)) by z(T), T > 0, and Sp(A(c0)) by zA. If A is the maximal algorithm, we
will write 23(T') and z} instead. Thus, given an algorithm A and point p in X, each nearest-point selection
S, defined by p determines a simple algorithm given by

{z;‘}(T) :T > 0}.

In this sense, S, provides us with a tie-breaking rule by selecting, for each T > 0, a T-horizon optimal
solution from the set A(T') of discovered such solutions using nearness to p as the selection criterion, and
then choosing arbitrarily from amongst those nearest to p. We are interested in determining when a simple
algorithm of the above form converges to .'c;“

As observed in section 3, all the results of the previous sections (as well as their proofs) are valid for
generalized sequences indexed by the positive reals. In this section, we apply these results to {A(T) : T > 0}
and A(co). Since A(co) = limsup A(T'), the following theorem is immediate from Theorems 3.4, 4.2, and
5.2.

Theorem 6.1 Let A be an arbitrary algorithm for the general infinite horizon optimization problem studied
in [10]. Then the following are equivalent:

(1) A(oo) = liminf A(T).
(i) For every z* in A(oc), there ezists X*(T) in A(T), allT > 0, such that z*(T)—z* in (X,d), as T—oo.
(1ii) A(T)—A(o0) in (C(X), D), as T—oo0.
(iv) zp(T)—z} in (X,d), as T—oo, for all simple algorithms of the form {z2(T) : T > 0}, where p is in
the uniqueness set of A(00).
In particular, this theorem is valid for the maximal algorithm.

Corollary 6.2 The following are equivalent:

(i) X*(00) = liminf X*(T).

(ii) For every x in X*(00), there ezists z*(T) in X*(T), all T > 0, such that z*(T)—z* in (X,d), as
T—00.

(ii) X*(T)—X*(00) in (C(X), D), as T—oo0.

(v) zp(T)—zy in (X,d), as T—oo, for all simple algorithms of the form {z;(T) : T > 0}, where p is in

the uniqueness set of X*(00).

Corollary 6.3 If A(co) is a singleton {z*}, then the conditions of Theorem 6.1 hold. Moreover, given any
{*(T): T >0} in {A(T) : T > 0}, we have that *(T)—z*, as T—oo.

Proof: Apply Corollary 3.5. =
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Remark The previous corollary is true, in particular, for A equal to the maximal algorithm, i.e. A(T) =
X*(T),T > 0, and A(0c0) = X*(00). This observation is the Planning Horizon Theorem (Theorem 6) of
Bean and Smith in [2]. See also the end of section 5 of [10].

In [10], we defined an algorithm to be convergent if A(c0) is a singleton. However, in view of the previous
theorem, it makes more sense to say that A is convergent if the equivalent conditions of Theorem 6.1 are
satisfied. Therefore, given a convergent algorithm A, the problem of finding a nearest-point simple algorithm
{z7(T) : T > 0} which converges to an optimal infinite horizon solution can be replaced by the problem of

finding a point p in the uniqueness set (A(co))" of the limit set A(o0) of A. In general, this may be difficult
to do. Of course, it is not if this uniqueness set is all of X, in which case any point p in X will do. Our next
example gives sufficient conditions for this to happen.

Example 6.3 Suppose X is contained in a Hilbert space. If A is an algorithm having the property that
A(00) is convez, then for each pin X, there exists a unique point y, in A(cc) which is nearest to p [1,p.15),
Le. the uniqueness set of A(co) is all of X. The point y, is called the best approzimation to p in A(co). A
sufficient condition for A(co) to be convex is that A(T') be convex for all T > 0 and A(T)—A(c0).

Such a case is important since it provides for a tie-breaking finite horizon algorithm z,(T) that arbitrarily
well approximates an infinite horizon optimum &} without the restrictive assumptions of [2,3,10] that X*(co)

be a singleton.
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