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Transonic Small-Disturbance Theory
for Lightly Loaded Cascades
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University of Michigan, Ann Arbor, Mich.

Analytical solutions are derived for a class of two-dimensional transonic cascade flows. In the particular
limiting case studied, the airfoils are considered as lightly loaded; a similarity parameter is defined for this case.
Second-order asymptotic solutions are derived for the nearly one-dimensional flow in regions directly between
successive airfoils and for the periodic flow ahead of and behind the cascade. For high subsonic Mach numbers,
composite solutions are obtained by a suitable joining of these results with solutions derived for thin regions
containing the leading and trailing edges. Surface pressures and lines of constant Mach number are calculated
for circular-arc airfoils in some specific examples. For low supersonic speeds a far-field solution, which allows
calculation of the decay of shock waves at large distances, is also derived.

I. Introduction

SUCCESSFUL calculation of three-dimensional transonic
flows in turbomachinery depends in part on

understanding the two-dimensional flow through a stationary
cascade of airfoils. Important physical features of the three-
dimensional flows are preserved in the plane case, and
solutions for two-dimensional flows may have direct ap-
plication in three-dimensional solutions. Even for two-
dimensional flows a wide variety of possibilities arises, in
terms of both blade geometry and flow structure. Com-
prehensive discussions of the two- and three-dimensional flow
problems have appeared, e.g., in Refs. 1-3. Analytical studies,
however, have not yet taken full advantage of the sim-
plifications that might be achieved, at least in certain cases, by
systematic expansions in terms of suitable small parameters.

Transonic flow theory has usually focused on either ex-
ternal or internal flows, but seldom on a combination of the
two. The transonic small-disturbance approximation, derived
in the first step of an asymptotic expansion procedure in-
volving two or more small parameters,4 has been widely used
for the description of flow past thin wings and bodies at Mach
numbers near one. Second approximations in a number of
different cases have also been studied.5 A different type of
transonic flow occurs in channels and nozzles and can be
described by relatively simple solutions.6 Here the first term
in an asymptotic flow description is typically a one-
dimensional approximation, if the area changes are gradual
and can therefore be characterized by a small parameter. The
nonlinear transonic small-disturbance equation is needed only
in certain particular cases where streamwise gradients are
locally large7; in some situations a local two-dimensional
approximation is correctly given by linear equations.8

Asymptotic solutions including higher-order terms and local
solutions have been derived for a variety of steady and un-
steady flows.8'11

The possibility of extending these asymptotic flow
descriptions to include flows through a cascade of airfoils
appears still unexplored. It is evident, however, that sim-
plifications can be achieved because the blade spacing is
typically comparable with the chord length, whereas the
proper transverse length scale (in the direction normal to
streamlines) according to transonic small-disturbance theory
is large. In the two-dimensional case the implication is, as will
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be shown later, that a portion of the flow directly between any
two adjacent airfoils is described in a first approximation as a
one-dimensional (internal) flow, whereas the flow outside
these regions, expressed in terms of the larger length scale,
resembles the (external) flow past a nearly plane wall with a
certain periodic shape. In the channel part of the flow the
important small geometric parameter measures a relative area
change and so depends on thickness and camber. Various
limiting cases can be studied, depending on the relative sizes
of the area-change parameter, the angle of attack, and the
difference between the undisturbed Mach number and one. In
one special case, when the two geometric parameters are of
the same order, the flow ahead of the channel region is purely
subsonic or supersonic and the equations are found to be
linear (except for the far-field in the supersonic case); thus,
the airfoils would be considered lightly loaded. In another
particular case, when the angle of attack is somewhat larger
and the airfoils are therefore more heavily loaded, the
nonlinear transonic small-disturbance equation is required for
the first approximation. In either case it would be found that
solutions in thin leading- and trailing-edge regions are also
needed. The advantage of these formulations, of course, is
that the overall flow problem can be divided into a number of
simpler problems, solutions to which can, at least in principle,
be carried out to higher order. The results then are assembled
in the form of composite solutions for numerical evaluation in
specific examples.

The present work is concerned with lightly loaded airfoils,
such that the angle of attack is of the same order as the
parameter which measures thickness and camber. Some
general features of this case are outlined in Sec. II. First- and
second-order solutions for subsonic flow are shown in Sec.
Ill, with surface pressures and lines of constant Mach number
plotted for a few numerical examples. For supersonic flow,
solutions are discussed in Sec. IV for the flow ahead of the
cascade, including the far field. Only the main steps in the
analyses are shown here; additional details are given in Ref.
12, available from the authors.

II. General Features
Inviscid flow at transonic speeds through a two-

dimensional cascade of thin airfoils is characterized by the
values of the Mach number and of various nondimensional
geometric parameters (Fig. 1). In the present case the
thickness ratio, camber, and angle of attack a of the airfoils
are all taken to be of the same small order of magnitude. For
a = Q the upper and lower surfaces, measured relative to the
chord line, are denoted by y = e 2 f u ( x ) and y = e2fg(x),
respectively, where e2 < 1 and x and y are rectangular coor-
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Fig. 1 Flow geometry.

dinates made nondimensional with the chord length; the
origin is at the leading edge of one of the airfoils. For a^ 0, x
is measured in the direction of the undisturbed flow; since

ct\ <1, the surfaces are given approximately by y~e2fuf
— ax. The airfoil spacing £ (measured normal to the chord
line), also nondimensional with the chord, and the stagger
angle tan -1 (d/t) are of order one. The straight line passing
through the leading edges is denoted by y = \x, where
X - tan{tan - l (d/fy + a} = (d/t) + O(a). Velocity components
u and v, nondimensional with the sound speed in the un-
disturbed flow, are in the x and y directions, respectively.
Thermodynamic quantities are nondimensional with their
values in the undisturbed flow.

At large distances ahead of the cascade, for y — \x> 1, the
Mach number M0 = u0 is close to one. Various approximation
procedures might be considered, depending on the relative
sizes of M2

0 -1 and e. For example, transonic small-
disturbance theory for a single airfoil is derived for M2

0
-l=O(e4/3). This ordering has sometimes also been
suggested for a cascade (e.g., by Oswatitsch3). As explained
below, the choice made here is instead

M2
0-l=±Ke (1)

where K is a positive constant and the upper and lower signs
refer to the supersonic and subsonic cases, respectively. Then
also

M0 = u0 = 1 ±ek(e) (2)

where k(e) is simply related to K by K=2k±k2e. Results of
linear theory for flow past a single airfoil, and therefore also
of transonic small-disturbance theory when the usual
similarity parameter is large, indicate that a differential
equation having solutions capable of satisfying boundary
conditions both at the airfoil and at infinity is obtained for
e-*0 in terms of coordinates x and e'/2y. The velocity and
pressure perturbations are then found to be O(es/2)> small in
comparison with | M2

0 - 1 | . However, in the present case the
airfoil spacing is 0(1) rather than O(e~'/2), and in the region
between two adjacent airfoils the changes in the y direction
are therefore small, so that the fluid motion is nearly one-
dimensional, just as in a channel flow. If the distance between
airfoil surfaces is £+0(e2), for an entrance Mach number
1 + 0(e), the pressure and velocity changes in this channel-like
flow are found to be 0(e), larger than the O(e3/2) changes for
an isolated airfoil. If the width ?+e2ff(x-d)-e2fu(x) has a
minimum for d<x<\, the flow will become choked at a
sufficiently small value of K. The constant K might be
regarded as a similarity parameter for cascades, analogous to
the usual transonic similarity parameter for a single airfoil: if
(M2

0 - l)/e= ±K is held constant as e^O, the largest changes
in local Mach number are of the same order as the difference

between the undisturbed-flow Mach number and one. It is for
this reason that the relation given by Eq. (1) represents an
important special case.

Far ahead of the cascade, the normal distance between two
streamlines which later intersect the leading edges of adjacent
airfoils is £— ad+O(a2). The nondimensional mass flow
between two such streamlines is u0(V-ad) + O(a2). At the
entrance to the region directly between adjacent airfoils the
distance between the same two streamlines is t—e2fu(d) + ....
If the flow entering this region has a velocity which differs
from the undisturbed value u0 = 1 ± k(e)e only by terms of
higher order than e, the mass flow between the blades is found
to be (u0 + ...)-(t-e2fu(d) + ...), in agreement with the first
result only if u = e2fu(d)/d+.... As pointed out in the
following sections, this value is the first approximation to the
*'unique incidence angle" at supersonic speeds (see Ref. 1,
Sec. G; Refs. 13 and 14) and to the angle for zero flow around
the leading edge at subsonic speeds.

The velocity components must satisfy the differential
equation

(q2/2) (3)

where q, q, and a are, respectively, the velocity vector, the
magnitude of the velocity, and the local sound speed, all
nondimensional with the sound speed in the undisturbed flow.
For a perfect gas with uniform total enthalpy,

> = l+>/2(y-l)(u2-(i2) (4)

where y is the ratio of specific heats. For subsonic speeds the
flow is irrotational, and a perturbation potential <t> can be
defined by

u = u0 + <t>x v = <t>y (5)

For supersonic speeds the introduction of a potential remains
a correct approximation to the order required here, since the
vorticity associated with entropy gradients behind shock
waves is of sufficiently high order as e—>0. The largest terms
in the differential equation then give

(t>yy={±Ke+(y+l)u0<i>x}(t>xx+(y-l)<l>x<t>y

(6)

A tangency condition is to be satisfied at each of the airfoil
surfaces:

<t>y(x,n(- ) = e2fl(x-nd) -a + -

(7a)

(7b)

for Q<x-nd<\ +... andrt = 0, ±1, ±2, .... ForM0<l,<the
flow is uniform far ahead of and behind the cascade and a
Kutta condition is used at the trailing edges. For M0> 1, no
disturbances originate ahead of the cascade.

As already anticipated, in a "channel" region between two
adjacent airfoils the length / — d and width £ are of the same
order, and the solution will be expressed in terms of coor-
dinates x and y. Ahead of and behind the cascade, however,
the solutions obtained in terms of these variables, which
might be called "near-field" solutions, do not satisfy the
boundary conditions at large distances. The proper transverse
length scale is larger, so that here x=O(l) and .y = 0(e~^);
the solution will be periodic in x for constant values of a
coordinate e'/2(y— Xxr). To this scale the distance e'/2£between
airfoils disappears in the limit as e—0. The "outer" flow
ahead of the cascade is then found to be the same, in a first
approximation, as the flow past a "wall" having a periodic
scalloped shape such as sketched in Fig. 2a; the downstream
flow is described in a similar way. In addition, it will be seen
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a) Approximate flow problem at large distances.
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=cj (e ) -
2a*2
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(U)

b) Outer, edge, and channel flow regions.

Fig. 2 Asymptotic flow description.

that a direct asymptotic matching of "outer" and "channel"
solutions is not possible and that "edge" solutions in thin
vertical strips containing the leading and trailing edges are
also needed. Again following small-disturbance theory, one
would anticipate that the width of these "edge" regions is
smaller than the height by a factor O(el/2), and therefore that
the solutions here are to be found in the limit as e-*0 with
coordinates (x—nd)/el/2 and (y — nt) held fixed, for n = 0, ± 1,
±2, .... These regions are indicated by the shaded areas in
Fig. 2b. Finally, for supersonic speeds the cumulative effect
of small errors in the linear theory for flow past a single
airfoil can no longer be neglected15 when^ = O[ (M2

0 - l)/e2},
if streamline slopes are 0(e2); in the present case, for M2

0 -
1 =O(e), a "far-field" description is needed for y = O(e~}).

III. Subsonic Flows
Suitable forms for the asymptotic expansions of the per-

turbation potential are determined in a stepwise fashion by
use of the differential equation (6) and the boundary and
matching conditions for the outer, edge, and channel regions.
The derivations are fairly straightforward but tedious, and
only the results are shown here. Additional details are given in
Ref. 12. Terms of order e2 in u are obtained for the outer and
channel regions, but only terms of order e3/2 are shown for
the edge regions. These latter regions are small and the higher-
order solutions are complicated; the possible improvement in
accuracy does not seem great enough to justify including the
higher-order calculations.

In the limit as e —0 with x and y held fixed, the first-order
approximation to the exact potential equation becomes simply
0^=0. For d<x< 1 and 0<>><£, in the channel region, it is
convenient to write the expansion of 0 in the form

<t>=(a*-u0)x+e(t>1(x,y;e) + e2ct>2(x,y;e) (8)

where 07, 02, ... are bounded as e—0, and certain sim-
plifications in higher-order terms are achieved by the in-
corporation of fractional powers and logarithms of e in the
functions 07, 02, ..... The solutions for u and v which satisfy
the tangency conditions at y = 0 and y = ? are

(12)

+ (£Z^5U (13)

and a*2 = 1 -(7- l)Ke/(y+ 1); the lower sign is taken in the
definition of K from Eq. (1). The results for 07 and 02 are
identical to those for a two-dimensional channel.8 The
functions of x in 07 and 02

 are found, respectively, by
satisfying the boundary conditions for <t>2y and t3y. The result
for c1 is found by balancing the mass flow as x — d-+Q with the
mass flow at a large distance ahead of the cascade. As noted
in the preceding section, the angle of attack a is taken to be
O(e2). It is anticipated here that a should be expanded in
terms of e. The first term is chosen to have the specific value
discussed previously, and it is seen later that the second term
is typically O(e5/2):

<x=e2fu(d)/d+e5'2a s/2 (14)

The value of the coefficient a5/2 is considered to be known. In
Eq. (13), the bracket then contains a term of order e / / 2 ; this
term can also be found from the second-order outer solution
derived below.

Ahead of this region, for Q<x<d and 0<>><oo, the
streamlines are not constrained by a second boundary surface
as in a channel. Changes in the streamtube area are not as
large, and the flow is in some respects similar to the flow over
a single airfoil. Pressure changes are O(e3/2) rather than O(e),
and so the changes in local Mach number are small in com-
parison with M0-I The "near-field" solution for
0<x<d andy = O(l) has the form

+h'2(x)

-fu(d)/d}+e5/2{5/2 - s/2

(15)

(16)

where 0j/2 (x) and h'2(x) are to be determined by matching with
the solution obtained for larger distances.

For 0<x<d, a convenient representation of the upper
airfoil surface shows quadratic and cubic parts separately,
with the remaining shape details expressed by a Fourier series
having period d:

(17)

Here the differences in slope and in curvature at * = 0 and
x = d are shown explicitly by ku=f'u(d)—f'u(G) and

u = a* ; (x;e) (x,y) (9)
8u(x) =

2mrx 2nw.cos—— +bnsm—— (18)
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) is continuous for 0<x<d, and since gu(0)=gu(d), it
follows that an = O(\/n4) and bn = O(l/n4) as n^oo. This
representation assumes a sharp leading edge. For a local
rounding of the leading edges, the airfoil shape [Eq. (17)] can
be modified by a simple additive correction, which then
requires a source term proportional to te* in the leading-edge
solution of Eq. (24), as well as corresponding small correc-
tions in a and in the "channel" width in Eq. (11).12

The outer solution is expressed in terms of coordinates x
and y defined by

x=x, (19)

outer solution evaluated as z-^nd gives

A,, d2 27r ,̂
4eKt2 ~7 Linan

n = l
(27)

A positive or negative value of m2 corresponds, respectively,
to an upward or downward flow around the leading edge,
with complex perturbation velocity locally proportional to
(z*)~I/2. Matching as f—0 with the solution of Eq. (9)
evaluated for x—d gives a relation between c;(e) and m2, or
between m2 and a5/2 if Eq. (13) for c; is used:

Along lines y = const the flow perturbations are periodic
functions of x with period d. The potential has the form .**

7T
(28)

= es/2<l>3/2(x,y) + e2<t>2(x,y) (20)

and it is found that 4>3/2 satisfies Laplace's equation. In the
solution for the complex velocity, the term of order e2 which
decreases exponentially as j?-*oo and matches correctly with
the solution for>> = 0(l)is, with£=jt+/y,

•z/d

(21)

This is the same as the solution for the flow past the periodic
wall shape sketched in Fig. 2a. The matching also gives

<t>3/2(x)=4>3/2(x,0) (22)

The "outer" solution for 0<x<d cannot be matched
directly as z—d with the "channel" solution for d<x< 1. The
logarithmic singularity in the velocity as z-^nd indicates the
need for inner solutions in narrow vertical strips, each con-
taining one of the leading edges (Fig. 2b). Coordinates x* and
y* are defined by

ir(x-nd) y* = - (23)

for « = 0, ±1, ±2, .... In the limit as e^O with x* and y*
fixed, the flow is studied in the half-plane y*> — IT with a
semi-infinite slit y* = 0, x* > 0. The potential can be written in
the form

0 = e2 (t/ir)<l)*(x*,y*\e) + - • • (24)

where </>| is found to satisfy Laplace's equation, and the
matching with the outer solution implies </>J = 0(&te) as e-^0.
A conformal transformation

i (25)

maps the flow onto the
upper half of the f plane. The solution for the complex
perturbation velocity is

where z*=x* + iy*9 and f=

,.= -if'u(0)+ —
7T

f-1
(26)

where Afc=/;(0)-//(0), A^/;(rf)-//(0), and c* and m2 are
real constants to be determined. Matching as f—>oo with the

The edge solution of Eq. (26) contains terms of order l/z*
as f— oo, and so the complex velocity in the outer solution
must have terms O[e2/(z-nd)) as z^nd, for 77 = 0, ±12 ±2,
.... That is, point sources at z = nd must be included in <£2. In
the case considered here, for a = e2fu(d)/d+..., such source
terms are excluded from 4>3/2. The perturbation velocity in the
leading-edge region is therefore O(e3/2) for this case, rather
than O(e), and so the nonlinear transonic small-disturbance
equation is not required. Moreover, there is no change of
order e2 in the mass flow in the edge region; a change of this
order would imply a different numerical coefficient for the
first term in a. It follows also that the value a = e2fu(d)/d is
the first term of the expansion as e-*0 for the particular angle
of attack at which there is no flow around the leading edge;
the second term is the value found for e5/2a5/2 when m2 = 0.

The term e24>2 in the outer solution can be represented in
three parts. There is a singular part 4>2

S) which has source-like
behavior at z = nd and which is, for convenience, also
required to satisfy the boundary condition at large distances.
A particular solution (j>^p) appears because the differential
equation for 4>2 is nonhomogeneous. Finally, an additional
solution 4>2

H) to the homogeneous equation is necessary
because a simple choice for $^ does not satisfy the required
matching condition as y-+Q. u One finds also that the ex-
pansion of e3124>3/2(x,y) for small y, rewritten in terms of x
and y, leads to terms of order e2 which contribute to the
matching.12 The results for the three parts of 4>2(x,y) are
given by

^ —— î  / W N. ^1J „ ^

(29)

(30)

(31)

The integration constant in 4>3/2 is chosen so that $3/2(x,Q) = 0
at x = nd, to eliminate source-like behavior in 4>2

p) at these
points; additional constants are chosen such that the complex
potential 4>3/2—A0 + i\i/3/2^Q as j>—>oo. The term F—iG is
zero for a circular-arc airfoil and is therefore not needed in
the numerical examples described below; the determination of
F—iG for more general airfoil shapes is discussed in Ref. 12,
Further calculations show that the requirement 4>2y-*0 as
.y^oo leads again to the result in Eq. (28) relating the source
strength e2m2 to the perturbation e5/2a5/2 in the angle of
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a)yc = 0, a = 1.0 deg.

0.4

0.2 0.4 0.6 0.8

b)yc= 0.009, a = 2.2 deg.

0.6 1.0

Fig. 3
C)yc= 0.009, a = 1.3 deg.

Lines of constant Mach number for circular-arc profiles with
thickness ratio f/c = e2(A/AJ/8 = 0.035, stagger angle
= 45 deg, solidity (£2 + </2) ~ /2 = 1.25, and Mach number M0 =0.815
(values of camber yc = — €2(AW + Af)/16 and angle of attack a are
varied).

attack. It follows that the term of order e1/2 in c;, obtained
previously from overall mass-flow considerations, could
instead have been found from the solution for <j>2.

Three composite solutions have been constructed for use in
numerical calculations. For 0<y<? and d<x<\, leading-
and trailing-edge solutions for W0 + 0X, where <£ has the form
of Eq. (24), are added to the channel solution [Eq. (9)] and
the common parts are then subtracted. The Kutta condition is
satisfied in the trailing-edge solution by omission of a source
term analogous to the term (m2 /Q/(f- 1) which appears in
Eq. (26); the presence of such a term would imply flow
around the edge. For 0<y<\x and Q<x<d, an additive
composition is again used to combine the near-field solution
[Eq. (15)] with leading-edge solutions about x = Q andx=d.

\X0.2 0.4 0.6 0.8 ff\.0

1.0 x

Fig. 4 Pressure coefficient at upper airfoil surface (suction surface)
for the same three cases as in Fig. 3 (dashed and solid lines denote first
and second approximations, respectively).

Fory>\x and 0<x<d, the outer solution [Eq. (20)] and the
edge solutions are combined in the same way. Here the near-
field solution consists simply of the first terms in an ex-
pansion of the outer solution for small y. The outer solution is
retained, however, to avoid the expansion of exp (- ny/d) for
small y, which quickly loses accuracy as y — \x increases.
These composite solutions contain terms of order e2 in the
velocity perturbations everywhere except in the edge regions,
where only terms of order es/2 are retained. At x=d a simple
interpolation formula is used to join the terms of order e2

obtained from the channel and near-field solutions, and
simple smoothing functions are introduced to eliminate the
discontinuities in higher-order terms.12

Lines of constant Mach number and pressures on an upper
blade surface are plotted in Figs. 3 and 4 for three examples
with circular-arc blades. For these profiles, the flow details
depend on six parameters: spacing, stagger, thickness,
camber, angle of attack, and Mach number. In the examples
chosen, the Mach number and the first three geometric
parameters are fixed, while the camber and angle of attack are
varied. The blade spacing measured along the straight line
through the leading edges is taken to be 80% of the chord, so
that (P+d2) 1/2 = 0.8; this is the reciprocal of the solidity. The
stagger angle tan ~l(d/t) is 45 deg. Upper and lower surfaces,
measured relative to the chord line, are defined by
e2fUtt(x)=-l/2e2&Ui((x-x2)/d; the thickness ratio
t/c=y*(A(-Au)e2/d is taken to be 0.035. The camber yc,
defined as the maximum displacement of the camber line
from the chord line, is given here by yc =
-(l/16)(Aw + A£)e2/d. In Fig. 3a, >> c=0; in Figs. 3b and 3c,

yc = y4t/c. For all cases the first term in the angle of attack is
e2oc2 = e2fu(d)/d= - 1/2e2Aw(l -d)/d. In Figs. 3a and 3b, the
second term e5/2a5/2 is chosen so that m2=0 and there is no
flow around the leading edges. In Fig. 3a, for symmetric
blades, the Mach number M0 is chosen such that the
"channel" part of the solution describes a flow which is very
nearly choked. This value, M0 = 0.815, is also used in Figs. 3b
and 3c. The maximum local Mach number, however, is
decreased in Fig. 3b because of the added camber. In Fig. 3c,
ct5/2 is chosen so that m2 <0, giving a downward flow around
the leading edge and an increased flow between the blades,
again approaching the choked condition.

In each of the cases shown in Fig. 3, the flow accelerates
over the front portion of a blade, and between the blades, in a
region containing the minimum "channel" cross-sectional
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,y + 1

, ta

d ^

£f u (d) /d+. . .

Fig. 5 Flow structure for cascade at low supersonic Mach number.

area, the flow resembles a channel flow. The minimum area
occurs at x«0.78 in Fig. 3a and at A:«0.64 in the remaining
cases. "Choking" occurs if 0 ;'(*), found from Eq. (11) and
negative for subsonic flow, increases to zero at this value of A:;
this one-dimensional condition was suggested for an un-
staggered cascade in Ref. 16. The addition of camber in Fig.
3b removes the near symmetry of the "channel" flow in Fig.
3a; the Mach number is decreased in the flow between the
blades and also somewhat upstream. In the last case the
decrease in angle of attack leads to an increase in mass flow
and therefore an increase in local Mach number throughout
most of the flow. In Figs. 3a and 3b the velocity perturbation
has a logarithmic singularity at the leading-edge stagnation
point; in Fig. 3c the inverse-square-root singularity associated
with flow around the edge is superimposed. All of the curves
shown in Fig. 3 represent second-order solutions. In Fig. 4,
results are shown for both the first and second ap-
proximations to the pressure coefficient at an upper airfoil
surface for the same three sets of parameters. The second-
order correction is seen to be largest in the edge regions, and
in fact seems to be a little too large near x=d, since a small
bump appears in each of the second-order curves near that
point. This irregularity appears to be primarily associated
with the manner in which the near-field, leading-edge, and
channel solutions were joined near the leading edge.12 There
are many possible ways to accomplish this joining, and it
should be possible to identify a rational procedure, consistent
with the goal of achieving correct asymptotic representations,
which leads to a smoothed form for the pressure distributions.
This refinement is still under study.

Finally, the flow properties can also be calculated at large
distances downstream. The flow direction is found by
equating the mass flow between two adjacent airfoils,
evaluated just upstream from the end of the "channel"
region, and the mass flow between the same two streamlines
far behind the cascade. The result for the streamline in-
clination angle 6f far downstream, measured positive counter-
clockwise from the x axis, is

K,K3/2t | (32)

where Kl and K3/2 are coefficients in the expansion of the
Mach number Mf far downstream:

Matching of channel, trailing-edge, and downstream outer
solutions gives

(35)
where A, =fu (!)-//(! -d), A, =//(!) -//(I -d); terms of
order e3/2 and es/2&ie have been grouped together for con-
venience. The coefficients ani are Fourier coefficients in a
series analogous to Eq. (18), obtained for the lower surface
for 1 -d<x<\. In the special case of a circular-arc airfoil,
/w(^)+/f(l -«0= ~ Y*(AU + A£)(l -d). The corresponding
downstream value of the pressure can be found from the
result for Mf. Thus the analytical solutions lead to relatively
simple approximate expressions for the overall flow changes
in terms of the various parameters.

IV. Supersonic Flows
At low supersonic speeds in the range M^-l=O(e), the

flow ahead of the cascade has a wave structure as sketched in
Fig. 5. The airfoil leading edges are assumed sharp, so that the
shock waves are necessarily attached, because the flow
deflection angle of order e2 is small in comparison with the
maximum possible turning angle when M2

0-\=O(e). The
characteristics are very nearly parallel to the shock waves,
intersecting the shocks only at large distances, and so the
shock-wave strength decreases slowly as>> increases. The flow
between two successive shock waves is nearly a simple wave
and flow properties are nearly constant along a characteristic.
For each airfoil a limiting characteristic separates the
disturbances which overtake the forward shock from those
which are overtaken by the shock wave to the rear. At this
characteristic the flow properties are the same as in the un-
disturbed stream. In a first approximation the direction of the
undisturbed flow is then the direction of a tangent to the
airfoil surface at the intersection with the limiting charac-
teristic. This is the direction of the straight line
y = e2[xfu(d)/d-a2x] =0; i.e., the average value of f'u(x)-
a2 for 0<x<d is zero. Outward wave propagation from the
cascade therefore influences the flow at large distances up-
stream and implies a "unique incidence angle" equal, in a
first approximation, to e2fu(d)/d. 1*13>14

Although each fluid element crosses infinitely many shock
waves, the entropy changes and the vorticity are small enough
to permit representation of the flow by the first few terms of a
velocity potential expanded in the form of Eq. (20); it is
shown later that the error is O(e7/2). Coordinates x and y are
again defined by Eq. (19), but with the upper sign used in the
definition of K [Eq. (1)]. The term e3/2j>3/2 describes a
linearized flow past the scalloped wall shape sketched in Fig.
2a and is found as a solution to the wave equation in the
region between successive shock waves:

»ct2 (36)

(37)

At a shock wave defined by

S(x,y)=x-xs(y)=0

(34)

the mass flow pq-vS/ \ VS | and the potential </> are con-
tinuous. If a jump is denoted by square brackets, these two
conditions become, respectively,

[p(u0 + <l>x-<t>yxf
s)} =0 (38)

[<t>y+Xs<t>x] =0 (39)

where p is the nondimensional density. Evaluation of the first
relation requires the expansion

(40)

The solution of Eq. (36) for 4>3/2 is easily shown to be con-
sistent with the largest terms in the two shock-wave jump
conditions.
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Since the variation in slope of the exact characteristics is
0(e), the displacement from the linearized positions is O(l)
when y = O ( e ~ ! ) , i-e., wheny = O(e~'/2). At these distances
the solution in terms of x and y must be replaced by a far-field
solution, obtained by an extension of the derivation for a
single airfoil.15)17 Convenient variables are

x=x — y

The potential has the form

(41)

(42)

Combining the shock-wave relations [Eqs. (38) and (39)]
leads, in the first approximation, to the familiar results that
each shock wave bisects the angle between the characteristics
immediately upstream and downstream and that the Riemann
invariant for any incoming characteristic remains unchanged
across a shock wave. Substitution of the expansion of Eq. (42)
in the potential equation (6) leads to a first-order differential
equation for <j>(3/2)X which states that <t>(3/2)x is constant along
characteristics dx/dy = K1/2\+ lA(y + 1)K-* 4>(3(2)x. The
solution which satisfies the proper matching condition as j>—0

where 0_ =f'u(X_) — cL2 and 0+ =f'u(X+) — ct2. For a given
airfoil surface y = e2 [fu (x) - ct2x}, 0<x<d, numerical
integration of Eqs. (47-49) allows calculation of the shock-
wave shape. By subtracting Eqs. (48) and (49), or by
evaluating Eq. (44) atX=X_ and atX=X+ and subtracting,
one finds also

2y(0+ -0_ ) =
4K3/2

~
7+7

(50)

Since X+ — X_ -+d as j>—>oo, the shock-wave strength as
measured by 0 + -0_ is proportional to l/y as j>-*oo. This
dependence on distance is equivalent to the time rate of decay
derived from nonlinear acoustics for one-dimensional
propagation of a sawtooth waveform.18

Another useful form is the expression for dX+ /dX_ found
by dividing Eqs. (48) and (49). In particular, for a circular-arc
airfoil dX+ /dX_ = - 1 and therefore X+ = -X_ . If the
shock wave in the original variables is given byx=xs(y-,e), the
slope becomes dxs/dy = (Ke)'/2 +o(e). That is, because of the
special geometry the shock waves remain straight for all.y, at
least to this order of approximation. The corresponding
pressure coefficient, if/M(x) = 2jc(l -jc), is found12 to be

(43)

where X = const along a characteristic and is defined in terms
ofxandy by

=0 (44)

so that x=x = X at the intersection of the characteristic and
the x axis. Thus in a first approximation u- const along

x_ i/2d_

characteristics X — const. An expression for *(3/2)y> needed if
a solution for <j>2 is also to be derived, is found by combining
the two shock-wave relations for <t>3/2 with a first integral of
the differential equation for <t>3/2, noting also that no
disturbances originate upstream. The result is

7 + 7 .
<>(3/2)x + ~^T

The shock waves are represented by

x-nd=xs(y;e)=xs0(y)

(45)

(46)

for /i = 0, ± 1, ±2, .... Since the shock-wave slope, in a first
approximation, is the average of the slopes of characteristics
immediately upstream and downstream,

dJCrt
4^3/2

(f'u(X+)+f'u(X_)-2a2] (47)

where the values X_ and X+ identify, respectively, the up-
stream and downstream characteristics which intersect the
shock wave at any given point. A pair of differential
equations for X_ and X+ as functions of y is obtained if Eq.
(44) for the characteristic curves is evaluated just ahead of and
behind a shock wave, differentiated with respect to y, and
then combined with Eq. (47):

K1'

circular-arc profile the pressure coefficient in the region
between two successive shock waves is a linear function of x at
any prescribed value of y — Xx, with slope which decreases in
magnitude as.y increases. The result of Eq. (51) is uniformly
valid to order es/2 for all.y >0.

These far-field solutions are consistent with the assumption
that the vorticity is of sufficiently high order to be neglected
here. The changes in pressure and entropy across a shock
wave are O(e3/2) and 0(e9/2), respectively, and are functions
of yi asy-~oo the changes are O(e3/2 /y) and O(e9'2 / y 3 ) . Each
fluid element, however, crosses an infinite number of shock
waves. Since the flow is periodic, the overall entropy increase
can instead be written as a summation of changes at points
along a single shock wave. The distance between successive
points is yn — yn_l =K'/2 eL As e— 0, the sum approaches the
product of (K l/2dt)~l and the integral of the entropy jump.
The overall entropy increase is therefore O(e7/2). The vorticity
is proportional to the entropy gradient and thus has
magnitude O(ep/2), so that the first term in the velocity
component u which cannot be found from a potential is
0(e7/2).

Higher approximations can also be derived. The second
term in the^expansion of <f> for y = 0(1) can be expressed by the
sum 02=^") +4>2

h), where 4>2 satisfies a nonhomogeneous
wave equation, 0^ is a particular solution, and <j>2

h) satisfies
the homogeneous equation. Here 4>2

P} can be taken to have
the form of Eq. (30), but with the signs of both terms
changed. It follows from expanding and combining the two
shock-wave relations that <^> then satisfies the proper jump
condition for the quantity <i>2x + <i>2y, so that <j>2

h) does not
contribute to this jump. Since also no incoming disturbances
are present at large distances, 0j|J and 0jj° are functions
only of x— y. The complete solution for $2 is

«2/« (x-y)

_d0_
dY

cLY+

4K3/2 \dX_V
7 + 7 7 dj?

4K3/2 \dX+

y+1 / dy

(48)

(49)

(x-y) {

7+7

(52)
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where the constants a5/2 and C are as yet unknown .^Since the
streamline displacement is periodic, the integral of 02jJ is zero
along a line y = const between two successive shock waves.
Matching the expansion of $y as j?-* 0 with the simple solution
for j = O(l), given by Eq. (16) with -K replaced by AT, leads
to the value a5/2 = (K1/2\/d) [fu ( d ) - d f ' u ( d ) } . The second
approximation to the unique incidence angle, expanded in the
form oi = e2a2 + e5/2a5/2 + .. ., is then given by

5'2 (K»\/d) (fu (d) -df'u(d) (53)

For this angle of attack the upper-surface ordinate
y= e2fu(x) - ax is zero, to order e5/2 , at the intersection of the
airfoil surface and the last Mach line x-d~(eK)'/2(y-?)
which passes ahead of the leading edge of the next airfoil (Fig.
5). U3'14 That is, Eq. (53) is the result that would be obtained
by expansion of e2a2 if d were replaced by d - (Ke) l/2L Since <#>
is continuous across shock waves and since the flow is
periodic in f, the value of 0 at a given y just behind one shock
equals the value of </> at the samej> just ahead of the next
shock. If the solution e3/2<j>3/2 + e24>2 + ... is expanded about
the positions of two successive shock waves, it is found that
the terms proportional to y cancel, and the value of C is

c=- fi(d)
2K2 d2 4K2d (54)

Expansion of 02jf as j?~*0 now permits matching with the
solution of Eq. (15) obtained for y=O(l), and the function
h2(x) in Eq. (15) is thereby determined. Terms of order es/2

and e2 in the pressure coefficient at the airfoil surface, for
0 <x < d, can then be calculated from

(55)

Finally, a second approximation for the far-field, if desired,
could be calculated by a straightforward extension of the
procedure of Ref. 15. Expansion of 02jf as y^oo would
provide the terms needed for matching with the far-field
solution.

V. Concluding Remarks
For the class of transonic cascade flows considered,

analytical results have been derived for the velocity
distributions throughout the flow in the subsonic case and
everywhere ahead of the airfoils in the supersonic case.
Overall changes in Mach number and flow direction are found
explicitly in terms of the parameters for the subsonic case. For
a given geometry, if the normal distance between airfoils has a
minimum between x — d and x- 1, no solution is obtained for
a range of Mach numbers including M0 - 1 because of mass-
flow limitations. A few example numerical results show
realistic trends, but no attempt has yet been made at a
thorough numerical study. Before this is done, it would be of
interest to study other limiting cases which would allow more
heavily loaded airfoils; moreover, some improvements are
needed in the numerical procedure used for the evaluation of
the analytical solutions.12 As the next step, however, it seems
most desirable to study an appropriate limiting case for three-
dimensional compressor flow, so as to understand in detail
the manner in which parts of the three-dimensional problem
may reduce to two-dimensional problems of the type con-
sidered here. Such a study is in progress.

Aside from providing results which can be valuable in their
own right, the analytical solutions have a number of other
potential applications. The pressure and Mach number
distributions allow at least a good first guess for use in

numerical solutions for flows through lightly loaded cascades
having blade spacing comparable to the chord. The predicted
distributions also help to identify the regions where large rates
of change are to be expected, and analytical far-field solutions
might be of use in the formulation of boundary conditions at
large distances. The explicit dependence on parameters shown
in the analytical solutions can perhaps allow extrapolation of
experimental results to other cases, or may suggest procedures
for correlation of experimental data. This might be ac-
complished through the use of similarity laws based on the
expressions derived for the overall flow changes. Finally, as
already noted, asymptotic formulations are also possible for
two-dimensional flows corresponding to other parameter
ranges and for three-dimensional flows. Additional analytical
solutions will contribute to improved understanding of flow
details. One of the ultimate goals, of course, is to provide
information for direct use in predictions of rotor per-
formance.
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