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Improvement of Normalization Methods for
Eigenvector Derivatives
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A theoretical method is developed for improving certain calculations for eigenvector derivatives in linear
systems. The subject algorithms are all forward analysis, i.e., the eigenvector changes are being driven by design
parameter perturbations. The new method emphasizes proper mass normalization and is most needed when
iteratively computing eigenvector perturbations within a reduced-dimension space. Previous schemes handled
the normalization task adequately only for the case of small mode changes because these schemes drop certain
terms from the governing normalization equation. When moderate ( = 10%) mode changes are evident, as in
iterative convergence difficulties or cases of moderate design variable changes, it is necessary to implement a
normalization scheme that considers higher-order terms. Two roots to the governing normalization equation
exist, only one of which can be used. Criteria for choice of the proper root are developed and a benchmark
problem is analyzed employing the new technology. Use of this normalization is required for moderate-change
algorithms and can improve existing small-change algorithms.

Nomenclature

[DY; = coefficient matrix in solution for {A¢],,
K] — N[M]

D = the discriminant, b2 — 4ac for the quadratic
ac’*+ba+c=0

[F] = matrix of {F}; column vectors

{F;} = static pseudoload driving solution for {A¢}; in
[D];i{A¢); = (F};

[K] = stiffness matrix; symmetric

[M] = mass matrix; symmetric

[on] = modal mass matrix, [®]7[M][®]; symmetric

o = scale factor for ith {A¢}

o = real part of a complex «; root, Re(e;)

af = imaginary part of a complex «; root, Im(x;)

A = perturbation symbol denoting exact change from
the baseline

[A] = diagonal matrix of eigenvalues arranged in de-
creasing mode number

N = jth eigenvalue (circular frequency squared)

[®] = matrix of {¢}; column vectors arranged in
decreasing mode number

{o}; = ith eigenvector (i.e., mode shape of structure);
solution to [K]{¢}; = N;,[M]{¢};; normalized
with appropriate [M]

Subscripts

exact = exact values computed through reanalysis

Fox = approximate values computed by Fox’s modal

superposition method
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High = associated with High’s linear normalization
method

simple = associated with the ‘‘simple’’ mass normalization
method

unscaled = values not yet normalized

VMN = associated with the vector magnitude
normalization method

Superscripts

0 = baseline values

1 = perturbed values resultant from design variable

change, e.g., ()' = () + A(Q)

Introduction

URING the last 20 years, there has been much research

on the subject of the eigenvector derivative. Surveys and
comparisons of the numerous methods for calculating these
derivatives are readily available in the literature.!? The papers
of Fox and Kapoor? and Nelson* have provided solutions that
are exact to first order (exact in the sense of the derivative,
i.e., for infinitesimal design changes). A distinction should be
made between the eigenvector derivative (3¢/0b) and the ei-
genvector perturbation (A¢). Here, we emphasize the pertur-
bation equations.

When dealing with complicated structures with many de-
grees of freedom, Fox’s and Nelson’s methods can be pro-
hibitively costly, and recourse is taken to iterative methods
using reduced eigenvector sets. Unfortunately, iterations on
eigenvectors can be poorly behaved since the proper mass
scaling of the eigenvectors varies with the perturbation to the
structure and since the stability of the iterations is much worse
than for eigenvalue iterations. The iterative modal method
proposed by High’ attempted to conquer these difficulties and
is currently in use in MSC/NASTRAN Version 66. It is from
a comparison study of Fox’s, Nelson’s, and High’s methods
that the following improvement in normalization has arisen.

For large systems, the computational time involved in the
calculation of eigenvector changes can be greatly decreased by
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reducing the dimensionality of the computational space, i.e.,
by truncating the full set of mode shapes to a reduced set of
the most important modes. Generally, the most important
modes correspond to the lowest frequencies of the structure.
Many of the higher modes require such high energy for excita-
tion that they contribute very little to the overall motion of the
system. By extracting only the first few eigenpairs, the cost of
the baseline analysis can be reduced dramatically.

Algorithms employed by the cited authors are based on
solutions of the following first-order equation for the pertur-
bation to the ith eigenvector:

(DY {Aag}i={F}; (8]
where
D1 =K -\ [M?]

(F)i=(ANIMO + N [AM] - [AKD (6°);

This equation is derived by perturbing the original eigenprob-
lem, canceling the baseline solution, and dropping all terms of
higher than first order in A. It can also be derived by taking
derivatives of the original eigenproblem equation, with the
same results.

Fox’s method uses a modal superposition for {A¢};, solves
for the coefficients, and gives exact derivatives (exact to first
order in A) when the full set of modes is used. Nelson’s
method eliminates the singularity in the equation by enforcing
the component of {A¢}; associated with the dominant compo-
nent of {A¢;} to be zero, i.e., zero change is enforced in the
largest component of the baseline eigenvector. It uses infor-
mation associated with the ith mode only and therefore loses
no accuracy when applied to truncated mode sets. It is also
exact to first order. High’s method does not use the full set of
modes, but still uses Fox’s method for an initial guess. Then,
by isolating the [K°{A¢ ]}, term, the equation can be used to
obtain new estimates of each {A¢};:

[A®)/+ ! = [K - (IM )[A®)/[A) + [F]) @

For iterations of this equation to converge, according to High,
mass orthogonalization and renormalization must be per-
formed periodically on [A®]. Note that orthogonalization and
normalization are separate tasks, the former handling the
condition that {¢'37[M'1{¢'}; =0( #/) and the latter pro-
viding for {¢'}][M']{¢'};=1. The work of this paper was
originally intended as a ‘‘fix”’ for High’s method since the
authors observed the tendency of the iterations to diverge.
Handling divergence is a task for normalization. Thus, this
paper rigidly enforces normalization, but not orthogonaliza-
tion (although this method does preserve orthogonality better
than competing methods). Although this paper’s improved
normalization method was originally devised to handle run-
away perturbations in the iterative modal method, it is cer-
tainly applicable to any of the methods cited earlier. High,
Fox, and Nelson all use first-order normalization schemes
that, although sufficient for small eigenvector changes, are
quite inadequate for moderate-to-large eigenvector changes.

Theoretical Development

At this point, it will be assumed that a {A¢;} vector has
been achieved through some nonexact means, such as High’s
iterative method, Fox’s (first-order) method, or Nelson’s
(first-order) method. This eigenvector perturbation must be
scaled such that the new eigenvector {¢!}; is normalized.
There are two different philosophies to choose from. First,
one could assume that the {A¢}; vector is a good vector, i.e.,
it points in the correct direction and it has not grown too large.
In this case, normalization could be achieved simply through
adding {A¢}; to {¢'}; and scaling the result according to
whichever normalization criterion is desired (mass normaliza-

tion, vector magnitude normalization, vector component nor-
malization). Call this the simple normalization method. For
the case of mass normalization, the condition is

({0} M Ui {9'} ) =1

which is easily solved for the scale factor:

1
st~ g T (1)

Unfortunately, it is quite dangerous to assume that the
eigenvector perturbations are well behaved, since certain al-
gorithms can give highly erroneous {A¢}; when moderate
design variable changes are prescribed. The second philoso-
phy, then, involves assuming that the {A¢}; vector is not
necessarily correct and then resolving to preserve as much of
the known baseline information as possible. This is accom-
plished by scaling the perturbation vector before adding it to
the baseline vector instead of scaling the sum. This is the
authors’ philosophy. The standpoint is that although itera-
tions should ultimately converge to good vectors, they may
start off erroneously and normalization must keep the errors
in check.

This paper concentrates on mass normalization, but in the
interest of completeness, vector magnitude normalization and
vector component normalization will be discussed in this para-
graph. For vector magnitude normalization, the inner product
of the eigenvectors yields unity:

(%7 (8%} = (0"} T (0!} =1

The current eigenvector {¢!};, is made up of the known
baseline eigenvector {¢°};, and a weighted contribution from
the calculated perturbation {A¢};, (we only scale the pertur-
bation in order to preserve baseline information and control
error). The inner product of the current eigenvector can be
written as

({¢°); + o {89} )T((¢°) i + i {Ap ) = 1
Expanding and canceling the baseline inner product, one has
a;(2{A0}] (6%} + i (A} ] (A0} ) =0

There are two exact solutions for the scale factor:

2{A¢}] (4%}

0,—
{Ad}] {Ad);

Siymn T

The trivial solution will usually be undesirable. For vector
component normalization, a certain component of the eigen-
vector is taken to be unity. This practice is popular in modal
testing. For this case, it is impossible to scale {A¢}; prior to
adding it to {¢°}; since the only solution for «; would be zero.
Thus, we would have to revert to the first philosophy, in which
the sum of {A¢}; and {¢°}; is scaled. Again, this procedure
would not control error in {A¢};. Comparing vector magni-
tude and vector component normalization to mass normaliza-
tion is not an easy task since they are very different. However,
when controlling error is the goal in calculating moderate-to-
large eigenvector perturbations, it will be stated that mass
normalization is more desirable because 1) mass normalization
is more physical since it enforces a unit kinetic energy condi-
tion, 2) vector magnitude normalization is a rigid condition
that allows little freedom in the perturbations (see the follow-
ing graphical representation of normalization and envision
coincident circles), and 3) vector component normalization
will not control error. k
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Returning to mass normalization, the key desire is to scale
the best estimate of the current perturbed eigenvectors with
respect to the current perturbed mass. For the /th eigenvector:

("1 M9} =1 &)

The correct approach when dealing with potentially erroneous
eigenvector perturbations is to scale the perturbation {A¢};
before adding it to the baseline {¢°};:

({6} + 0 { A0 ) )TIMIN({6°); + 0 {AB)) =1 @

Expand, collect terms, and use the symmetry of [M!] to obtain
(") IM'1{ "} + 20 { A0} ] [M'] {0°};

+of (A¢)] IM'1{A¢}; =1 ®)

Use [M'] = [M"] + [AM] in the first term and the fact that each
{¢°) is normalized with respect to [M? to obtain

{0917 1AM]{¢°); + 20, { AD} T [M']{0°};
+of (A0} [M']{A0}; =0 ©)
This is of the form

aOl,z-+bOl,‘+C=0 )]
where

a={As}]IM{Ad};
b=2{A¢}]IM']{¢°};
c= (¢} [AM]{¢°};

Note that o; = 1 is a solution when {A¢}7 is exact. Looking
at Eq. (4), it is evident that the left-hand side simplifies to the
left-hand side of Eq. (3) for an exact {A¢}; and for o; = 1. An
extraneous root still exists, however, which can be mistaken as
the correct root under certain rare circumstances (1 > extrane-
ous «; >0).

In solving for the «; value that satisfies Eq. (6), an analyst
could simplify matters by assuming small perturbations and
neglecting terms of higher than first order in A. This is what
High has done. The resulting scale factor is

o (O TIAMI (80 ®
Hieh T 2{A¢ ) IM1(4°);

When large mode changes are present, however, this causes

significant error and the full quadratic must be solved.

Although solving this quadratic {Eq. (7)] may seem simple
at first glance, problems exist in choosing between the two
roots for ;. If the roots are real and distinct ( >0), then they
will both satisfy the mass normalization criterion exactly, but
only one root will give the best perturbed mode shape. This
can be proven by reanalyzing the perturbed system (note that
with an erroneous {A¢};, neither root will give an exact mode
shape). If, on the other hand, the discriminant is less than
zero, a complex conjugate pair of «; roots exists. This can
occur because {¢°}; and {¢'}; are normalized to different
mass matrices (see the following graphical representation). In
the rare case that the discriminant equals zero, the roots are
repeated and no choice needs to be made. Hence, an investiga-
tion has been conducted to establish criteria for choosing
between two real o; roots and for handling complex conjugate
pairs when they occur.

A graphical representation of the normalization procedure
will be presented to better visualize what the different o; root
possibilities convey. The unit mass normalization of an eigen-
vector in R” space (n degrees of freedom) can be envisioned as
a centered vector with tip on the surface of an n-dimensional

ellipsoid. Any point on the surface of the ellipsoid represents
a state of unit kinetic energy for the structure when assuming
the motion of the /th mode. For our purposes, this will be
sketched as a unit circle in R? space without loss of generality
(the circles are clearer and demonstrate all possibilities). A
baseline eigenvector {¢°}; is normalized with respect to [MY)
and lies on one unit energy circle. The perturbed eigenvector
{¢!};is normalized to [M!] and lies on a different unit energy
circle. If both mass matrices are nonsingular, then no motion
can occur without generating kinetic energy and the origins of
the circles are coincident. It will be assumed for this graphical
explanation that this is the case.

If the perturbation to the system increases inertial resistance
to a particular mode shape, then less displacement will be
required in the perturbed eigenvector to make unit kinetic

Fig.2 Negative roots: rare case; exact normalization.

Fig.3 Complex conjugate roots: common case; approximate nor-
malization.

{Ao}

Fig. 4 Mixed roots: common case; exact normalization.
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energy and the circle for {¢'}; will be smaller than that for
{#°};. Likewise, if the perturbation to the system decreases
the inertial resistance to a mode shape, the {¢'}; circle will be
larger than that for {¢°}; because more motion will be re-
quired to make unit kinetic energy. The relative size of these
circles determines which o; root combinations are possible. In
the former case (increase in inertial resistance), pairs of posi-
tive real roots, negative real roots, and complex conjugate
roots are all possible. Which of these three possibilities occurs
is dependent on the orientation of the {A¢}; vector (Figs.
1-3). In the latter case (decrease in inertial resistance), only
pairs of mixed real roots are possible (Fig. 4). In the sketches,
dashed lines represent possible scalings of the vector.

Real, Repeated Roots

When the rare case of repeated real roots occurs (D = 0), it
means that the {A¢}; vector is tangent to the {¢!}; energy
circle. For this to happen, the {¢!}; circle must be smaller than
or coincident to the {$°}; circle. The resultant {¢!}; vector will
be orthogonal to {A¢};. For this degenerate case, choose
either root.

Real, Distinct Roots

When the roots are real and distinct (D > 0), the signs of the
roots dictate which choice for «; is proper (the proper choices
are shown in Figs. 1, 2, and 4). For a pair of positive roots,
calculations have shown that the smaller root gives the correct
mode shape; the larger root is always extraneous. When the «;
roots are both negative, the {A¢}; vector is pointing in a
completely erroneous direction and serious convergence diffi-
culties are indicated. The smaller magnitude root should be
chosen in order to control the error. When the roots are of
mixed sign, the choice is more complicated since there are two
competing factors influencing the decision. Usually, smaller
magnitude roots are better and positive roots are better, and
so a pair of mixed roots in which the positive root is much
larger in magnitude than the negative root presents a problem.
Two different criteria will be established for this mixed root
case. When the problem is well-behaved (as in direct solutions
by Fox’s or Nelson’s method or in iterative solutions that are
near convergence), we choose the positive root since the nega-
tive root contradicts the information provided by the {A¢};
vector, i.e., it is known that the {A¢]}; vector points in the
correct direction for the well-behaved case. When the problem
is poorly behaved (as in Fox’s method applied to a truncated
set or in iterative methods having convergence problems), we
choose the smaller magnitude root in order to control the
€ITor,

Complex, Conjugate Roots

When the roots are complex conjugates (D < 0), use of the
real portion as the scale factor is proposed (see Fig. 3). This
choice will not exactly satisfy the normalization criteria, but
since complex mode shapes are not appropriate in normal
mode analysis, it is the best available approximation. We will
attempt to gain some insight on the effect of neglecting the
imaginary part of the root through two different analyses.

First, we may rewrite Eq. (6) as a quadratic function that is
to be driven to zero through proper «; choice. When neglect-
ing the imaginary part of the root, exact equality of the real

z

N

JI 2 3 4 5 ¢
N S S S S

je—————1000 mm—’l

Fig. 5 Cantilever beam modeled with five elements.

50mm
100 mm

2L

function with zero is impossible, so there will be a real error in
the function:

Ula))=ac? +boy +c=¢
1

To minimize the error lel, we set the derivative of the function
equal to zero:

dU
—=0= Zaa,- +b
da,~
Thus,
b
;= ——
2a

minimizes the error. This corresponds with the real part of the
root from the quadratic formula. Note that this solution will
not maximize the error due to the nature of a quadratic form
with no real roots. Viewed graphically, the quadratic function
is parabolic and, since there are no zero crossings, must be
either concave up above the zero axis or concave down below
the zero axis. Only one extremum can exist and it will corre-
spond to the minimum distance to the zero axis. Viewed in the
context of the unit energy sketches (see Fig. 3), choosing the
real part of the root minimizes the distance from the center
point to the line of possible {A¢}; scalings.

The second analysis will attempt to track terms in the gov-
erning equations by splitting a complex «; root into its real and
imaginary portions. The root

o =af +iaf 9

was found exactly from Eq. (6) as part of a complex conjugate
pair. Substituting Eq. (9) into Eq. (6), one obtains

(%) [AM1(8%); + 2(a} +ia?)[A0)] IM'](4°);

+ (@i +2aja —ai?) (A6} IM'{Ad}); =0 (10)
This equation may be decoupled into real and imaginary equa-
tions, both of which are exactly satisfied by the root already
found. Looking at the real equation,

{0 TIAM1{0°%); + 20} {AD}T IM{¢°};
+ (a2 —a){Ad}] IM']{Ad}; =0 (11

it is evident that one only loses one term (the a2 term) in
neglecting the imaginary part of the root. This term is in
fact the error ¢ from the first analysis. Specifically, ¢ =
a’?{A¢p}T[M){A¢});. Thus, the normalization used in the
complex root case is still much improved over the cited linear
normalization approach [Eq. (8)], since Eq. (11) has the per-
turbed mass matrix [M] instead of [M?] in the second term
and retains the «}? portion of the third term.

Summary of Root Selection

The criteria developed for choosing the proper «; root are
summarized in Table 1, where the symbols in parentheses
denote the signs of the root pairs.

Benchmark Problem: Cantilever Beam in Bending

A simple five-element cantilever beam model (Fig. 5) is
proposed as a benchmark problem because analytical results
are readily available. The material constants are

E =2.0684%x10° MPa, »=0.3
p=7.8334%x10"° N s2/mm*
The motion is constrained to allow only xz bending, which

leaves a total of 10 degrees of freedom (z displacement and y
rotation—w and ©,—at each of five nodes).
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Table 1 Criteria for cheice of proper o;

D=0 D>0 D<O
(real, repeated) (real, distinct) (complex, conjugate)

choose (+, +): choose choose real part
either root smallest magnitude of pair

(—, —): choose

smallest magnitude

(+ s ) :

well behaved: positive
poorly behaved: smallest
magnitude

Table 2 Quality indices (design variable set 1, full modal set)

First mode Second mode
Norm. Acc. Norm. Acc.
q.i.2 g.i.b q.i.2 q.i.b
Minimum « root 1.0000 1.0000 1.0000 1.0000
Maximum « root 1.0000 0.2596 1.0000 0.6770
High’s linear 0.9977 0.9988 1.0005 1.0002
Simple mass 1.0000 1.0000 1.0000 1.0000

aNormalization quality index. ®Accuracy quality index.

Element stiffness and mass matrices are assembled and used
to find the baseline eigenpairs through the use of a MATLAB
program. This program then truncates the sets to the first n
eigenvalues and eigenvectors (an actual large system analysis
would extract only the necessary number of eigenpairs). The
truncated set of eigenvectors is then used as a basis for the
subsequent modal superposition analysis (herein called Fox’s
method). Upon prescription of design variable changes, one
computes new stiffness and mass matrices and Fox’s method is
performed to get an initial estimate for the eigenpair perturba-
tions. This initial estimate is generally greatly in error due to
the truncated set, and an iteration scheme similar to that
proposed by High must be performed. (Note that this ap-
proach should be faster than the standard Nelson’s method
for large systems.)

Full Modal Set

For the initial testing of the quadratic ¢; equation, all 10 of
the eigenpairs were retained. By doing this, Fox’s method
could give eigenvector changes that were exact to first order
and each resulting normalized {¢>1},-F°X could be compared
with the normalized exact eigenvector {¢'} iexar Fi8UTES 6 and
7 show the difference between choosing the correct «; root and
the extraneous root for the first two bending modes of the
cantilever beam. The exact perturbed mode shape {qbl},-exm
was computed through reanalysis, and the approximate
{¢!)ig,, perturbed mode shapes were achieved after scaling
{A¢}; by the minimum or maximum magnitude o; root. The
minimum magnitude root is seen to be the correct choice.

For a quantitative evaluation, an accuracy quality index can
be defined as {¢!}ip, [M']1{¢! }ioae and a normalization qual-
ity index can be defined as {¢'};., [IM'1{¢'}iz,,. The former
measures how closely the {d)‘},-Fox vector approximates the
exact perturbed mode shape, and the latter measures how well
the normalization task is performed. Any deviation from a
unit value in either index shows error in the {¢! }ipox APPTOXi-
mation resulting from an ¢; root choice.

The quality indices for the modes graphed in Figs. 6 and 7,
along with indices for High’s linear normalization and the
simple mass normalization, are shown in Table 2.

The important conclusion is that, although both «; roots
normalize exactly, only the proper root (here the minimum
magnitude root) will preserve accuracy. The linear and simple
normalizations are competitive when the eigenvector perturba-
tions are well behaved (full modal set). These results came
from beam element thickness changes (changes in the design

variables) of +19, —2.9, —9.0, —6.3, and —8.3% for the
five elements. Call these design variable scaling set 1. This set
corresponds to case 1, subcase 3 of the cantilever beam work
of Kim et al.® and gives real and distinct «; roots for the {A¢};
from Fox’s method.

For another design variable scaling, specifically — 19, +2.9,
+9.0, +6.3, +8.3% (design variable scaling set 2), complex
o; roots were evident in the normalization of the fourth
through eighth modes. These modes are instrumental in illus-
trating the use of the real portion of the complex conjugate «;
roots. The fourth mode (see Fig. 8) has «; roots of 1.1503 +
0.2357i, and so 1.1503 was used in the scaling of {A¢ }4. It was
chosen because its plot shows the largest mode perturbation
from the baseline of the four modes with imaginary o;. The
seventh mode (see Fig. 9) has o; roots of 0.5737 £0.7923i, and
so 0.5737 was used to scale {A¢},. This mode was chosen
since its «; roots have the largest imaginary part relative to the
real part of the four subject modes. The quality indices for
these modes are shown in Table 3.

The quality obtained in using the real part of the ¢; root is
good, but not quite as good as when there are real and distinct
o, TOOtS, since an approximation has been made in neglecting
the imaginary part of the root. Again, the competing methods
are just as good when the full set of modes is used.

Truncated Modal Set

With the criteria for alpha root choice established, let us
now apply this new normalization technology to a solution
involving a truncated set of modes, where large mode changes
can easily arise at intermediate steps due to the iterative nature
of the problem. For the benchmark cantilever, the first five
modes are retained in the truncated set. Fox’s method gives
erroneous answers for the eigenvector perturbations, which
are used as an initial guess in the subsequent iterations of Eq.
(2). For design variable scaling set 1, the erroneous [A®)]
evident at iteration 1, and the subsequent modal mass matrices
for High’s normalization, the simple mass normalization, and
the full quadratic normalization follow (note that the [A®]

...... 0
E {¢)
£ 1
Z (0 denace
-
§ o mina{q)l}Fox
©
o ° maxa[q)l]Fox
© -3
N
-6 . . . . 2

1 2 3 4 S 6
node number (1=base, 6=tip)

Fig. 6 First bending mode (minimum vs maximum root normaliza-
tion).

- {q)] ]exact
o mina {¢' ]Fox
o maxa [(DI ]Fox

z displacement (mm)

i 2 3 4 S 6
node number (1=base, 6=tip)

Fig. 7 Second bending mode (minimum vs maximum root normal-
ization).
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column vector components alternate between nodal displace-
ments and rotations and that mode 5 is the first column and
mode 1 is the last):

[A‘I’] unscaled =

[ 3.4650 —0.4620 —1.0201 0.5205 —0.1897]
-0.0736  0.0391 —0.0059 —0.0015 0.0018
13.327 —5.8881 0.2730 —0.0363 —0.3273
—0.0409 0.0117 —-0.0028 0.0056 —0.0003
25.367 —9.2314 —0.8336 —0.7605 —0.0932

-0.0596 0.0306 0.0091 0.0007 —0.0019
35.064 —16.545 —2.0368 —0.4246 0.3572
—0.0443  0.0335 0.0009 —0.0037 —0.0025

46.555 —20.751 —1.2949
| —0.0645

0.5230 0.8719
0.0152 —0.0056 —0.0051 —0.0026 |

The modal mass after High’s normalization is

[ 91.703 —23.897 —2.0388 —1.0689 9.4398]

—23.897 7.4222 0.5878 0.1072 —2.5240

[9] = | —2.0388 0.5878 1.0456 0.0406 —0.2205
—1.0689 0.1072 0.0406 0.9994  0.0090

9.4398 —2.5240 —0.2205 0.0090 0.9975 |

and the modal mass after the simple mass normalization is

1.0000 —0.8706 —0.1914 —0.1104 0.9708']

—-0.8706 1.0000 0.1932 0.0381 —0.8998

[ON]=| —-0.1914 0.1932 1.0000 0.0404 —0.2014
-0.1104 0.0381 0.0404 1.0000 0.0106

0.9708 —0.8998 —0.2014 0.0106  1.0000 |

but after a full quadratic normalization, the modal mass is
much better:

1.0000 —0.0625 —0.0118 —0.0185 0.1189

-0.0625 1.0000 0.0425 0.0058 —0.1543
[M]=| —-0.0118 0.0425 1.0000 0.0440 —0.1375
—0.0185 0.0058 0.0440 1.0000 0.0102
0.1189 —-0.1543 -0.1375 0.0102 1.0000
E
e I -~ A (¢
= |
§ [q) }exact
'g o Real(a) [q)I ]FOX

2 4 S 6
node number (1=base, 6=tip)

Fig. 8 Fourth bending mode [normalization by Re(a)].

- {q)l ]exact

a Real(a) [¢I }Fox

z displacement (mm)

1 2 3 4 ) 6
node number (1=base, 6=tip)

Fig. 9 Seventh bending mode [normalization by Re(a)].

Table 3 Quality indices (design value set 2, full modal set)

Fourth mode Seventh mode

Norm. Acc. Norm. Acc.
q.i2 q.ib q.i.2 q.i.b
Re(a) root 1.0010 1.0002 1.0152 1.0061
High’s linear 1.0014 0.9997 1.0196 1.0096
Simple mass 1.0000 0.9990 1.0000 0.9999
aNormalization quality index. PAccuracy quality index.
Table 4: Accuracy quality indices
(design variable set 1, truncated modal set)
Mode1 Mode2 Mode3 Moded4d ModeSs
High’s linear 0.9988 0.9997 0.9976 1.0048 0.9961
Simple mass 1.0000 1.0000 0.9789 0.4325 0.2058
Full quadratic  1.0000 1.0000 0.9896 0.9804 0.9812

Note that the modal mass matrix would ideally be the iden-
tity matrix. Normalization provides for unit values on the
diagonal, and orthogonalization provides for null values off
the diagonal. The diagonal values are in fact the normalization
quality indices discussed previously. It is evident that High’s
normalization is failing in the actual normalization task, since
some diagonal elements (normalization quality indices) have
grown large. The simple mass normalization performs the
normalization exactly as the diagonal elements are exactly
unity, but has lost the desired orthogonality in that some
off-diagonal values have grown large. This shows that the
simple mass normalization is not controlling error since the
baseline information has not been preserved. The full
quadratic normalization performs the normalization exactly
and retains orthogonality by preserving as much baseline in-
formation as possible. Examining the accuracy quality indices
in Table 4 clarifies the picture further.

High’s normalization and the full quadratic normalization
retain accuracy since they scale [A®] prior to addition to [$7],
whereas the simple mass normalization retains little accuracy
for the large mode changes since it scales the sum.

For design variable scaling set 2, complex «; scaling factors
were evident and the following data were extracted at iteration
2:

[A(P] unscaled =

[ —~40.993 —7.1956 —19.315 —1.2772  0.1380]

0.4204 0.0427 0.1943 0.0094 -0.0013
—146.22 —21.686 —71.960 —3.0535 0.2394
0.6244 0.1009 0.3184 0.0088  0.0002
—292.34 —43.913 —141.83 —5.5908 0.0484
0.7999 0.1174 0.3768 0.0169 0.0016
—456.94 —69.657 —220.89 —9.4925 —0.3233
0.8373  0.1401 0.4100 0.0216 0.0021
—628.09 —99.830 —304.37 —14.011 —0.7463
0.8648 0.1553 0.4201  0.0230  0.0021 |

L
The modal mass after High’s normalization is

108.21 —76.249]
1654.3 ~1177.7

[ 5840.6 90243  2237.3
90,243 1,395,481 34,563
2237.3 34563  858.17 41.467 —29.209
108.21  1654.3 41.467 2.9908 —1.4540

| —76.249 —1177.7 —29.209 —1.4540 0.9973 |

[on] =

and the modal mass after the simple mass normalization is

1.0000 0.9946 0.9994 0.8068 —0.9991
0.9946 1.0000 0.9937 0.7933 -0.9932
[M] = 0.9994 0.9937 1.0000 0.8068 —0.9986
0.8068 0.7933 0.8068 1.0000 —0.8298

| —0.9991 —0.9932 —0.9986 —0.8298 1.0000
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Table 5: Accuracy quality indices
(design variable set 2, truncated modal set)

Model! Mode2 Mode3 Moded4 Modes

High’s linear 0.9987 0.9355 1.1334 1.8647 0.9248
Simple mass 1.0000 0.5580 0.0364 0.1004 0.0144
Full quadratic ~ 1.0000 1.0277 1.0104 0.9968 0.9912

. 1 p, /S | {¢°)
E |
g [¢ }exact
£ . |
g o qu.advrat)c l[q) ]FOX
) -20 4 righ's {q) ]Fox
N o] o simple [(‘1)] }FOX
A
~-30 T T y -

! 2 3 4 5 6
node number (1=base, 6=tip)

Fig. 10 Large eigenvector change due to iteration wandering (fourth
mode).

_____ ()
g ¢
E 1
e [¢ }exact
]
% o quadratic [¢’ ]Fox
i
3 s tigh's {9'),
N v o simote {¢'],
a
-10 — — — v T
1 2 3 4 5 6

node number (1=base, 6=tip)
Fig. 11 Large eigenvector change due to large design parameter

change (seventh mode).

whereas, after the full quadratic normalization, the modal
mass is

1.0142  0.0542 —0.0305 0.0127 -0.0014

0.0542 1.0243 0.0404 —0.0233 0.0003

[M]=| —0.0305 0.0404 1.0351 0.0210 0.0046
0.0127 —0.0233 0.0210 1.0660 —0.0715

—0.0014 0.0003 0.0046 —0.0715 1.0000

Once again, High’s linear normalization failed in normal-
ization and the simple mass normalization failed in preserving
orthogonality. Looking at the accuracy quality indices in
Table 5, it is evident that High’s normalization retains some
accuracy, whereas the simple mass normalization shows ex-
treme inaccuracy for the large mode changes. The full
quadratic normalization did not work quite as well for com-
plex «; roots as it did for real «; roots, but still greatly outper-
forms the other methods when large [A®] occur.

Range of Applicability of Quadratic Normalization

The goal of this paper has been to present a fix to small-
change eigenvector derivative algorithms (e.g., High, Fox,
Nelson). These methods develop trouble when either iterations
begin to wander or when the specified design change grows to
more than +10%. The two sources of trouble are different

but the result is the same: eigenvector changes become too
large to handle for conventional normalization schemes. It is
important to know the range over which quadratic normaliza-
tion can control these two problems.

Quadratic normalization is very good at taming eigenvector
wandering during iteration. Examples already discussed (and
others not documented) have shown eigenvector perturbations
that are hundreds of times the normalized values (see the
unscaled vectors [A®],nscatea given earlier). These large eigen-
vector changes can be triggered by moderate (£ 10%) design
variable changes. Figure 10 shows that the quadratic normal-
ization can scale back the eigenvector perturbation in a typical
case, whereas the simple and High normalization methods fail
to control this perturbation. The unscaled eigenvector lies far
out of the figure. This case is for design variable set 1, for a
truncated modal set. The quadratic normalization appears to
handle such large eigenvector changes without limitation.

If large design changes are required (e.g., = 60%), however,
the underlying mechanics of the small-change algorithms are
lost. All of the normalization schemes studied (including
quadratic) perform poorly. Consider design variable scaling
set 3 where the perturbations for the cantilever beam elements
are (—61, +52, —58, +64, and —54%). For such large de-
sign changes, Fox’s method gives poor estimates of the eigen-
vector perturbations due to its first-order nature. Figure 11
shows a large difference between baseline and exact and the
scaling attempts of the three candidate normalizations (sim-
ple, High, and quadratic). There is no particular advantage to
the quadratic normalization.

To study the problem of large design parameter changes,
one must instead use both a nonlinear perturbation scheme for
the equation of motion and a nonlinear normalization. The
topic is involved, and the authors have written a separate
paper on it.” The proper normalization for large change in-
volves a cubic relation for the scalar factor «.

Conclusions

A new mass normalization procedure has been proposed to
make certain small change eigenvector derivative algorithms
more robust. The normalization controls large oscillations of
the eigenvector in iteration methods, and helps extend their
stable range to moderate design parameter changes (+10%).

Solution of the quadratic normalization equation for an
appropriate ; root has been successful. Criteria for choosing
between «; roots have been developed for each of the five
possible solution circumstances: positive real roots, mixed real
roots, negative real roots, repeated real roots, and complex
conjugate roots. With these criteria established, the procedure
was successfully tested for the case of large mode changes in a
benchmark cantilever beam problem. In comparison to the
full quadratic normalization, High’s linear normalization fails
in normalizing large changes since it has dropped terms from
the normalization equation. Furthermore, the simple mass
scaling is inferior in preserving accuracy and orthogonality,
since it does not control error. Thus, although little difference
is apparent between the methods when the eigenvector pertur-
bations are small, the full quadratic normalization is strongly
recommended when the eigenvector perturbations can become
large. ‘

The relative advantage of quadratic mass normalization
appears to diminish as design changes become larger, until at
+60% design parameter change, the various normalization
methods are equally poor. Well before this occurs, however,
one should reformulate the problem with a nonlinear pertur-
bation equation of motion as well as a nonlinear normaliza-
tion scheme. This topic will be considered in another paper.
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