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NEAR WAKE OF THE RAREFIED PLASMA FLOWS AT MESOTHERMAY, SPEEDS#*

V. C. Liu, Professor, and H, Jew, Assistant Regearch Engineer
Department of Aercspece Engincering
The Unlverslity of Michigan, Ann Arbor

Abstract

This paper discusses the plasms interaction he-
tween a negatlvely charged body and a tenuous plas-
ma stream, The mean free path of the lons 1s many
orders larger than the size of the body which 1s,
in turn, large compared with the Debye length of
the amblent plasma, The speed of the free stream
1s much larger than the fon thermal speed and yet
much smaller than the electron thermal speed, 'The
Vlasov-Polsson system of equations 1s solved by a
gself-conslistent method, The results of distribu-
tiens of the charged particles and field potential
in the near wake under wvariocus amblent plasma and
body environments are presented., Discussion of the
validity of an often-used hydrodynamle approxima-
tion for the ion density and Maxwell-Boltzmann dis-
tribution for the electron density is given, The
significance of the results pertaining to the
ionospheric gasdynamics of an orbiting satellite
1s discussed,

I. Intreduction

The launching of artificial satellites and
spacecrafts has brought to bear a new challenge to
the asrodynamicists. The motion of a conducting
body, e.g., a satellite, in an extremely tenuous
and icnized gaseous medium such as the upper lonos-
phere, permeated by the geomagnetic fleld intro-
duces many new aspects to the gasdynamic problem,
It is obvlicous that the Knudsen number of the flow
{ky = I/R) where R denotes a characteristic.length
of the moving body; ! the mean free path of the
ambient lons, is many orders larger than unity,
One is thus led to conslder the prohlen 1n the
light of the gasdynamics of free molecules. The
fact, however, that the free stream particles of
interest are electrically charged adds great com-
plication to the problem in hand, Consider a non~
charged metallic body moving in an lonized gas at
a glven temperature. The incldent flux of elec~
trons which on the average out~race the ions will
deposit & net amount of negative charge tc the
tody assuming both specles of particles are singly-
charged, The surface charges tend to repel the
electrons and attract the ions. This effeet leads
finally to an equilibrium state of the surface po~
tential®* (d.) such that the electron flux balances
the ilon flux In the charge input to the body. The
time constant for a satellite to attain such an
equilibrium state 1s extremely short, The fact
that the body Is charged and moves in a medium of
charged particles conslderably complicates the
state of the "free molecules," e.g., the motion of
the charged particles 1s now under the influence
of the surface potential as well as the spece
charge potential which, in turn, depends on the
motion of the charged particles themselves, It 1s
this coupling of the flield potential and the part-
icles that gives the new complexion of the lonos-

pheric geasdynamics. The development in & plesma

of significant electric and possibly magnetic
fields that exert & strong and frequently decisive
influence on 1ts motion 1s a fundamental feature of
ionospheric gasdynamies, dlstinguishing 1t from the
dynamice of neutral gases, This feature becomes
manifest to the fullest degree in the motion and
spreading of the free stream plasma into wake cav-
ity right behind a rapldly moving body.

In the above discussion, no specific mentlon is
made about the effect of an externally applied mag-
netie field which will exert on a moving charge an
additional force, the magnetic component of the
Iorentz forece on a charged particle. It is elso
noted that the presence of neutral particles in the
free stream 1s not considered, 'This stems from the
fact that in the dynamics of the collisionless
flows, the neutral and charged particles can be
treated independently.

This generalizatlion of gasdynamics to the plasma
flows ramifies the gmsdynamlc variables of interest,
The nev quantities include, among others, the dis-
tributions of field potentlal and charged particle
denslties In the disturbed plasma near the body, -
The electromegnetic consequences of the flow con-
tribtute to much of the apparent anomalous phenomena
peértaining to the electromagnetic seattering from
a satellite moving in the upper lonosphere, often
c¢alled the ghost radar cross section phenomenon
and the ionospheric plasma resconances monitored in
the satellite ionograms,l ete. In other words, the
erude approximations in the classical electromag-
netic theory which negleets the coupling between
the electromagnetic and the gasdynamic aspects of
the plasma flows needs refinement when the phys-
leal situatlion demands,

As a modest start on the investigatlon of the
Plasme interactlon, the present study limits it~
self to the steady state problem. Consequently
the interesting aspects of Instabllities,. wave ex-
cltations, ete., will be excluded. It is noted
that the dlsturbed plasma field near s rapidly
moving body can be convenlently divided Into two
sub-regional fields: +the sheath near the frontal
stagnation point facing the stream and the wake be-
hind the body. They are characterized as the re-
glon of condensatlion and the region of rarefaction
respectively., It is to the near wake that the

present study 1s directed,

IX. Physical Model

In order to gain physieal insight into the in-
teraction between the fleld potential and the
plasma particles associated with a rapildly moving
body we introduce an idealized physical model,
Congider a body of slize R with a constant surface
potential ¢ (dg < O = free stream field potentiel)

*Mis research was supported by NASA Research Gr: .t NSG-680,
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which moves in a rarefied plasma of singly-charged
particles, It is assumed that the free stream plas-
ma i1s in a bi~thermal equilibrium which has an
electiron tempersature Ty nol necessarily equal o
the lon temperature T4, Note that each specles of
particles is in thermal equilibrium by itself. This
quasi-equilibrium state prevails in the upper lonos-
phere vhen 1t 1s exposed to the direct solar radla~
tion, The free stream veloelty V with respect to
the coordinates fixed to the body is steady at a
mesothermal speed which lmplies that Cf << V << Ce
vhere C4 and Co denote the ion thermsl speed

(2XT4 /my )1/2 and the electron thermal speed

{2kTe /mg )1/, respectively. These conditions com-
ply with typical satelllte motlons in the upper
ionosphere,

The accommodation of the charged particles upon

‘collision with the body must depend on the surface

condition as well as the impact energy. For our
present purpose where the kinetie energy of the
incldent perticle is not more than s few electron
volts, 1t 1s reasonable to assume that an electron,
which collides with bedy, becomes absorbed; an ion,
neutralized.

In plasmi gynﬁmics, the Debye length d =
(kT /lre@ng ) / 18 an important characteristic
length which denotes the distance over which a
static electric cherge 18 screened by polarization
of the ambient plasma with denailty ng. We shall
further assume that the present model satisfies the
characteristic conditions: I 2> R >» 4 which com-
ply with the typlecal satelllte motions in the upper
ionosphere, As an illustration we may cite a sat-
ellite® moving with a speed V = 8 km/sec at an
altitude of 1000 km where T4 = Ton3000°K (Cy~ 2 km/
see, Cen350 km/sec), d = 1 emy £ = 8 km and Ion
larmor radius rq = 10 m. If the ion larmor radius
corresponding to the local geomagnetic field 1s
smal)l compared with R, 1t 1s expected that the wag-
netic field effect on the plasma disturbance In the
near wake would be negligible, The conditlon

2 >> R decouples the gasdynamle effects of the
neutral and the charged partlcles and makes it pos~
slble to treat the charged particles as collision-
free.

In the following analysis we shall use the
pormalized quantities; e.g., the linear displace~
ment r 1s in units of R; field potential ¢, iIn o
kTy/e {e = electron charge); velocity (2kT1/m1)l/ ;
pumber density njin n,ithe free stream electron
dengity. hat

III. Electron Distribution

The parameter (V/Ce)® can be considered as an
index for the comparison of the rates of genera-
tion end annihilation of the electron gasdynamle
disturbances as the body moves. Note that the
thermal speed indicates the capacity of randowiza-
tlon which tends to restore the partlcle motions
to thelr equilibrium state for a closed system,
The glven conditlions* ! >> R and Ce >> V make 1t
possible to ohtaln simple approximations for the
electron distribution in the followlng cases.

A. The Maxwell-Boltzmann Distribution

In the statistical mechanics of s thermal equi-

1tbrium stete, the distribution of the particles
ls governed by the Maxwell-Beltzmann law. Under
the condition V << Ug, the electron arrangement
can be approximated by the Maxwell-Boltzmenn dis-
tribution provided the detailed balancings of the
particle motions can be maintained. It 1Is noted
that an electron of sufficiently high energy can
reach the body against the repelling surface po-
tentlal and 1s lost to the system of the equilibrium
free stream without replenishment. Consequently,
the higher the value of the repelling surface po-
tential, the smaller the loss of the high energy
particles to the equilibrium system which is
governed by the Maxwell~Boltzmann distribution
ne = exp(¢gTy/Te) (1)
The_electron loss to the body has been esti-
mated.

B, Field-Free Approximatlon

When the field potential is uniformly small, it
i1s valld to approxiwate the electron distribution
as 1f they were neutral particles. The neutral
pertlicle distributlion in the wake can he obtained
from integration of the Maxwellian distribution
over the veloeclty space considering the intercept-
ion of the particles by the body which, for a
sphere,

Nsph

« L+ VIR )

and for e long cylinder,

(2}

ey = 5[+ Yi-(y@e2)™ ) (3)

when the free stream speed is negligibly small com-
pared with the thermal speed of the neutral par-
ticles. Adopting the Boltzmenn factor, we can ap-
proximate the electron distributlon In the wake

of a sphere,

(ne) Nagn exp(#T4/T,); (u)

sph

of a long cylinder,

(ne)cy]_ = Ncyl exp(ﬁTi/Te) (5)

provided that V << Ce apd |¢] << 1.

Although the above approximstlon appears reason-
able for bodlez with zere surface potentlal, 1t
turns out from the gelf-consistent analysis that
the fleld potential |#(r)] can have high velues in
the wake even with 4, = 0 as will be shown later.

IV. Bquatlons cherﬁigg the Ton Distribution

In view of the condition V >> Cq, the lon dis-
tribution in the wake 1s expected to deviate sig-
nificantly from itk equilibrium state., Under the
disturbance of the moving body, the lons willl
stream in space with variable accelerations which

¥The mean free path of the electrons is larger than that of the lons.
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depend upon the loeal £1eld potential. An adequate
coordinate system to represent the ion distribution
must be, at least, a six-dimensional phase space
(r,e). With a rarefied plasma where the binary col-
1tzIcns are negligible, the iom distribution £(r,c)
whlch represents the phase density 1n the phase
space 1s governed by the collislonfree Boltzmann
equation together with the Poissﬁn equation for the
field potentlal ¢(r) as follows:

c-(32/3r) - & (3¢/3p)-(3/3c) = o (6)
(&/R)%s8 = ne - ny (1)

where ngy = [fde, 'This system of equations, often
called the Vlasov-Polsson system, when solved sim-
ultaneously with appropriate boundary conditicons
gives the self-consgistent solution of the particle~
field distributions for a glven electron distribu-
tion ne{ﬂg).

The inherent mathematical difflculty of treat-
Ing such a system of coupled, nonlinear,K equations
has induced the use of varlous ad hoe approxima-
tions to decouple the system. One of the often-
used scheme 1s to approximate the ion distribution
as 1f they were neutral particles hence ignoring
the fleld effect on their motion. Eguation (7) is
then used to solve for the fleld potential ¢(r).
The invalldity of such pseudo-neutral approximation
to the near wake has been discussed and 1llustrat-

ed.2 Note that with the sheath, which iz sandwiched

between a mesothermal siream and e blunt body fac~
ing the stream, the fleld component most influen-
tlal to the lon motion allgns with the free streem.
Irasmuch as the field effect on the ion motion
which 4is assumed the same order as the fon thermal
speed 1s small compared with the free stream lon
speed and is Justifiably neglected, On the other
hand, with the wake where the cavity-filling ac-
tion 1e primarily attributed to the thermal wveloc-
ity normal to the free stream veloclty there is no
Justification for ignoring the fleld effect in com~
parlson with the thermal veloclity effect,

An approach which gives self-consistent solu-
tions for the ion denslty ny(r) S.nd the field po-
tential ¢(r) hes been introduced 3 and will be
used here.

V. Ton Distributions

In the self-consistent approach?;5 a formal
solution to Equation (6) for the fon distribution
f 1s obtained, It 1z then Integrated over the
veloclty space with approprlate limits to deter-
mine the ion density functiomal ni(f). Equation
(7), after substltution of ne(d) and ny(g), de-
comes a nonlinear, integro-differential equation
for the fileld potentlal ¢(r). The soluticn for
#(r) must be constructed which satisfies the
boundary conditions at the body and the free
stream,

To construet the formal solution for £ from the
collisionfree Boltzmann equation or Vlasov equa-
tion {6), we suppose to have en lon system s which
1s in steady stete. As the lons in the system

move, the corresponding phase polnts will describe
phase paths in the six~dimensional phese space

r,2). Equation (6) represents the fact that the
phase density is constant along the phase pathe, ¥
Withir a specific f = £(z,¢) solving Equation (6)
we can consider the fleld of directions defined by
the tangent vectors (¢, -+ 34/dr). This field of
directions 1s composed ofzthe tangents of 8 one-
parameter family of phase paths ir that surface,
called characteristics, whigh are determined by
the system of ordinary differential equation

-axfe = g/} (34/n) (®)

Any phase path solving the system of Equation (8)
1s called the a characteristic of the first order
quasi-linesr partial differential equation {6},
It 1o indeed obvious that Equation (8) is equi-~
valent to the equations of motion of an lon. The
integrals of Equation (8) wili give us the inte-
grals of motion of an lon, We shaell proceed to
evaluate thege integrals for the following poten-
tial fields of specific symmetry:

1, Axisymmetric £leld which 1s appropriate
for the wake behind a sphere or a circular disk
placed normal to the free stream, In this case,
Equstion {8} in vectorial form 1s expanded in terms
of the component phase coordinates ep, eg, Cy; Py
z (see the Insert in Fig. 1), Two of the iInte-
grals of motion which are easily obtalned are: (=)
the conservatlon of energy,

cg +eg +cE +4 = E (9)

where E denotes the energy constan£ of en ion; (b)
the comservation of angular momentum with respect
to the axis of symmetry (z},

peg = Iy (10)

where I, denotes the angular momentum of an ion.

A third integral is needed to determine the ion
orbit with given initisl conditions for the axisym-~
metric problem in hand, Equation (8) does not,
however, yleld a third Integral with & unlversal
constent of motion as in (9) or {10), To search
for a quasl~integral or locally constent of mo-
tlon, we simplify the integration by carryling it
out for small phase intervals during which the

local values of ¢p and cz are assumed quasi-con-
stant, thus obtaining

p = cpzfey + (Echp)-lff(aﬁfap)dpdz

- (2cpcz)"lI§'f p2dz = Ig (11)

Note that Iz 1s only locally constant.

2, Two-dimensionrl symmetric field (see in-
sert in Fig, 2) which is appropriate for the weke
behind s long ecylinder with axis slong x-direction
and the free stream along z~dirsction; or behind
e long strip placed In the x,y-plane, Here the

¥Tn statictical mechanics, 1t is known as Tiouville’s theorem,



equation (8) is expanded in term of the component
phase coordinstes Cys Gz ¥s 2 (see Fig. 2). Again
the relation of energy conservatlion 1s easily ob-
tained

c§ +eE+¢ = E. (l?)

Inasmuch a3 the conservation of angular momerntum
does not lead to a nontrivial relatlon, we must de-
velop a second Integral to determine the lon qrbit
witk given ipitial conditions for the problem In
question., Again, Equation (8) does not yield an-
pther integral with a universal constent of motion.
A search for a quagi-integral of motion with sim-
1lar procedure as in the axlsymmetric problem, l.e.,
by assuming cy and cg quesi-constanta, we obtain

¥ - cyzfeg + (Qcycz}-l If %% dzdy = Ip (13)

where Ip 1s locally constant,

It 1s noted th%t with the sssumption V >> Cy,
ve expeet that (c§, cZ, c?) << ¢ on the average.

The general solution of the partial differen-
tial equation (6) 1s an arbitrary function of the
integrals of the system of ordinary differential
equation (8).” We can thus comstruct the formal
solution £(r,c) as a function of the constants of
motion (9}, (10}, and (11) for the wake with an
axisymmetric field potential namely f(E,L,, Is)
behind a sthere; (12) snd (13), with a two-dimen-
sional symmetric field namely f£(E,Iz), behind a
long cylinder, Such an arbitray function £(E,I,
Is) or £{E,Is) would be of no interest to us un-
less 1t satisfies the boundary conditions prescribed
according to the physical conditlons of the prob-
lem in question. We shall determine the specific
functionsl forms of the ion distributlion £ for the
following physical problems:

A. Wake Behind e Sphere

Two physical requirements of the wake which
mist be satisfled are the undisturbed plasma state
at infinity and the lon neutralizing sphere sur-
face. Relative to a coordinate system fixed to
the sphere, the undistirbed plasms state at in-
finity lmplies that the lon distributlon function
at infinity is & Maxwelllan displaced by the free
stream velocity V, namely

ts = 1"3/2expl-P-(c,-V)2-¢] (14)

The ion distributlion at the plane z = 0 outside
of the sphere of radius R, which is large compared
with the thickness of the local sheath, 1s also
represented by (i4). On the body surface,

£(r,c)| = 0 (15)

rel,en > 0

vhere ep denotes the lon veloclty normel t¢ the
wall, :

A solutlon to Equation (6) which satisfies the
boundary conditions (14} and (15) 1s the follow~

ing

£ o= %’.(l+sign Flf, (16)
where6 sign-F =1 for ¥F >0 and sign ¥ = -1 for
F < 0., From the cordition (15) and the mssumption

[#1 << ¥&, 1t can be shown thet

F o= [p~cpz/cz] ~ 1 = 15+(22/p2)(12/E) - 1 (17}

‘Eg(l6) degenerates to the displaced Maxwellian &t
the free stream where § = 0. Note with the con-
gition 4| << V2 where |4! is of the order ms the
ion thermal energy, the £ given in {16) is s fune-
tion of the three integrals of motion (9), (10),
and {il),

B, Wake of s Iong Cylinder Placed Transversed to
a Plasms Stream

Following a procedure and approximstions sim~
1lar to those for the weke of e sphere, we obtaln
the jon distributlion in the wake behind a long
cylinder,

£ = %’-[1+sign Glf, (18)
where
G = ly-cyz/cz|—l = 12 -1 (19)
and
fo = nlexpl-cB~(cy-V) =) (20)

VI, Self-Consistent Solutions

A, Egustions of Field Potentlsals

The equation governing the field potential in
a wake 1s given by the Polsson equation (7) in
which the lon demsity ny{r) = [f(r,c)de.

l. Wake Behind a_Sphere

The number density of lons in the wmke behind
a sphere i3 obtalned by Integrating the dlstribu-
tion function (16) over velocity space, where the
velocity range 1s delineated by the condition
F =0 or

13+ (z2/p2)(12/B) -1 = o (21)

Equation (21), after retaining only linear terms
in ¢ in the integrals [[(34/3p)dpdz and [p~Zdz
which appear in Ia, la solved for c; to obitain
the limits of integration for ¢z. In performing
the integration for ny(z}, 1t 1s convenient to
conslder the cases p <l eand p>1 separately,>
For p <1
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2, Wake of a Iong Cyiinder

. The nwrnber density of lons in the wake behind a
cylinder which 1s tranversed to the free stresm (V)
is determined with a procedure and approximations
simllar to those for the wake of & sphere. For
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The substlitution of the ion density functlonal
in the Poisson equation will result in = partial
integro~-differential equation in the field ¢ which
must be lterated numerically to obtain a solutlon.

B. Tteration for Self-Conglstent Solution

The self~conslstent solution to the fleld po-
tential and ion density 1s obtalned by a speclally
deviszed numerical process of ‘successive iteration
(see Appendix). Briefly, the boundary velue prob-
lem of the field potential ¢ for the semi~infinite
wvake region Is mapped into a semi-circular region
by ccordinate inverslon. A special numerical anal~
ysis which combines the techniques of over-relaxa-
tion and alternating~direction-implicilt ifteration
is used to iterate the fleld potentlal equation
successively until a self-conslstent state is
reached.

VIT. Results and Discussions

The computed results of ion density, electron
density and field potential distributions from the
self-consistent solutions reveal some insights of
the field~particle interactiocns in the near wake,
We shall itemize them and discuss their signifi—
cances,

A, The Potentlal Valleys in the Wake

When a large conducting bedy (R >> d) with a
negative surface potential moves at a mesothermel
speed 1in & tenuous plasme {R << !}, it 1s expected
that both lons and electrons from the free siream,
will rush into the wake-cavity created by the
rapidly moving body. The electrons, on the aver-
age, move faster; consegquently the electron and
1on components of the plasma always tend to sep-
arate, This gives rise to an uncompensated elec-
tric charge which produces an internal electric
field (the space charge potential), the latter re-
tards the faster particles, namely the electrons
and accelerates the slov ones, 1.e., the lons thus
hindering the charge separation. As a result, the
inhomogeneous front moves and spreads with essen-
tially a common mean speed, immediate hetween those
of the 1ons and the electrons; the internal elec-
tric field exerts in this case a strong influence
on the particle motion as a whole in the near
wake. The potentiel valleys in the wake of =
sphere (see Flg. 1) and of a long eylinder (see
Flg. 2) are associated with the above-mentioned
fronts of electron-rich mixture, The potential
minimm forms a conically shaped surface hasged on
the spherical moving body in question; a double
wedge, on a two-dimensional cylindrical moving
body. It 1s seen from the figures that the depth
of the potential valley decresses as the body size
{R/d} decreases.

‘The presence of such potential behind a satel-
lite orbiting in the upper ionosphere suggests
the possible existence of trapped lons in the
valley.l The specific modes of cseillations of
the trapped@ lons and electrons, plus the electrom
cyclotron modes, if the geomagnetic field is taken
into aceount, appear to have shed light on the
anomelous oscillations cbserved in the Ariel T and
Alovette T and II sateliltes,



B, Comparison of the Approximations for Flectron
Distridbutions

It 1s recalled from the discussions in Section
III thet elther the approximation (1) or (2) for
the electron distribution is valld under restrict-
ing conditions. The results of self-consistent
solutions with electron distributions prescribed by
the two different approximatlions are compared (see
Fig. 3) ard show nontrivial discrepencies. Tt 4is
worth noting that in view of the presence of an in-
tense potential minimum, when R >> d, even with
vanishing surface potential, it appears more justl-
fiable to use the Maxwell-Boltzmann approximation
{1).

C. Gurevich's Approximation for Ton Density

In view of the tedious effort in obtaining a
self-consistent solution of & plasma wake, it would
pe desirable to have a simpler approximation with
reasonable acouracy. An fdea of approximating the
field effect on ion motion, first proposed by
Gurevich,2 1s worthy of further pursuit. Comparing
the free expansions of the charged and the neutral
particles into the wake-cavity, the difference
stems primarily from the lack of fileld action on
the neutral perticles, To estimate the Influence
of the field potential on the lons, one notes that
the field potential which 1s partly ceused by the
electrons tends to increase the jlon pressure., A
total pressure of k{neTe+niTi) to replace the ion
pressure kniT{ can be used with adventage to esti-
mate the ion denslty in the far wake using free
molecular flow theory of a neutral gas. Tt 1s of
interest to compare the results from such an ap-
proximation and self~-consistent solutlons of a near
wake (see Fig, 3)., Note that the approximation be~-
comes better for a bl-thermal lonosphere with
Te > T4 Hydrodynamic approximation'is also used,
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Appendix, Belf-Consigtent Solution by Iteration

The +wo baslc steps ineclude coordlnate inversion
in the unit circle and the iterative solution of
Poisson's equation.

A. Coordinate Inversion

We %transform Polsson's equation (7) from the
physical plane into the image plane by Inversion
defined by Equations (A.1), (A.2), or {A.3), and
{A.L)}, thereby converting the seml-infinite wake
domain into a seml-clrele image domain. For the
sphere wake, coordinates transform as {primed
quantities denote physical coordinates)

o = P andz = 2L (4.1}
p'2+Z'2 Z'2+012
and potential transforms aes
. 1/2
- ¥{p,z) = (pP+a2) / dip',z") (n.2)

vhere ¥ 1s the image potential and ¢ is the eleec-
tric field potential with coordinates related by
Equation (A.l}. For the cylinder wake, coordinates
transform as

Yy = Y angz = z (a.3)
y|2+Z12 gt *’Y'
and potential transforms as
Y(y,z) = ¢(y',z') (A.4)

where ¥ 1s the image potential and ¢ 1is the elec~
tric field potentlal wilth coordinates releted by
HEquation (4.3),

B, Tterative Solution of Polisson's EquationT

The nonlinear potentlal equatlons solved itera-
tilvely are, for the sphere

12
(d/R)2(02+22)5/26W e(p2+22) W_ni(w) (A.5)

vhere ny(¥) comes from Equations (22) and (23);
and, for the cylinder

(@/R)P (y2+22)°a = &V - ny(v) (A.6)

where ny(¥) comes from Tquatlons (24) and (25).

The calculation was carrled ocut numerically in
finite differences as a discretized Dirichlet
boundary value problem for the domain bounded by
pP+z? =1, 0 <z 1, and O < p = 1, with boundary
conditions ¥ = ¥g = constant on p?+z2 =1, ¥ = O
along O <p <1, and O/3p = Oalong O <p < 1,
for the esphere; and the domsin bounded by
¥+z2 =1, 0 <2 ¢, and O < ¥ <1, vith boundary
conditions ¥ = ¥y = constent on y2+22 = 1, ¥ = 0



along 0 <y <1, and &¥/3y = 0 along O < z < 1, for
the cylinder., 1In each case, sphere or c¢ylinder, to
begin the iteration, en Initial input W(o from
solving the Dirichlet problem for laplace's equa~-
tion AF = O, was ccmputedd3 Using these v(o) values,
initilal electron and lon densitlies were caleulated.
After this, lteration was carrled out on Polsson's
equation by a cowblned successive-~overrelaxation
and alternating-direction iterstive technique., The
solution ¢ for the electric potential was computed
from the converged imege potential ¥ by use of the
%nviﬂsion relations (A,1), (A.2), or (A.3), and
A4),

We shall now briefly describe the mathematics
of the solutlon method itself, Iet us record the
filve~polnt finlte dlfference equations for uniform
mesh h, For sphere wake, we have

(/)2 (26 /% (oo - 22 s - 2By e(avgony

2p

1/2
e(zeﬂae)o/ ¥

“¥5)) = B°[ng(¥g) - o] (8.7)

For cylinder wake, we have

(6/R)Z (22477 3 [ (2¥pmVa-¥a 4 (2Vo-¥1-¥3)} = 2201 (¥,)

- eq“o]
(n.8)

In Equations {A,7) and (A.8) subscripts denote
neighboring points,

In discretizing the Dirichlet boundary value
problem for Polsson's equation, we replace the par-
tial differential equation by a finlte difference
equation and we replace the region of interest by
a set of mesh peints in the region, In other words,
we solve g finite set of slmultaneous difference
eqguations instead of the partial differential egua~
tion,

The totallty of difference equations descriting
the discrete problem can be written as a vector
equation

Ay =2 (A.9)

In Equation (A.9) A 1is a square matrix vhose en-
tries are coefflcients in the finite differences
equation, the column vector ¥ denotes the unknown
vector whose components conslast of values of ¥ on
the set of mesh polnts, and ¥ denotes the column
vector whose components are boundary values of ¥
and net charge densitles computed from a previous
1terate,

An effective iterative method of solving the
wake potential problem In the above form 1s the
following., We split the nonsingular matrix A into
a sum of nonsingular matrices

A = D-E-~F (A.10)

This can always be done,? In Equation (A,10), D
denotes a diagonal matrix, E is a lower triangular
metrix, and F 1s an upper triangular matrix. Iet

I # D™1E and U = D*IF, Then 1% can be shown that

successlve overrelaxation Ilteration 1s defined by

y ) () (L0) Trat)y B s (T-0r) " 1p 1
%’A;n)

In Equetion {A,11), I denotes the ldentity matrix,
®w 1s an overrelaxation factor, and (I-a%)™t and D71
are nonsingular Inverse matrices., Associated with
a glven difference operstor, the nonsingular ma-
trix A has also the natural splitting

A = H+V (A.22)
vhere, for the sphere from Equation (A,7)
Bro - (/R0 (mhaity 4s)  (A.13)
and
Vo = (@R (e R/ - 2 yaray, - 288 )
{A.2h)
and, for che cylinder from Equation (A.8)
By, = (4/R)%(224y2 )2 {~y3+2¥5=Va) (A.15)
and
Ty = (@R (22?2 (yatig-ys) -~ (A.16)

Then 1t can be shown that an alternating-direction
iteration 1s defined by

E(m+1} - Po:‘{{m) + gyl2), m‘Z 0 (a.17)

vhere matrix P, and vector g,(y) have the defint-
tions

Py = (V4al)™*(al~E)(E+al) {aI-v) (A.18)

and

g(2) = (Vo) ' ({oZ-B)(Rol)"*+1ly  (A.19)

The nonsingular watrix Fy 1s called the Peaceman-
Rachford matrlix, where ¢ denotes an ascceleration
parameter,

The coupling of successlve overrelaxation to
alternating direction was done through introducing
the residuals from overrelaxation into the vector
&1(1) of alternating direction. This coupled pro-
cedure has been proposed as a method of attack on
the Dirichlet boundary wvalue problem in nonrec-
tangular regions for mildly nonlinear elliptic
difference equations, In each celculation in this



paper, the reglon was the Interior of a unit

for IC ELECTRON DENSITIES
quarter clirecle and the equation was Poisson's
equation governing the wake electric fleld poten-
tial dn the 1mage space. The uniform mesh con-
stant was h = .0k, 8
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