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ABSTRACT 

An atmospheric wind measurement technique has been develop- 

ed and used t o  measure w i n d  p r o f i l e s  over Cape Kennedy from ground 

t o  85 ki lometers .  The technique is  an extension of t he  Rocket 

Grenade Experiment u t i l i z i n g  as  its sound source,  ra ther  than a 

grenade, t he  acous t ic  no ise  of a rocke t ' s  exhaust. To determine 

t h e  wind p r o f i l e  from t h i s  continuous sound source, a s e t  of equa- 

t i o n s  has been derived and appl ied t o  measurements made during 

the  f l i g h t s  of severa l  Saturn vehic les .  The p r o f i l e s  agree w e l l  

wi th  concurrent measurements a t  lower a l t i t u d e s  (below 50 km.) 

and are cons is ten t  with atmospheric c i r c u l a t i o n  observations a t  

higher  a l t i t u d e s .  A prel iminary e r r o r  ana lys i s  indicates  t h a t  

t he  technique can be used t o  make measurements of s u f f i c i e n t  pre-  

c i s i o n  t o  be usefu l  i n  engineering and meteorological s tud ies .  

The research reported here  i s  supported by the NASA George 

C .  Marshall Space F l igh t  Center through Contracts NAS8-11054 and 

I.  Introduct ion 

The problem of measuring winds i n  t he  upper s t ra tosphere  

and above has received considerable  a t t en t ion  s i n c e  sounding 

rockets  have rendered these a l t i t u d e  regions accessible t o  d i rec t  

measurements. I n t e r e s t  i n  t he  winds comes p r imar i ly  from two 

sources. F i r s t ,  s ince  atmospheric motions are r e l a t e d  t o  thermo- 

dynamic q u a n t i t i e s  such as temperature, pressure and dens i ty  and 

s ince  they p l ay  a r o l e  i n  energy exchange processes ,  knowledge 

of these motions i s  e s s e n t i a l  t o  s c i e n t i f i c  understanding of t h e  

atmosphere. Second, atmospheric wind research h a s  gained tech- 

nological  importance because of requirements of aerospace vehic le  

research and development programs. 

The importance of atmospheric wind research is evident  f r o m  

the  many e f f o r t s  directed toward wind measurement. Among the 

experiments c u r r e n t l y  being used are :  Free lift bal loons,  such 

as the  double and t r i p l e  theodol i te  techniques, Jimsphere and 

rawinsonde; meterological  rocket  deployed sensors;  Robin balloon 

chaff  and parachute; t h e  Rocket and Sodium Vapor ex- 

periments. Each of these experiments has recognized a l t i t u d e  

range l imi t a t ions ;  i . e . ,  t o  measure the wind p r o f i l e  f rom ground 

t o  85 km. two o r  th ree  separa te  systems a r e  used .  

1 

4 

The Rocket Exhaust Noise Technique presented here  o f f e r s  

the c a p a b i l i t y  of economically der iv ing  wind p r o f i l e s  from ground 

t o  85 km. a l t i t u d e .  The technique i s  s i m i l i a r  t o  the  Grenade 

, NAS8-20357. 
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Experiment t o  the  ex ten t  t h a t  both a r e  based on the atmospheric 

temperature and m a s s  motion dependence of t he  ve loc i ty  of sound. 

I n  t h e  Grenade Experiment average temperatures and winds between 

adjacent  grenade detonat ions are determined by measuring the  t i m e  

required f o r  sound t o  t r a v e l  from a source of known p o s i t i o n  t o  

a ground based microphone a r r ay ,  and i ts  angle of a r r i v a l  a t  the 

a r r ay .  

When rocket  exhaust noise i s  used a s  a sound source, t he  

t i m e s  and loca t ions  of the many noise events  t h a t  cha rac t e r i ze  

the  exhaust are not  known. I f ,  however, t he  temperature is  

measured independently, then t h e  a r r i v a l  angles  of t he  noise  

events  can be used t o  determine Winds. A ground based a r r a y  of 

microphones i n t e r c e p t s  the acous t ic  wave f r o n t  of the noise  and 

the  t i m e  of a r r i v a l  a t  ind iv idua l  microphones is used t o  c a l c u l a t e  

a r r i v a l  angles .  The noise  event i s  t raced  back by an i t e r a t i v e  

process  u n t i l  it c o r r e c t l y  i n t e r s e c t s  the vehic le  t r a j e c t o r y .  

Each noise  event  so t raced  leads  t o  a wind da ta  poin t ,  g iving 

rise t o  a wind p r o f i l e  i n  a s t r a t i f i e d  atmosphere with the  aver- 

age wind i n  each l aye r  between se l ec t ed  noise  events. 

The assumptions made for  the approach described here are: 

(1) The v e r t i c a l  component of wind is negl ig ib le  compared 

with the l o c a l  speed of sound. 

(7.) The source of sound is  considered t o  he a p o i n t  located 

a t  the nozzle  of the engine or a known d is tance  behind 
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along the f l i g h t  pa th .  The sound wave i s  approximated 

by a plane wave a t  l a r g e  d is tances  from t h e  source. 

( 3 )  The atmosphere remains i n  a s teady s t a t e  for t he  dura- 

t i o n  of the measurement, i . e . ,  no changes wi th  respec t  

t o  t i m e  i n  t h e  wind v e l o c i t i e s  and temperature. 

The Experiment 

2 . 1  The Measurement 

A c ros s  shaped a r r a y  of nine microphones w a s  s e t  up on 

the  Southeast po in t  of C a p e  Kennedy t o  monitor launchings of space 

vehic les .  A minimum of th ree  microphones i s  necessary t o  determine 

the  a r r i v a l  angle of t he  sound, t he  add i t iona l  microphones provide 

redundancy and increased accuracy. 

The s i z e  of t he  microphone a r r a y  Shown i n  Fig. 1 is  

about 1200 meters along each a x i s .  This s i z e  was chosen t o  maxi- 

mize the  accuracy of t he  experiment with respect t o  two sources 

of e r ror :  

(1) Errors  which decrease with increas ing  a r r a y  s i z e  

introduced from f i n i t e  reso lu t ion  i n  reading 

a r r i v a l  t i m e s  and 

(2 )  Errors  which increase  wi th  a r ray  s i z e  introduced 

by the plane wave assumption. 

The microphones a r e  ho t  w i r e ,  s i ng le  chamber Helmholtz 

resonators  tuned t o  about 4 ,cyc les / sec .  

p a r t i c u l a r l y  w e l l  su i t ed  t o  extremely f a r  f i e l d  acous t i c  measure- 

ments s ince  the  atmosphere tends t o  be a low pass  f i l t e r  over long 

This l o w  frequency i s  
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d i s t ances .  The microphones w e r e  designed a t  Texas W e s t e r n  co l lege  

f o r  use in  the  Rocket Grenade Experiment. 

The microphones are s i t u a t e d  i n  heavi ly  vegetated loca- 

t i o n s  t o  minimize loca l  wind noise .  Each microphone i s  contained 

i n  a concrete  box, recessed so i t s  top is  l e v e l  with the ground 

sur face .  These boxes a l s o  serve  a s  permanent survey markers 

def in ing  the geodet ic  pos i t i on  of each microphone t o  within 6 

inches.  

The e l ec t ron ic  and recording equipment i s  housed i n  a 

van located near microphone 4 .  Although a loca t ion  near micro- 

phone 1 would requi re  a b o u t  2 1/2 m i l e s  less cable ,  i t  was con- 

s idered  des i r ab le  t o  keep the  van removed from the  a r r a y  t o  re- 

duce t h e  p o s s i b i l i t y  of r e f l e c t i v e  in te r fe rence .  

For the Saturn series of launches t h e  exhaust noise 

w a s  audible  t o  the  microphones from launch u n t i l  the vehicle  

was about 100 km. s l a n t  d i s tance .  Because of  the wide range of 

sound l e v e l s ,  a manually operated var iab le  a t t enua to r  was used 

t o  maintain the  proper s igna l  l e v e l  i n to  a magnetic tape re- 

corder .  Range t i m e  is  simultaneously recorded with the micro- 

phone outputs .  

2 . 2  Theory 

The theory and da ta  reduction can conveniently be 

t r e a t e d  i n  th ree  s t eps .  

1) Cross Corre la t ion  t o  determine a r r i v a l  t i m e s .  

2 )  Ray t r a c i n g  through l aye r s  of known temperature and 

wind. 

3 )  Solu t ion  fo r  winds i n  the unknown l a y e r .  

2 .2 .1  Cross  c o r r e l a t i o n  t o  determine a r r i v a l  times. 

In  the absence of l o c a l  i n t e r f e rence ,  t he  acous t ic  

wave f r o n t  of a noise  event appears e s s e n t i a l l y  i d e n t i c a l  t o  micro- 

phones a t  separated loca t ions .  I f  i d e n t i c a l  microphones are used, 

t h e  output wave form of one microphone matches t h a t  of  another - 
s h i f t e d  i n  time. The f i r s t  step i n  the  da t a  a n a l y s i s  is the cross  

c o r r e l a t i o n  of t h e  microphone output  waveforms t o  determine t h i s  

t i m e  d i f fe rence .  Fig.  2 is a typ ica l  record made a b o u t  55 seconds 

a f t e r  launch of Saturn SA-9. The time di f fe rences  can be read 

d i r e c t l y  from t h i s  type of record. 

The manual c ros s  c o r r e l a t i o n  from records  such 

as Fig. 2 i s  both ted ious  and sub jec t  t o  human errors. To avoid 

these  problems and to  permit rap id  reduct ion of t h e  data, the 

cross c o r r e l a t i o n  is  done automatical ly  on a d i g i t a l  computer. 

The data  from a l l  microphones are d i g i t i z e d  and a cross co r re l a t ion  

funct ion is  computed for each microphone pa i red  wi th  microphone 

No.  1. This funct ion  is  def ined as 

SLICE 
TIME 

where: R is the magnitude of the  c ros s  c o r r e l a t i o n  function 
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t '  is  t h e  time d i f f e rence  

N i s  a normalization fac tor  

1 2 
iv (t) & (t) are two time dependent microphone outputs 

SLICE TIME i s  a p re - se t  i n t eg ra t ion  time i n t e r v a l  

A t y p i c a l  p l o t  of R ( t ' )  is shown i n  Fig.  3. The 

magnitude of R a t  the p r i n c i p a l  maximum gives  an ind ica t ion  of the 

degree of match of the waveforms, u n i t y  meaning they a r e  ident i -  

c a l .  The t i m e  of occurance of the peak is t h e  time d i f f e rence  be- 

tween microphones. 

2.2.2 Ray Tracing Through Layers of Known Temperature 

and Wind. 

The time d i f f e rence  determined by the c ross  corre-  

l a t i o n  is  a funct ion of t h e  sound a r r i v a l  angle ,  speed of sound 

a t  t h e  a r r a y  and microphone placement. The' a r r i v a l  angles (or 

equivalent ly  the c h a r a c t e r i s t i c  v e l o c i t i e s ,  K and K defined a s  

the v e l o c i t i e s  of i n t e r s e c t i o n  of t h e  wave f r o n t  with t h e  X and 

y a x i s )  a r e  computed from t h e  time d i f f e rence  with appropriate  

co r rec t ions  f o r  microphones no t  lying p r e c i s e l y  on t h e  x or y a x i s .  

Since there  a r e  f i v e  microphones along each a x i s ,  four independent 

measurements of K and K can be made. This redundancy is  used 

t o  reduce random e r r o r s  and t o  c o r r e c t  f o r  deviat ions of t h e  wave 

f r o n t  from p lane .  

X Y 

X Y 

Milne' has shown t h a t  the wave normal of t h e  r ay  

reaching t h e  microphones remains p a r a l l e l  t o  the same v e r t i c a l  
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plane throughout i t s  propagation. For a plane wave then, the 

c h a r a c t e r i s t i c  v e l o c i t i e s  of a s p e c i f i c  sound ray a r e  constant .  

Since t h e  temperature and wind a r e  t r e a t e d  as constant  i n  any 

layer ,  t h e  segment of the sound r ay  i n  t h a t  l ayer  is a s t r a i g h t  

l i n e .  The wave f r o n t  i s  re f rac ted  a t  each layer  i n t e r f a c e  i n  a 

way analoaous t o  t h e  r e f r a c t i o n  of l i g h t  waves. 

i s  due t o  a change i n  t h e  speed of sound between layers .  Further 

r e f r a c t i o n  occurs i f  wind d i r e c t i o n  and magnitude a r e  not ident-  

i c a l  across  layer  boundaries. These considerat ions lead t o  an 

expression s i m i l a r  t o  S n e l l ' s  law: 

This r e f r a c t i o n  

W + V sec e = constant  (1) 

where: e is t h e  e l eva t ion  angle of t h e  wave f r o n t  normal 

V is the l o c a l  speed of sound 

W is the ho r i zon ta l  wind component i n  t h e  v e r t i c a l  

plane containing t h e  wave f r o n t  normal. The com- 

ponent of wind perpendicular t o  W simply d i sp laces  

t h e  ray along t h e  plane of the wave f r o n t .  

The constant  i n  (1) is determined from t h e  char- 

a c t e r i s t i c  v e l o c i t i e s .  I t  is numerically equal t o  t h e  character-  

i s t ic  v e l o c i t y  t h a t  would be measured along a ho r i zon ta l  a x i s  

p a r a l l e l  t o  W. If the measurements a r e  made along any o ther  two 

orthogonal a x i s  x and y 

1 1 - -  1 

(constant)  
2 -  2 + 7  

KX Y 
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These equat ions can be used t o  ray trace through 

l aye r s  i n  which the  temperature speed of sound and winds are known. 

Otterman has s impl i f i ed  the  ray  t r ac ing  ca l cu la t ion  by expressing 

(1) and (2) i n  terms of q u a n t i t i e s  e a s i l y  defined i n  Cartesian 

coordinates .  

3 

Fig. 4 shows t h e  r a y  t r ac ing  of a typ ica l  no ise  

event .  Since the winds have been computed from t h e  previous noise  

events ,  t h e  r a y  t r a c i n g  through l aye r s  def ined by these events  

proceeds according t o  equat ions (1) and (2 ) .  The coordinates  and 

t i m e  of pene t ra t ion  of the ray  a t  t he  top  of the l a s t  l ayer  are 

found by i n t e g r a t i n g  the effect  of the previous layers .  Above 

t h i s  po in t ,  conventional ray t r ac ing  procedures must be abandoned 

s ince  the wind is unknown.. However, two independent requirements 

are ava i lab le .  

1) The sound r a y  must i n t e r s e c t  the t r a j ec to ry .  

2) The c o r r e c t  i n t e r sec t ion  po in t  must s a t i s f y  

t h e  c r i t e r i o n  t h a t  t he  time of a r r i v a l  of 

t he  noise  event measured from launch equals 

t h e  time of f l i g h t  t o  the in t e r sec t ion  Plus  

the  time required f o r  the sound t o  t r a v e l  

from the  in t e r sec t ion  t o  the a r r a y .  

These t w o  condi t ions  uniquely determine the  coordinates  of the  

ScIJrce along t h e  t r a j e c t o r y  and the  average wind i n  the  in t e rva l .  

2.2.3 Solut ion f o r  Winds i n  t h e  Unknown Layer 

Fig. 5 shows the  a r r i v a l  of the jth noise event 
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s t  a t  t h e  top of the (j-1) l a y e r .  Since the  temperature and wind 

is  assumed cons tan t  i n  t h i s  region,  t he  apparent  source is  t h e  

cen te r  of a Sphere moving with t h e  wind. The d i r e c t i o n  cos ines  

of the ray  can be w r i t t e n  by inspec t ion  and are 

j-1 

The c h a r a c t e r i s t i c  ve loc i t i . e s  are 

K = - %+ + Wy + Wx = / E  
X & + Wx + W Y 6 / 0  Y D 

K 5 -  

simplifying t h e  w r i t i n g  by ' s u b s t i t u t i n g  

= j z 1 ~ x k  etc. 
k= 1 v = v  avgj; xo 

and remembering the traject:ory relates x .  y .  and z .  t o  T .  J J  J J 

The above equat ions can be rearranged t o  give 

F(K ,K , W  , W  , T . , t o , X o , Y o , ~ T )  = 
X Y X Y J  

( 3 )  
2 

(K -W ) (x.-W At.-x 1-W A t . - W  (y.+W At.-y = 0 
X X  J X J O  J Y J Y J O  

G (Kx ,Ky ,Wx , W y I  T j  ,to,, xo ,yo ,W = 

(4) 2 
(K -w ) (y,-w At.-y )+V A t . - W x ( X . + W  A t . - X o )  = 0 

Y Y  J Y J O  J J X J  

H ( K x , K  , W  , W  ,T . , t o ,xo ,YooV)  
Y X Y J  

(x.+W At.-x ) +(y.+W At.-y (5) 2 2 2 2  
+ ( Z . - Z  ) -V A t . 2  = 0 

J X J O  J Y J O  J o  J 
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The above r e l a t i o n s  F,G,H - 0 a r e  t h ree  equat ions 

i n  t h e  th ree  unknowns W W and T . .  The funct ional  dependence 

ind ica ted  i n  F,G,  and H. although no t  shown e x p l i c i t l y  i n  the  equa- 

t i o n s ,  i s  t o  be in fe r r ed  from the  previous r e l a t ions .  These equa- 

t i o n s  show only  the p r inc ip l e  of so lu t ion  and not  the method of 

computation. A flow c h a r t  d i sp lay ing  the computerized so lu t ion  

a f t e r  t i m e  d i f f e rences  are determined i s  shown i n  Figs. 6 and 7. 

111. Resul ts  

X Y  J 

Wind p r o f i l e s  have been determined using the Exhaust N o i s e  

technique f o r  the launchings of Saturns  SA-8, SA-9, SA-10, Ranger 

8 and Apollo Saturn AS-201. These wind p r o f i l e s  a re  presented 

i n  Figs .  8 t o  1 2 .  Also shown, i n  each case, are winds determined 

independently by o the r  systems on the  Same days. The agreement 

between the  d a t a  is  cons i s t an t  with t h e  r e s u l t s  of t he  e r r o r  

ana lys i s  of the Rocket Exhaust Noise Technique and errors in-  

he ren t  t o  the other systems used f o r  comparison. 

I n  the caaes  of  Saturns  SA-8, SA-9, and SA-10, winds w e r e  

measured up t o  first s tage  burnout which occured a t  approximately 

85 k m .  The sound l e v e l  a t  the ground f r o m  t h e  second s t age  w a s  

no t  s u f f i c i e n t l y  in tense  t o  be use fu l  f o r  wind data. 

I n  the  case of Ranger 8, the t r a j e c t o r y  was such t h a t  t h e  

vehic le  was 100 km. d i s t a n t  when it w a s  only 45 km. high. Thus, 

the sound faded i n t o  the background noise  l e v e l  before very high 

a l t i t u d e s  w e r e  a t t a i n e d .  

The AS-201 f i r s t  s tage  burnout occurred a t  about 60 km. and 

the  second s t age  d id  no t  generate  s u f f i c i e n t  sound t o  allow mean- 

i n g f u l  i n t e r p r e t a t i o n  of da t a .  

IV. Error Analysis 

Four e r r o r  sources have been considered. 

1. Error i n  the measurement of sound a r r i v a l  t i m e s .  This 

r e s u l t s  i n  errors i n  the derived values  of c h a r a c t e r i s t i c  

v e l o c i t i e s .  

2. Er rors  i n  the speed of sound p r o f i l e .  These can he i n t r o -  

duced from inaccurate  temperature da t a  or by the  f i n i t e  

amplitude e f f e c t .  

3 .  Uncertainty i n  t h e  p o s i t i o n  of t h e  noise  source with 

respect t o  the  vehic le .  

4. Errors  introduced from t h e  plane wave assumption. 

Inves t iga t ion  of  these p o s s i b i l i t i e s  has  shown t h a t  t he  error i n  

measurement of a r r i v a l  times i s  the  most s i g n i f i c a n t  con t r ibu to r  

t o  wind error by almost an order  of magnitude , t he re fo re ,  ana lys i s  

of t h e  o the r  sources  w i l l  be omitted from this sec t ion .  

6 

Equations 3 ,  4, and 5 can be used t o  determine the  magnitude 

The Jacobian of t h i s  system of equat ions of t h e  expected e r ro r s .  

is  

"W, "WY FT 

GW GT 2 Sy 'T 
X Y  
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where & is  denoted by Fw e t c  
a wX X 

Then 

e t c .  (7) 

The wind e r r o r s  caused by an e r r o r  i n  measurement of c h a r a c t e r i s t i c  

v e l o c i t y  ( a r r i v a l  t i m e )  is  then 

with a s i m i l a r  equation f o r  AW . Typical r e s u l t s  of computation 

of AW and AW are shown i n  Figs .  13 and 14. 

Y 

X Y 
Repeated reading of a r r i v a l  times e x h i b i t  a s c a t t e r  that  ind i -  

cates an uncer ta in ty  i n  the a r r i v a l  times on the  order  of 2 or 3 m s .  

The system parameters w e r e  chosen on the basis of unce r t a in t i e s  

of about h a l f  t h i s  value. This l a r g e r  e r r o r  is  a t t r i b u t e d  t o  

s l i g h t  d i f f e rences  i n  microphone c h a r a c t e r i s t i c s ,  d i f fe rences  i n  

local background condi t ions ,  and to poss ib l e  acoustic anomalies 

of t he  atmosphere. 

To the ex ten t  t h a t  these  effects are random they  a r e  reduced 

by use of t he  computer program for c ross  c o r r e l a t i o n  s ince i n  

t h i s  program the time d i f f e rence  between t w o  channels is  de te r -  

mined by an in t eg ra t ion  over a present  segment of the da ta  r a t h e r  

than from a s ing le  waveform c h a r a c t e r i s t i c .  

The use of h igher  f requencies  of the noise  spectrum o f f e r s  

the p o s s i b i l i t y  of increased p rec i s ion  i n  determining a r r i v a l  

times. Experimentation with w i d e  band microphones i s  planned t o  

evaluate  t h i s  p o s s i b i l i t y .  

V. Conclusion 

The agreement between the  wind 'prof i les  determined by the 

Rocket Exhaust Noise Technique and o the r  simultaneous measure- 

ments is  evidence of  t he  v a l i d i t y  of t he  acous t i c  technique de- 

scr ibed he re in .  

On the  basis of the e r r o r  ana lys i s ,  t he  maximum errors a r e  

estimated t o  be about  t20 m / s  a t  85 km. and decreas ing  t o  about 

?7 m/s a t  30 km. 

inaccuracies  i n  determining a r r i v a l  t i m e  and should  be reducible  

by the use of improved measurement and da ta  reduct ion  techniques 

These e r r o r s  are a t t r i b u t e d  p r i n c i p a l l y  t o  

A t  l oca t ions  where l a r g e  booster  rockets  are launched regu- 

l a r l y ,  a r a t h e r  modest ground s t a t i o n  can ga the r  wind da ta  from 

the  ground t o ,  i n  some cases, 85 km. These data  measured con- 

cu r ren t  with t h e  space vehic le  f l i g h t  have important  engineer- 

ing  value, and t h e  upper atmospheric wind p r o f i l e s  measured on 

a regular  basis would be an important supplement t o  the data 

ava i l ab le  t o  metero logis t s .  

-13- -14- 
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FIG. I :  T H E  MICROPHONE ARRAY AND COORDINATE SYSTEM 
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FIG. 3 TYPICAL VARIATION OF CROSS CORRELATION WITH TIME DIFFERENCE 
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FIG 4 GEOMETRY OF THE WIND EXPERIMENT 
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FIG. 5 THE ARRIVAL OF A NOISE EVENT AT THE TOP 
OF THE LAST KNOWN LAYER. 
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FIG. 8 a - 9  WINO PROFILE .- 
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FIG 10 SA-8 WIND PROFILE 
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