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1. Introduction

Contributions to the field of natural convection have
been relatively limited in recent years, due primarily to the
inherent complexity of the applicable non-linear differential
equations and the scantiness of important applications. Hovever,
high-speed digital computers have made practical the finding
of accurate enough numerical solutions, while important applica-
tions have come into being both in nuclear reactors and s-ace
technology, thus reviving the interest in the subject.

The present work considers a closed rectangular cavity
with internal heat géneration, cooled along a pair of vertical
side walls, and simulating the channels in an internally-cooled
homogeneous nuclear reactor. Although the experiment used water,
the theoretical analysis considers fluids of arbitrary Prandtl
number. A formal relationship between the apvlicable non-dimen-
sional parameters, following the one-fourth power law typical
of natural convection, was obtained. Good agreement between

experimental and theoretical remlts was found.

2, Theoretical Analysis

The conventional fluid flow equations of continuity, Navier-
Stokes, and conservation of energy, properly modified to include
a heat source term, provide the starting point. The following
assumptions arec made:

i) the fluid is quasi-incompressible, i.e., the density

is constant except for its temperature dependence in the body
force per unit mass term, where: F = - 543(T-T°).
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ii) internal heat dissipation by viscous forces is
negligible compared to heat source input.

iii) viscosity, thermal conductivity, and specific
heatiare constaht and evaluated for a conveniently defined
mean temperature.

Then*:
divvV =0

DV
—— - - - 1
o §B(T To ) ﬁ gradp*l/vzy_

DT 2r. K
ot KV T+ "y Q

The x-axis is vertical, and the geometry of the cavity such
that one of the horizontal dimensions, z, can be assumed infinite,

The equations are normalized by simultaneously making:

X = x!b’ y = y?a, v = g"
2 Kb

p=p'~@;V-l’:<—hE, Q=q'Q=q'i%-T4Nu,
a

where the primes indicate non-dimensional variables, givingl:

du dv
o2u 2.
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where the primes have been dropped for convenience.

Further simplifications are achieved by applying the
boundary layer approximation, i.e., assuming the gradients
of velocity and temperature in the vertical direction x are
small compared to the same gradients in the horizontal direc-
tion y. The approximation is improved when (%)2<< 1. The second

momentum equation (1) then vanishes, and the remaining equations

become:
E—E-l--év_ao
0x dy
l Du_a - d d%u
=0 "% Ra T aﬁ + = (2)
DT _ ORT
Uﬁ—s—y—z"'qnu

Following a procedure similar to Lighthillfs? although the
normalization method is somewhat different, the pressure can
be eliminated between eq.(2) and the same equation written at
the vall (y=1), where the boundary conditions are:v = u =0
(non-slip), and: T = Tw(x), Ty; being a known wall temperature
distribution. Then, for the steady-state case:

B0 (3)

y
[, du du) - & - .,.[931_1_ )
CT[ 5 + v'-—] t Ra(T-Ty) . (4

dy

2
B, A T, gy
u o + oy = e - q Nu (5)

These expressions are still complex. A previously successful

method2-5

is to integrate them across the cavity. Assuming
symmetry about the x-axis, i.e., velocity and temperature are

even functions, one has:

jzlu dy = 0
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1 du bzu
a _ ou o
% Raj; (T Tw)dy + [by byz]

o
'_J
e
)
&
I

1

1
o) JT
Yx{) ul dy ﬂ["av]l + q Nu

o

expressing respectively conservation of mass, momentum and

energy for the fluid fillinz each cross section of the vessel.
Following Lighthill2 again, the second derivative is elimi-

nated by writing eq.(4) at the center line of the cavity (y=0).

A term of the form é%-u(%%)y=o appears, which can be neglected

if Prandtl's number is large, or in any case by the boundary layer

approximation of small gradients in the x direction, and certainly

when the vertical velocity u at the cavity centa%kﬁf small. The

integrated form of the equations is then:

o-u dy = 0
1 1
20 (7 Ry =2 f du
G,,.bxj; oy =gl () @+ O
1
dT
%JE[;HT dy = (:o';;)l'i' q Nu J

To this point, the analysis has departed from the classical
work of Lighthillz only in a different choice of non-dimensional
parameters, the inclusion of a non-dimensional heat source term,
and the rectangular geometry. A modified Squire's method is
used now; whereby temperature and velocity profiles consistent
with the boundary conditions are assumed and substituted into
eqs.(6). Exper:mentally and intuitively there is a downward
moving boundary layer adjacent to the cooling walls, and an

upward moving core. The present experimental data indicate that

by and large the core temperature is a function only of vertical
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position, i.e., T¢ = Te(x), and in fact, the core is defined
here as that region over which the transverse temperature
gradient 1s zero. As substantiated by the experimental data,
the temperature profile has a maximum within the boundary layer,
and then decreases monotonically toward the wall, as shown

in figure 1. A suitable expression for T(x,y) can be shown to

belz
Tlxy) =7 +-H 7 T¢ (y-1) (y2 + Gy + H) (7)
Y= N T n(1-a)3

for d¢y <1, and wheré:r

G = G(d) = n(l-d) =~ 2d
H = H(d) = n(1-3d+2d°) + d?
n being a function of d to be determined. For Og y &d, the
temperature is corstant; thus:
T(x,y) = T (x)

The present work, then, differs from prior studies?™> by
the use of this maximum in the temperature profile. Experimental
indication of such a maximum had been observed previously by
one of the authors in cylindrical geomet;ry3 , but was not incor-
porated in that analysis, The maximum can be suppressed by
making n unity in eq.(7). The profile then reverts to a shape
similar to that used in earlier a.nalyses?-s but is not exactly
the same, being now a third degree polynomial:

Tw= Te
(1-d)3

T(x,y) = T,(x) + (y=1)(y2+ (1-3d)y+ (1-3d+3d?)]

The same general behavior has been previously obtained by a

second degree polynom:l.al%"5

T(x,y) = T (x) + (T, - Tc) (ﬁf
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The velocity 1s assumed constant and positive over the
interval O<y<€d, implying equal extent for thermal and fric-
tional boundary layers.fhysical arguments justify this assump-

1

tion™, although it contradicts an order of magnitude boundary

layer analysis., It has been used successfully in preceeding

6 for the

work2-5, and is also supported by numerical solutions
flat plate case.
The present data indicate the validity of the above assump-
tion within experimental error. Moreover, the data show that
a maximum also exists in the velocity function, as shown in
figure 2 (dotted lines). However, the analysis assumes the
simpler velocity profilel (full line):
Ogy<d : u(x,y) = r(x)
dsysl: ulx,y) = rfl -(E)Z[ws(y-l)]}
The longer a portion of the fluid remains in a certain
location, the more its temperature will be increased because
of the internal heat source. It is then reasonable to assume
that the location of the temperature maximum and the zero of
the velocity function coincide. The relation between n and d

is then found to be:

g = 19d+29-3y/3(1-d)(5d+11)
16(d+ 2)

By substitution of u(x,y) into the first : of equations(6),

af.expression for s(d) is found:

s(d) =T Zl'(d."z)
(d-1)
But now there are three unknown functions: d(x), Tc(x), and

r(x), with only two equations available. A third equation is

obtained3 by integrating the energy equation (5) over the
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central core only (-d<ys<d), and assuming that no fluid is

exchanged between core and boundary layer. Then:

da
%E £ uT dy = q Nu d(x) (8)

Substituting the velocity and temperature profiles into the
second and third of equations (6), and into (8), one obtains

after considerable amount of algebra:

%5 %E[rZM(d)) = % Ra(T, - To)P(d) + rR(d)  (9)
L [r(Ty-TeN ()] = (Ty-Tc)S(d) + @ Mu  (10)
4T¢ _ g Mu (11)
dx r

where the expressions for the coefficients depend dn the tempe-
rature profile assumed (see Table I).
These equations must satisfy the following boundary condi-
tions at top and bottom of the cavity:
To(l) = 1, Tc(-l) =0
r(tl) =0 (12)
d(t1) =0
The first follows from the definition of the non-dimensional
temperatures., The second is the non-slip condition, while the
third states that the boundary layer thickness must become zero
at top and bottom;’3’a. This is due to the reaquirement that at
either place the mixed-mean core and boundary layer temperatures
must be equal.
The heat distribution q is artitrary, the strength of the

source being proportional to the Nusselt number. However, for the



Temperature profile characteristics

Has maximum No maximum No maximum
n=1 2nd. degree
n¥l 3rd. degree polynomial
polynomigl
M(d) 3 a% + 114 + A
35 l-4d
37d+11-56n(2d+1) 5d+ 3 _ 2 (14
N(d) 420 n T28 15(l+ 2d)
(l-d)(4n=1) l-d l1-d
P(d) 12n L 3
R(d) 6(1+d)
(1-4d)?
s(d) 1*%2n 3. 2
; n(l-d) 1-d 1-d

Table I. Coefficients of the basic
equations corresponding to the different
temperature profiles.
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present work, uniform heat distribution was assumed (q = 1).
The wall temperature distribution can also be selected

arbitrarily, with the only restriction that T (-1) = 0, which

wl
results from the definition of non-dimensional temperature

gifferential, Only linear variations of Ty(x) were considered:
T (x) = 2=(x+ 1) (13)
w 2m

where m>l. The case m = @ corresponds to constant wall tempe-

rature.

3. Numerical Solution

The set of egqmations (9),(10) and (11) is too complex for
analytical treatment, but can be successfully attacked by
numerical methods. In the present cases, satisfactory solutions
were found using a fourth order Runge-Kutta integration procedure
in a 7090 IBM digital computer.

An additional difficulty is that the nurerical integration
can be started only if a well defined point is known. In the
case under analysis, the points x = *1 where the values of the
functions are given by the boundary conditions (12) are also
singular points. This difficulty was circumvented by replacing
the differential equations by a set of algebraic equations which
will provide an approximate solution valid only in the neighborhood
of x= 1, the accuracy of this asymptotic solution increasing as
x=1 is approached. The resulting equations are still complicated
enough to require iteration methods and a computerl.

For given Prandtl number and specified wall temperature
distribution,a value of Ra was selected and a reasonable corres-

ponding value of Nu assumed on the basis of experimental or



-lle=

previous numerical results. Starting from the top of the cavity,
the asymptotic solution, valid only about x=1, is used to
determine the initial values in terms of the input parameters
Ra, Nu, and m. The Runge-Kutta method is then applied, and
progresses toward the bottom of the cavity (x= -1). The incre-
ments selected for the independent variable x are very small

at the beginning of:the calculation, as well as when the bottom
is approached, and somewhat larger in the middle region. The
exactness of the solution is increased with decreasing values of
Ax, but by the same token the computing time is increased, so
that a suitable compromise must be made.

When the bottom of the cavity is approached, if the boundary
eonditions (12) are not satisfied within a preset value, the
Nusselt number is modified accordingly, and the computation
repeated starting again from the top.

Two types of solutions were analysed:

a) large Prandtl number: Considerable simplification is achieved

since the :‘left-hand side of eq.(9) can be altogether neglected.
This equation provides then an explicit expression for r(x),
which when substituted into (10) and(1ll),and also using (13),

gives a system of two differential equations in two unknowns:

%i(- % Ra(T“,- Tc)2 _P.(_;;)(_.zj)_d_)_]= (TVT" Tc)S(d) + Nu

d(Ty,- Te) .1 ., _bNuR(d)
dx 2n  a Ra(T,- To)P(d)

These equations were numerically solved following the procedure
described above, for values of m ranging from 1.5 to 1000. The
results, in terms of the non-dimensional parameters, are presented

in figure ) °
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b) Arbitrarv Prandtl number: The solution for arbitrary values

of U presents greater difficulties. The Runge-Kutta method
requires not only knowledge of an initial point , but also

that the equatioris-can be cast into the form:

[o )
i

= fl(x,d,Tc)
rt = f5(x,d,T,)
£3(x,d,T,)

-3
]

where the derivatives with respect to x are expressed as functions
of only the dependent variables . Tyis was accompiished after
some manipulatiohl.

The input parameters for the theoretical solution are the
Prandtl number U , characterizing the fluid, and m, fixing the
slope of the imposed linear wall temperature distribution. For
each pair of values 0, m, many pairs of corresponding values
of the non-dimensional parameters Nu and .'% Ra are calculated,
and in each computation, values of the. functions d(x), r(x), and
Tc(x) across the cavity were obtained. Values of 0 considered
range from 0,01 to 10.

The results are presented in two ways: i) in terms of the
parameter m, for fixed Prandtl number; and ii) for different
values of ¥ and given wall témperature distribution (i.e.,
fixed m).

For the first case, figures 3, 4, and 5, the curves refer
to large O (210), and correspond to a constant value of Ra.
then the wall temperature has large slope (m=1,5), the thickness
of the boundary layer is quite uniform far from the ends of the
cavity, and the core velocity r(x) also remains fairly constant.
As the constant wall temperature case is approached (m- o),

the changesiin boundary layer thickness become greater, with
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increasing thicknesses appearing toward the bottom of the cavity.
Core velocity varies in a similar mamer with m, while cdre
temperature is not so sensitive to changes in wall tempera-
ture distribution.

In the second set of curves, figures 6, 7, and 8, corres-

ponding to constant wall temperature and fixed Rayleigh:
number, the boundary layer thickness is rather constant for
large T , although it tends to increase toward the bottoni,
As 9 decreases, the trend reverses and the thicker parts of
the boundary layer appear close to the top. Core temperature
shows little change for different values of .

The following relationship amoncs the non-dimensional

parameters was found:

1
Nu = ¢(mJ) (% Ra) /A (14)

This expression not only verifies that the one-fourth power
law, known to be associated with other cases of natural con-
vection, is also valid for the present problem, but also
allows easy comparison between the present results and those
of other investigators; as shown in fig.9.

Theoretical results by Chuslindicate that Lighthill's2
"large" value of O is about 10, and for this value their
solutions coincide. Chu's solutions cover the range 0.,02< U € 10,
and apply to cylindrical geometry similar to Lighthill'sf but
there is no internal heat generation.

Previous work by Hammitt3:%s7 yas performed in closed
cylindrical geometry with internal heat generation. The

% Cylinder with reservoir on top.
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theoretical solution for large 0 agrees well with the solution
found in the present work 2lso for large T . For a given % Ra
value, both solutions show lower Nu than those found by Chu’,
Since the Chu and Lighthill solutions are in agreemént, and
Hammitt reproduced Lighthill's results in a closed geometry by
assuming the heat source to be an infinite ly
thin disc at the bottom of the cavity, it appears that the
reduction in Nu is due to the inclusion of the volumetric heat
source. Solutions for closed cylindrical and rectangular
geometries are almost coincident, indicating relative indepen-
dence on geometry.

Present theoretical/results for large and arbitrary
Prandtl number are also shown in fig.9. The solutions are for
constant wall temperature. For 0 >10, the lines are almost
coincident, althpugh the solution for O = 10 is still below
that obtained for "large" Prandtl number. This discrepancy
results from the use of different temperature profiles: for
the large g /iojéutsji%l}aliﬁed temperature profile was used, while
for the arbitrary Prandtl number solution a temperature profile
with a maximum was assumed, in accordance with the experimental
observations. Thus, significant changes in the results have
been brought about by the adoption of this more realistic tempe-
rature profile.

Values of the coefficient C(m,T ) appearing in equation
(14) have been calculated for different O and various wall

temperature distributions, as sumnarized in Table II.



aR2=

-
n ! %
0.01 | 0.1 1 6.58 10 00
1.#2‘ «1305
1okh .1338
1.47 -,08
1.48 1417
1. 50 01073 01‘"’*5
1052 011!-90
1.55 .1539
1.58 .1593
1.62 1654
1.63 .1665
1.78 <1344
1.86 «1411
1.95 1482
2.00 1537 «2072
2.02 01539
2.10 .158
2.20 ‘1852
2.25 21669
3.50 .2693
5.00 .2286
i AN
31000 | .1208 | .1820 |.2585 | .2815 | .2863 | .3k49

cim, ).

* correspond to the solution for "large" Prandtl number,



L. Experimental Results

A schematic and a photograph of the experimental facility
designed to verify the theoretical treatment are shown respec-
tively in figures iO and 1l. Essentially, it consists of a
rectangular cavity (24" high, 8" wide, 36" long) closed at
top and béttom and at the smaller vertical sides by pléxiglas
plates. The larger vertical. walls are 1/4" thick brass plates.
An A.C. voltage applied across these plates results in heat
generation in the cavity due to ohmic resistance. Heat is
removed from the cavity through the same brass plates, which
are also the interior walls of two vertical cooling tanks.The
fluid used was tap water, which provided sufficient electric
resistivity for the purpose.

An L-shaped probe 'electrically insulated from the fluid
except at the tip where a small thermocouple bead is located,
is inserted through the plexiglas top. Iﬁ can be moved verti.
cally and/or rotated to reach points from the wall to beyond
the center line and from top to bottom. The position of the
tip of the probe, in terms of non-dimensional distance, can
be estimated with an error not larger than % 0.01.

A complete temperature mapping of the eavity at power
levels ranging from 2.2 x 10-3 to Le3 x lO"2 watts/cm3 was
obtained. All temperature measurements, more than 2000 in
number, were very consistent and reproducible, and were
obtained with a precision of the order of % 0.05°F. Fig.l2
shows typical experimental results corresponding to Q =
1,02 x 1072 watts/cm3. The temperature profiles were found to

have in all cases the shape assumed for the theoretical
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a power level of 1,02 x 10-
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analysis, showing a distinct maximum within the boundary layer
region,

Curves To(x) for each power level were obtained, and are
presented in fig.l3, where the range of variation at a given
position has been indicated with a short vertical line, and a
single curve drawn across those lines. Non-dimensional core
temperature at all power levels are practically coincident,
and compare well with the theoretical curve, thus supporting
the underlying theory.

Semi~-quantitative velocity measurements were performed
by injecting a tracer into the cavity using a similar L-shaped
probe terminated in a hypodermic needle. Although these measure-
ments are not so precise as the temperature results, they do
compare well with results obtained by a o mpletely separate
experimental method (explained below) and with the values resultinz
from the theoretical analysis.

Fig.llh shows a tyvpical velocity profile obtained by the
injection method. Similar plots corresponding to other power
levels also show unquestionably the existence of a positive
maximum within the boundary layer and adjacent to the core,
which has not been previously reported in the literature, All
the theoretical analysesl‘s have been verformed using & velocity
profiles without that maxirnum. |

The second method of study of the wvelocity field consisted
of taking photographs at equally set time intervals, afte: nall
amounts of dye had been injected into the flow. From these
photographs, velocities were estimated and found to compare

well with the values:already obtained by direct timing of the
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dye motion. The photographs provide a permanent rccord of the
fluid motions, and show how these are affected by power level,
The sequence of photorraphs in Figa15* werce taken at a power
level of 6.6 x 10"3watts/cm3, and show that the flow is esential-
ly laminar throughout. In the boundary laver region, some very
slow eddying is observed near the bottom of the cavity, while
during the same time interval the small amounts of dye injected
in the core region have moved upwards without losing their
identity. As the power level is increased, some slow eddying
appears in the core near the top of the cavity, as shown clearly
in fig.lS*T corresponding to a power level of 1.96 x 1072 watts/
cm?, and as also detected by small fluctuations of large period
(about 20 sec.) observed in connection with the temperature measure-
ments. Arother effect of the increase in the value of the heat
source 1s to sharpen the maximun in the velocity profile,

Values of 0, Nu and % Ra were obtained at each power level.
Since T is temperature dependent, and the average temperature
within the cavity varies with power level, < was found to
range from 5 to 8, with an average value of 6.58. The other
input parameter of the problem, i.e., wall temperature distri-
bution, is also a function of power level. However, for all
power levels, T (x) shows a linear variation for the middle
part of the cavity (see Fig.l0), in agreement with the theoreti-
cal assumptions. The corresponding values of m range from 1l.75
to ﬁé.égnsequently, all experimental conditions are approximated
if the theoretical input parameters are selected to be T = 6,58
and m = 2, A computer calculation with these values vas perfor-

med, and the agreement between experimental and theoretical

results is excellent (see Fig.9). This good correlation is

Gy & =7.53, Ra = 1.15 x 10°, Nu = 13.3
(k) @ = 6,22, Ra = 4,33 x 10%, Nu = 16.L
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Figel5. Velocity meagurements at a power level
of 6,6 x 10~ watts/cm3,
G = 7,53, Nu = 13.3, Ra = 1L.15 x 108,
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Fig.1l6s, Velocity measyrements af a power level
of 1,96 x 10% watts/cml. 8
g o= 6022, Nu = léch, Ra = 11-033 X 10 *
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unexpected, since previous work? in a closed cylindrical cavity
with internal heat generation, as well as a study5 in a cylinder
with an infinite reservoir on top and no heat source, showed
discrepancies between theory and experiment. These discrepan-
cies, small when the fluid was water312 but large for the case
of mercury5, were attributed to turbulénce, which existing in
the actual experiment was not taken into consideration by the
theory. An experimental check of Lighthill's geometry by Martin
and Cohen8 did show good agreement for flow presumably in the
laminar regime. In the present work; the observed turbulence

was very slightl. Thus, the good agreement tends to verify that
the previous differences were due mainly to unaccounted turbulent

effects.

5 Conclusions

Natural convection flow in a closed cavity has been studied
both theoretically and expefimgntally. The theoretical analysis
follows the general lines of Lighthill's procedure, but differs
from previous work1'5 by considering arbitrary values o6f the
Prandtl number,as well as by the followine aspects: internal
heat generation in rectangular geometry, and temperature profiles
with a maximum. Extensive computer calculations verified the
existence of a relaﬁion (14) among the non-dimensional parameters
that follows the one-fourth power law,

The experimental program produced data in good agmement with
the theoretical analysis. Tyc temperature mappiné;ndicatesthat
a maximum in the temperature profile exists as assumed, while
the velocity results reveal that also the velocity profile

has a positive maximum, heretoforenot reported. The flow was



<3l

found to be esentially laminar up to & Ra ¥ 4.0 x 108, although
for values of % Ra larger than 2,9 x 108 some slow eddying
appears in the upper part of the rising central core and in
the lower part of the boundary layer.
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