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Abstract

The use of approximate models or metamodeling has
lead to new areas of research in the optimization of
computer simulations. Metamodeling approaches have
advantages over traditional techniques when dealing
with the noisy responses and/or high computational cost
characteristic of many computer simulations, most nota-
bly those in MDO. While a number of methods in the
literature discuss how to exploit the benefits of meta-
modeling approaches, one particular algorithm, Effi-
cient Global Optimization (EGO), is the focus of this
paper. Specifically, we look at the criteria used by the
algorithm to select additional points to add to the data
set used in fitting the metamodel. In addition to modifi-
cations to the original criterion, three criteria originally
proposed for use in infill sampling in the field of geosta-
tistics are explored. The impact of these criteria on the
search strategy of EGO is examined through several
analytical examples. In addition, several enhancements
to EGO are explored. Finally, a case study is presented
using a computer simulation to predict the fuel economy
of hybrid vehicles.

1. Introduction

As computer simulations become more complex and
computationally expensive, the number of function
evaluations required for optimization must be carefully
limited. To that end, researchers have explored the use
of metamodels, namely, simpler approximate models
based on data derived from running the original simula-
tions. After the initial expense of collecting a data sam-
ple, approximations can be constructed from a wide
variety of mathematical forms. In an optimization
framework the new model can replace the original one,
thus reducing the computational burden of evaluating
numerous designs.
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One particular algorithm used in this way is the Effi-
cient Global Optimization (EGO) algorithm developed
by Schonlau, Welch and Jones [7]. EGO takes an initial,
small data sample within the design space and fits a
kriging approximation model [6]. The approximation is
then used to select the set of points to add, the so-called
infill samples, that are most beneficial according to
some criteria. The sample is then updated, the model is
refit, and the process of choosing new points continues
until the improvement expected from sampling addi-
tional points has become sufficiently small. The results
presented here add only one infill sample at a time, but
the more general case applies.

This paper explores the strategy used for adding new
data points to the sample. EGO uses a generalized
expected improvement function whereby points that
have either low objective function value or high uncer-
tainly (i.e., model inaccuracy) are given precedence. A
single parameter, g, determines the balance between
them. Researchers in the field of geostatistics have pro-
posed three additional criteria for choosing the location
of additional sampling sites in the field. No studies to
date have shown how these alternative criteria could
impact an optimization algorithm such as EGO. In the
paper, we investigate the influence that the parameter g
and the choice of sampling criteria have on EGO.

This paper is organized as follows. First, the
expected improvement function is described based on
Schonlau’s thesis [10]. Next, three alternative infill
sampling criteria proposed by Watson and Barnes [11]
are reviewed. Four analytical examples are then pre-
sented to demonstrate the differences between the crite-
ria. Three small discussions follow highlighting various
aspects of the EGO algorithm that impact its interaction
with the sampling criteria. Finally, a simulation-based
example is presented and general conclusions are sum-
marized.

2. Generalized Expected Improvement

Let f2,  be the minimum sampled value of the func-
tion y = fix) after n evaluations where x is a vector of
input values. The response is treated as a realization of
a random function Y(x) that is assumed to have a Gauss-
ian distribution with variance s>. For simplicity, we will
leave out the dependence on x, notating the value y(x) as
y. Now we can define the improvement over the current

fx.’rl\in as
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I = max{0,f7, —v}. €))]
The expected improvement is then defined as
E(I) = Jﬁ " fin =)0y 2

—o0

where ¢( ) is the Gaussian probability density function
representing uncertainty about y. Using a generalized
least squares technique (kriging) to predict y, the
expected improvement can be computed as

~ ~

D = (fymn_b@(f@%s(p(&—“;ly) ifs>0 3
0 ifs=0

where ¢( ) and ®( ) denote the probability density func-
tion (pdf) and the cumulative distribution function (cdf)
of the standard normal distribution respectively.

Inspection of the expected improvement function
reveals two important trends. The first term in Equation
(3) is the improvement over f2., multiplied by the
probability of actually achieving that amount of
improvement. The second term is the square root of the
variance multiplied by the probability that y will be
smaller than 7, . Therefore, the expected improve-
ment function will be large for points x where the pre-
dicted value y is likely smaller than f?, and/or where
there is high uncertainty in the value of the prediction
itself. As the variance vanishes at the sampled data
points, the expected improvement will also vanish there.

One can force the expected improvement function to
search more globally by introducing a parameter, g.
Indeed, as g increases, the EGO algorithm tends to
search more globally around the design space. Defining
the generalized improvement as

E= max{O, (f;'m.n-y)g}, )
where g is a non-negative integer, one can define the
generalized expected improvement function using a
recursive formula. The derivation is found in Schonlau
{10] and the resulting formula is

4
2 = o ¥ D g e ©
k=0
where 2. = f@ and
T, = =00 B i)™ + (=D, ©)

starting with Ty = ®(f2, ) and T} = -¢6(f?;,). Unless
otherwise stated, it can be assumed throughout this
paper that the default value of g = 1 is used.

2

To demonstrate the impact of the parameter g, we
show in Figure 1 a one-dimensional example for the
ordinary Expected Improvement (EI) function, that is,
with g = 1. The w-shaped dashed line is the true objec-
tive function we wish to model, the solid line is the krig-
ing approximation conditional to the sample points
shown as circles. The light colored function at the bot-
tom is the EI function, normalized to make better com-
parisons across infill criteria.

One can see that expected improvement rises signifi-
cantly in only two areas. The one on the left is a region
where the data sampling is sparse, and thus the model
uncertainty is high. Indeed, the kriging approximation
is least similar to the true function in this region. The
region on the right is where the expectation of finding a
better objective function value is high. Again, the plot
justifies this interpretation.
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Figure 1: EI function for g =1

In contrast, with g = 5 the EI function rises more in
areas where the uncertainty is high than in areas where
the probability of improving on f2, ~is high. In Figure
2, the same test function is shown with the same set of
sample points. This time, however, the EI function
shows interest only for the area on the left, where model
uncertainty is high. For this iteration, the region on the
right has become seemingly unimportant. This illus-
trates that increasing the value of g shifts emphasis
towards searching the design space more globally.’
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Figure 2: EI function for g =5
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3. Alternative Sampling Criteria

Watson and Barnes describe possible criteria to
determine a set of locations for further sampling once an
initial set of data, S, has been collected {11]. Each crite-
rion attempts to solve a problem with a different objec-
tive, namely, (i) locate the “threshold-bounded”
extreme, (ii) locate the regional extreme, or (iii) mini-
mize surprises. They are abbreviated here as WBI,
WB2, and WB3 respectively. The mathematical formu-
lation for each of these criteria is given below.

3.1 Locating Threshold-Bounded Extremes

The goal of this formulation is to locate points which
maximize the probability that at least one of the infill
samples exceeds some specified threshold. While this
threshold was originally understood in the context of
contamination testing, one can easily expand the
thought to design optimization by using /7., as the
threshold. In this way, the merit function rewards points
that are likely to yield results better than the current best
sampled point. The mathematical formulation appears
as the cdf of the z-score statistic

~

WBI = @(m”‘——s;y) . M

WBI can be interpreted as the probability that y is
no greater than f7, and it is maximized. Notice that
this formulation is in fact the EI function with g = 0, and
is thus extremely local in its search. One must therefore
be fairly confident that the model has found the region
of the optimum for this criteria to be successful.

The behavior of this function is illustrated in Figure 3
for the same example as above. Again, there are two
peaks, but the one on the left is much smaller than previ-
ously. This reflects the fact that the criterion places less
importance on searching globally to improve model
accuracy than on locally improving the region where
predictions are most likely to improve upon f7; .
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Figure 3: Threshold-bounded criteria
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3.2 Locating the Regional Extreme

The second criterion attempts to minimize the
expected value of the smallest observation once the
infill samples have been added. The resulting formula is
remarkably similar to the EI function.

Y+ hin = NP i) + 50 ) if5>0
0 ifs=0

wB2 = { ®)

The only difference between Equations (3) and (8) is
the additional first term, the predicted value at the loca-
tion of interest. In this sense, this criterion gives slightly
more merit to locations likely to result in better objec-
tive function values than does the EI function.

In Figure 4, the differences between this criterion and
the EI function are made clear. While they strike a sim-
ilar balance between the local and global searching, the
WB2 criterion is smoother, because it does not return to
zero at the sampled points. Rather, it adds the predicted
value of the objective function and maintains continuity
in this example. This appealing trait is worthy of note,
as it may help in locating the maximum of the criterion.
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Figure 4: Regional extreme criteria

3.3 Minimizing Surprises

The third criterion attempts to minimize the maxi-
mum probability that a true value deviates significantly
from its predicted value after the infill samples have
been added. The term “significantly” is quantified by ¢,
the tolerance level. The mathematical formula is

min max {Ptl|Y(¥)~y(»)| >1|81}, )

x v
where x is the candidate infill sample point of interest, ¥
is a generic location in the design space, Y(v) is the ran-
dom variable at the unobserved location v, and y(v) is
the predicted value there. The S appearing on the far
right side indicates that the probability of the error
exceeding ¢ is conditional to the sample set, S. Watson
and Barnes note that a simplification is possible.
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Because the probability is an increasing function of the
conditional variance, one may use the formula

WB3 = min max {Var[Y(v)|S and x]} . (10)
x v

Notice that the variance is conditional to both the sam-
ple set, S, and the candidate infill samples, x. One can
compute the variance of Y(v) in this problem because
the updated variance (i.e., the variance of the model
once the candidate infill samples have been added) is a
function of the locations of the x only, not their values.

This minimax problem within the original design
optimization problem adds significantly to the total run
time. Thus it is best suited for problems where the
objective function is extremely expensive to calculate,
and function evaluations must be rigorously conserved.

There are several other difficulties associated with
this criterion. Consider Figure 5. Using the same sam-
ple, it was necessary to use a log transformation as WB3
varied by four orders of magnitude. Notice also that the
criterion returns to its minimum value at each of the
sampled values. This is as expected, because the vari-
ance would not be improved anywhere in the design
space if one were to just resample an existing point.

Another characteristic worth noting is the somewhat
flat distribution of WB3. That is, the peaks are roughly
the same height due to the minimax behavior of the cri-
terion. Watson and Barnes observe that WB3 would be
flat in spots when there exist some distance beyond
which two points are uncorrelated. If there are areas in
the design space which are not “covered”, adding infill
samples far from this area will not improve the maxi-
mum variance in the uncovered area. This is the cause
of the relatively flat region on the left side of Figure 5.
Worse yet, if the design space would not be covered
even with the additional infill samples, then the maxi-
mum variance remains constant regardless of where
infill samples are taken and the WB3 function becomes
flat. These characteristics could cause serious difficul-
ties in computing the maximum of WB3.
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Figure 5: Minimizing surprises criterion

4. Analytical Examples

In order to assess what effect the various criteria have
on the search progress of EGO, four analytical examples
are shown: a one-dimensional, a two-dimensional, and
two constrained two-dimensional functions. Test prob-
lems with a small number of variables were chosen for
better visualization. Readers are directed to Schonlau
[10] to see how EGO works with problems of six to ten
design variables. Problems with a large number of vari-
ables may be solved using metamodels in a decomposi-
tion strategy [3]. We begin this section by describing
each of the functions used in the testing, then describe
the comparison methods and report our findings.

Example 1; One-dimensional function

The first test was created specifically for this work,
comprising a one-dimensional function with two local
minima, one just slightly better than the other. This is
intended to be the simplest solvable problem that could
still fool some algorithms. The multimodal nature of the
function would defy local optimizers, and the fact that
the local minimum is only slightly worse than the global
minimum is intended to cause difficulties for EGO.

Example 1 is indeed the same function used in the
illustrations of the previous two sections. The function,

f=-sin(x) - exp(x/100) + 10, (11)

is defined over the range x = [0,10] and is shown in
Figure 6. The local minimum of 7.9841 occurs at
x = 1.5810, shown as a circle. The global minimum of
7.9182 occurs at x = 7.8648, shown as an asterisk.
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Figure 6: One-dimensional function
Example 2: Branin function
The second example is the Branin test function, taken

from Dixon and Szegd [2]. The function

- 3155 2 1
f= (xz— 4n2x1 + o —6) + 10(1 - 8ﬂ)cos(xl) + 10 (12)
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contains three local minima at x = {3.1416, 2.2750},
x = {9.4248,2.4750}and x = {-3.1416, 12.2750} shown
as asterisks in Figure 7. They have identical function
values of 0.3979. This problem should test EGO’s abil-
ity to find local optima of equal value.
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Figure 7: Contour plot of Branin function

Example 3: Two-dimensional function

A sinusoidal constraint is placed on a multimodal
function in two dimensions for the third example. The
function takes the form

f=2+0.0100x 2% + (1-x))% + 2(2-x0)* +
2741 1

7sin(0.5x)sin(0.7x;x7) (13)
with the constraint function
g = -sin(xy-x, - T/8). (14)

The function is defined over the range x; = {0,5],i=1,2
and the constraint is active at the true solution. Because
of the multimodal behavior of the function, several local
minima appear along the constraint boundary, but the
global solution has a value of -1.1743 at the point
x = {2.7450, 2.3523}. Figure 8 below shows the con-
tour plot of the objective function and constraint bound-
ary (the diagonal lines). The hash marks indicate the
infeasible side of the constraint. The unconstrained and
constrained minima are shown as the circle and the
asterisk respectively.
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Figure 8: Contour plot of Two-dimensional function

Example 4. Gomez #3 function

The Gomez #3 test function, taken from Gomez [5],
is a difficult example because of a constraint that cuts
the feasible design space into several small islands. Its
objective and constraint function are

= (4 -2.1xf+ %x‘f)x% + X%y + (=4 + 4x3)x3 (15)

g = - sin(4mx,) + 2sin?(2mx,) . (16)

In Figure 9, the objective function is shown in solid
lines, and the islands of feasible design space lie inside
the dashed circles. There is obviously a local optimum
within each feasible island, but the global optimum lies
atx = {0.1093, -0.6234} with a value of -0.9711, shown
as an asterisk.
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Figure 9: Contour plot of Gomez #3 function

4.1 Comparison Metrics

Comparisons of the infill sampling criteria are made
difficult because there is no rigorous convergence crite-
rion for EGO. A stopping rule proposed by Schonlau
[10] suggests one should stop searching once the ratio of
the expected improvement to the current best sample
value becomes sufficiently small, say 0.01. However,
this stopping rule no longer has meaning once the alter-
native infill sampling criteria are employed. Thus, each
test is stopped after 100 function calls have been made.
Then, instead of looking only at the number of function
evaluations required to convergence, several other com-
parisons are made. In all cases, lower values are better.
* Function calls to x;q,: The number of function calls

required before a point is sampled within a box the

size of +/- 1% of the design space range centered
around the true solution.

* Function calls to f;4,: The number of function calls
required before a feasible point is sampled that has a
function value within 1% of the true solution.

* Accuracy at x«: Euclidean distance from the best

sample point to the nearest global solution (x«).
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(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

* RMS error: The overall modeling error. After 100
evaluations, the metamodel is compared to the true
function on a 50 by 50 gridded set of locations (100
locations in the case of Ex1). The resulting errors at
the N comparison points are summarized by the Root
Mean Squared error (RMS), calculated as

N
Y () - fx )

i=1

RMS =

ZI=

17

The first two of these comparisons are more tradi-
tional measures of how efficiently the algorithm finds
the solution. The third comparison measures how accu-
rately EGO finds the solution. The last metric checks
how accurately the final metamodel approximates the
design space. This would show how reliably the
designer could reuse the metamodel for solving similar
design problems quickly and efficiently. Both of the last
two metrics have been normalized in the tables as per-
centages of the largest values in each row to facilitate
comparisons for a given test function.

4.2 Initial Testing Results

The two tables below show the initial testing results
for the analytical examples. Table 1 shows the xjq
comparison metric, Table 2 shows the f;o, comparison.
The columns are for the different infill criteria. The
number in parenthesis below EI indicates the value used
for g in Equations 5 and 6. The last three columns are
for the three criteria proposed by Watson and Barnes
(WB). Each row is for a different test function.

The ‘+’ symbol refers to cases where the criterion
was not met within the 100 function call limit. Because
all three minima are global, the numbers for the Branin
function (Ex2) in Table 1 refers to the first time the cri-
teria lead to a function call within x;¢, of any of the
three minima.

Table 1: Function calls to x;¢4, (+ indicates >100)

EI EI EI EI | WB | WB | WB

1) ) G | A0 1 2 3
Ex1 10 7 10 10 8 8 +
Ex2 24 24 24 24 34 24 +
Ex3 + + + + 91 29 +
Ex4 62 71 93 + 78 60 +

6

Table 2: Function calls to f;¢, (+ indicates >100)

El
0

El
€3]

El
&)

El | WB | WB | WB
(10) 1 2 3

Ex1 7 7 7 8 8 8 7

Ex2 24 24 56 + 60 + +
Ex3 35 + + 36 88 28 +
Ex4 26 25 25 23 37 25 +

From the tables we can see two obvious shortcom-
ings. First, most of the criteria performed poorly on the
first of the constrained examples (Ex3), while WB2 per-
formed fairly well on both constrained examples. This
shall be discussed more in Section 7. Second, the mini-
mizing surprises criterion (WB3) failed to sample a
point within the x;¢, box for any of the functions before
the 100 function call limit was reached. A simple expla-
nation for this failure is that WB3 seeks only to sample
points that reduce the overall uncertainty in the surro-
gate models. There is no attempt to locate even local
minima. Thus, there is no reason to expect it will sam-
ple a point within the x¢, limits except by chance. It is
clear from these tables that the criteria that try to bal-
ance improving model accuracy with locating minima
perform much better at sampling points of interest.

The next comparison made is the x« metric shown in
Table 3. As WB3 never sampled points within the x4,
bounds, these tests were left out of the table. The WB1
criteria finds the solution with the highest accuracy on
all four examples, which is likely due to the fact that all
the empbhasis is put on locating a regional extreme. This
is however somewhat in contradiction with the fact that
the local accuracy does not systematically deteriorate as
value of g in the EI function increases.

Table 3: Normalized distance to optimum

El | EI | EIl | EI | WB | WB

@M@ |G || 1 2
Exl |02 | 294 | 100 [ 100 | 02 | 294
Ex2 | 185 {380 |98 |[100 |04 | 178
Ex3 | 405 | 298 [ 100 | 118 |92 | 185
Ex4 | 100 | 237 | 433 |83 |57 | 237

The last metric looks at the reliability of the kriging
models as global surrogates. One would expect that the
minimizing surprises criterion results in models with
lowest RMS errors. Table 4 presents the results.

American Institute of Aeronautics and Astronautics



Table 4: Normalized RMS errors after 100 samples

El EI El ElI WB | WB | WB

1) 2) 5) 10) 1 2 3
Ex1 123 | 14 100 | 0.6 100 | 754 | 0.08
Ex2 267 | 165 | 420 | 387 | 53 29.0 | 100
Ex3 19.1 | 360 | 193 | 31.1 | 473 | 465 | 100
Ex4 193 | 290 § 275 | 161 } 27.7 | 727 | 100

Evidently, the trend is not as one would expect. For
Ex1 and Ex4, the criteria which search more globally
(either EI with a high g value, or WB3) tend to have
lower RMS errors. However, this is not in general the
case. More baffling still is the fact that the most “local”
of the methods, WB1, yields the lowest RMS error for
Ex2.

In Figure 10 we show the contour of the true Branin
function with circles indicating the initial 21 point
design and the x’s marking the points selected by the
WB3 criterion for the remaining 79 points. Notice the
unexpected clustering in several locations. If the crite-
rion of minimizing the maximum variance had success-
fully been implemented, one would have expected the
infill sample points to be spread out more evenly.
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Figure 10: Branin example using WB3
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One possible explanation for this unexpected behav-
ior is the failure of the internal optimization algorithm to
find the solution to the difficult minimax problem at
each iteration. Currently, the DIRECT algorithm [8] is
being used for 30 iterations. Allowing DIRECT to
search for more iterations could produce better results.
However, the overhead associated with the problem is
already staggering in some cases, and increasing the
iterations on the internal optimization problem is not a
favorable alternative. Another possible explanation is
that the process of fitting the surrogate model is failing
at some (or all) iterations. This issue is examined fur-
ther in the next section.

7

(¢)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

5. Model Fitting

One of the reasons the results in the Section 4 were
difficult to interpret was the occasional failure of the
Maximum Likelihood Estimation procedure to accu-
rately estimate the parameters of the covariance model,
which effects the kriging prediction. For example, after
70 function evaluations, the kriging fit to Branin func-
tion was evaluated visually and found to be quite poor.
With an inaccurate surrogate model, the infill sampling
stage became misguided and points were added in
regions the infill criteria would not really find interest-
ing with the true function. As a result, interpreting the
impact of the infill criteria was obscured.

Other model parameters were tried which led to a
surrogate model that matched the true Branin function
much more accurately. Oddly, the likelihood value (the
measure which assesses the goodness of the model) of
the poor fit had a better value than the likelihood value
of the good fitting model. Previous studies using the
Branin function reported that the normal distribution
assumption inherent to the present application of kriging
was acceptable [10]. Assuming therefore that the Bra-
nin function itself is not the cause of modeling error, we
speculate that the likelihood function may not be pro-
viding a good measure of model accuracy.

A test was performed with the initial thirty data
points sampled from the Branin function using the regu-
lar EI criterion. The sample was used in a cross-valida-
tion fitting process to find better values of the kriging
parameters whereby the RMS error of cross-validation
was minimized. The resulting kriging parameters per-
formed much better even though the likelihood value
was much worse. This suggests that cross-validation at
each iteration could provide more reliable metamodels
than the traditional MLE technique. The trade-off is the
increased computational cost incurred.

Armed with more reliable surrogate models, another
test was performed to compare the impact of the infill
criteria. The model parameters were held fixed at the
better values across infill criteria for all iterations to
eliminate the influence of model accuracy. The compar-
ison metrics were once again checked after 100 function
evaluations. One may think the comparisons measuring
the model accuracy might be invalid. considering that
the . However, the kriging model is an interpolating
model. As such, it will go through the data samples
exactly, but will have some error elsewhere, regardless
of the fitting parameters. Thus, the RMS metric will
show how globally the data samples are spread.

One additional comparison made here (3x;4,) is the
number of function calls required before at least one
point has been sampled within the x;4, tolerance for all
three of the Branin function’s global minima.

American Institute of Aeronautics and Astronautics
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Table 5: Modified Branin example (+ indicates >100)

El | EI | EI | El | WB | WB | WB

@O | @ |6 |ao| 1 2 3
Xjp |24 |24 |24 {24 [22 |25 |+
3 | 28 |28 |30 |+ 31 |+ +
flq |24 124 |30 |+ 25 |26 |+
Xx 592 | 355 [ 179 [ 100 | 13 | 236 | NA
RMS | 334 | 409 | 310 | 983 | 415 | 100 | 240

There are some interesting results that come about.
Although normalizing the RMS metric hides this infor-
mation, the RMS values went down usually by two
orders of magnitude compared to the initial results.
Indeed the better kriging model parameters improved
the overall accuracy significantly. It also appears that
the improved models at each iteration have allowed the
infill criteria to make more informed choices of sample
points. As a result, the number of function calls
required to reach the xy¢, and fjq, limits is fewer than
initially. Also, more of the criteria actually found all
three minima within the x,¢, and f;q, limits before 100
function calls.

One may notice a slightly larger number of function
evaluations for the xy¢, and f;q, limits with criteria that
search more globally as compared to the more local cri-
teria. Intuition may lead us to believe that the more glo-
bal the search, the quicker the criteria will sample points
around the three global optima dispersed through the
design space. Rather, quite the opposite occurs.
Although the model sees there are potentially better
points in the three valleys, it defers sampling additional
points there until more of the uncertainty has been
reduced.

Another result worth noting is the observation that
the WB3 criterion now lives up to expectations by hav-
ing the lowest RMS error. It is possible that the equally
good fitting models enable the criterion to search better
for the minimax subproblem solution. Of course, this
does not help explain why the EI(10) criterion per-
formed so poorly. If it was more globally searching by
design, then the RMS would have been presumable
lower than for the EI criteria with lower g values. This
matter remains unresolved and warrants further investi-
gation.

6. Cooling Schedule for EI

As described in Section 3, the effect of increasing the
parameter g in the EI criterion is to attempt to search

8

more globally - although in practice, results thus far do
not definitively support that claim. However, a good
method for choosing the value of g is not immediately
obvious. Too high of a value could prevent EGO from
converging on a good solution in a reasonable amount of
time. Too low of a value could allow EGO to overlook
areas of high uncertainty as it searches too locally. This
points towards an opportunity for improvement pre-
sented here.

Another test was performed on the Branin function
using the same modeling improvements as in the last
section. With the kriging parameters fixed, the impact
of changing g as a function of iteration number was
explored. The effect was similar to a Simulated Anneal-
ing algorithm whereby the goal is to start searching glo-
bally, then refine the search to more local concerns as
time goes on. The heuristic cooling schedule used in
this work is shown in Table 6. Table 7 shows the results.

Table 6: Cooling schedule

Iteration g value
1-4 20
5-9 10

10-19 5

20-24 2

25-34 1
35- 0

Table 7: Branin cooling schedule example

EX EI El EI
cool | (1) | @ | & | 10
X1 |26 |24 |24 |24 |24
3x19 | 42 |28 |28 [30 |+
figq | 53 24 124 |30 |+
Xx i 1.6 59.2 | 355 | 179 | 100
RMS | 359 | 339 | 41.6 | 31.6 | 100

As compared to the EI criteria with fixed g values,
the cooling schedule does not appear to fair very well
for the first three metrics. Both the EI(1) and the EI(5)
beat the cooling method on all but the x« metric. How-
ever, when looking at the accuracy of the optimum sam-
pled point, the cooling scheduled EI criterion
outperforms the others. Thus, the cooling schedule may
not find solutions as fast as its competitors, but it finds
them more accurately, once the g parameter has been
lowered. It also competes fairly well at the RMS metric.
In short, the cooling schedule approach shows promise.
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7. Constraint Handling

One concern with the EGO algorithm is the handling
of constraints. Currently, the literature tentatively sug-
gests multiplying the value of the expected improve-
ment by the probability that the point is in fact feasible
[10]. However, the value of the infill criterion may be
impacted too strongly. Consider the case where the
infill criterion has small values near the border of the
constraint with only slightly worse values a small dis-
tance from the constraint boundary. By multiplying the
infill criterion by the probability of feasibility, the
already small values near the constraint boundary may
become such that EGO now prefers points further from
the constraint where the infill criterion is not as strongly
reduced. In essence, this keeps the algorithm from
exploring points directly along the constraint boundary
where the true optimum lies.

A remedy proposed here is to switch from the proba-
bility method to a penalty method after a set number of
iterations. The idea is that, with the probability method,
the model of the constraint function presumably
becomes more accurate around constraint boundary
once several points have been sampled in that vicinity.
With more confidence in where the exact location of the
constraint boundary lies, the algorithm can now directly
approach this region with a penalty method. With a pen-
alty method, a large constant (i.e., a penalty) is added to
the criterion in order to restrict it from choosing infill
samples in the infeasible design region.

This idea was tested on Ex3. Below we see a side-
by-side comparison of the function calls made by the EI
criterion with the probability method (left) and the
switch to penalty method after ten iterations using the
same infill criterion (right). The contours are of the true
functions, and the initial samples are shown as circles
and the infill points as x’s.

Figure 11: Ex3 constraint handling for EI criterion

While both methods cluster around the global opti-
mum, the probability method tends to sample more fre-
quently in the infeasible space (see Figure 8) than the
penalty method. The penalty method clusters more
sample points around the optimum on the feasible side
of the constraint. For optimization problems where
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strict feasibility is important, using a penalty method
after several iterations may prove useful.

8. Simulation-Based Example

In this section, a Hybrid Electric Vehicle (HEV) sim-
ulation called ADVISOR [9] is used to explore the capa-
bilities of EGO to work with computer simulations.
ADVISOR predicts the fuel economy, acceleration per-
formance and emissions of a wide range of vehicles. On
an Ultra 10 SunSparc workstation, each function evalua-
tion requires approximately two minutes to compute,
expensive enough to warrant judicious use of function
evaluations through surrogate modeling techniques.
More details on the simulation can be found in the fol-
lowing works [1], [4].

The design problem illustrated here is to maximize
the fuel economy in miles per gallon (m.p.g.) of a mid-
sized hybrid passenger car subject to a set of perfor-
mance constraints established by the Partnership for
Next Generation Vehicles (PNGV), a US government-
led organization. Additional constraints are imposed to
ensure that the vehicle is able to sustain the state of
charge (SOC) in the batteries. The design variables are
the size of the engine (in kW), the size of the electric
motor (in kW), and the size of the battery pack (in num-
ber of modules). The problem formulation is summa-
rized below.

maximize fix) = m.p.g.

x = {engine size, motor size, battery size}
15 kW < engine size < 150 kW
5 kW < motor size < S0 kW
5 modules < battery size < 70 modules
subject to:

g1: maximum speed > 85 mph

&' maximum acceleration > 0.5 g’s

g3: 5 second distance > 140 feet

g4: 0-60 time < 12 seconds

g5: 0-85 time < 23.4 seconds

g6: 40-60 (passing) time < 5.3 seconds

g7: 55 (cruising) gradability > 6.5%

gg: maximum launch grade > 30%

89: change in SOC ., < 0.5%

g10: change in SOCpjgpyay < 0.5%

8.1 Results

Four tests were run on the simulation-based example
for 200 function evaluations each. Because of the poor
performance of the WB3 criterion in locating minima, it
was decided that it would not be tested with the others.
The last test (shown as “cool”) used the two alterations
discussed in Sections 6 and 7 with the EI criterion. Spe-
cifically, it used the cooling schedule shown in Table 6,
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and the constraint handling switched over from the
probability method to the penalty method at iteration 25.

In Table 8, we show the values of each of the three
design variables at their best sample value, the value of
the fuel economy prediction at that point, and the largest
value of any constraint function (not including the SOC
constraints) at the best sample point (the number of that
constraint given in parentheses).

Table 8: Simulation-based example

Engine | Motor Battery m.p.g. | max(g;)
&W) kW) (modules)
EI 45.83 34.80 18.27 49.18 |-.03 (g¢)
WBI1 [46.40 39.17 23.06 48.58 |[-.10 (g7
WB2 | 48.75 46.63 19.63 4747 |-.40 (g¢)
cool |(45.83 40.28 20.65 48.73 |-.06 (g7)

It can be seen that either the passing time or the grad-
ability constraint are closest to being active in all four
cases. This agrees with prior experience with the HEV
simulation. The WB2 criterion had the poorest results.
Its best sample point still had quite a bit of slack left in
the constraint where improvements on the objective
function could have been made. This is most likely due
to the fact that there were ten constraints to be modeled
in this problem. The compounding effect of the proba-
bility multiplications may have been detrimental.

When the penalty switching was used with the last
test, the constraint came much closer to activity. Stili,
the original EI function discovered a slightly better
region by reducing the size of the components signifi-
cantly.

9. Discussion

The focus of this paper was to compare the effective-
ness of a variety of infill sampling criteria in a global
optimization framework. The results shown here do not
indicate that any one of the criteria are superior in all
respects. The local searching criteria such as EI(1) and
WBI1 performed well at accurately locating optima in
these tests, but they did not necessarily do so the most
efficiently. Also, EI(10) and WB3, intended to search
more globally throughout the design space, did not
always do so as well as other criteria. The results shown
here have lead to more questions, opening the discus-
sion up to new directions.

Some effort was made to alleviate the analytical dif-
ficulties in order to better compare the alternative infill
sampling criteria. Accounting for the modeling inaccu-
racy has helped clarify the results somewhat, but we still
cannot be sure how much of the differences in the

results are contributable to the actual differences among
the criteria, and how much is simply an artifact of the
imperfect searching process during the maximization of
the infill sampling criteria. Regardless, results have
shown that the impact of having an accurate fitting to
the data sample is crucial to the success of EGO.

The idea of using a cross-validation scheme to
achieve better model accuracy was successfully tested.
However, the cost of cross-validation is quite high, and
the EGO algorithm already has substantial overhead.
Perhaps a better alternative is to use jack-knifing,
whereby a supplementary set of data is left aside for
checking the accuracy of the model. The cost of fitting
a model this way is lower, and in the case of many real
world simulation problems, the designer already has
quite a few prior computer runs at their disposal from
earlier studies. Alternatively, cross-validation could be
performed ahead of time when the designer has a rea-
sonable database of simulation runs and the model
parameters held fixed throughout the optimization as
was done in Section 5. This one time cost could reduce
later computations enough to warrant cross-validation.

The effect of the constraint handling was also men-
tioned. It was shown that the metamodeling strategy has
an aversion to approaching the constraint boundary.
This effect is amplified by the number of constraints
increases. The penalty method attempted here shows
promise, but better methods need to be developed for
dealing with the multiple constraints inherent to most
difficult computer simulations.

Another modeling issue that has been ignored is the
validity of the Gaussian distribution assumption. The
type of kriging models used here rely heavily on this
assumption. Work must be done to ensure that optimi-
zation of generic computer simulations can be under-
taken without violating this assumption. Data
transformations have been suggested to aid in this
endeavor, but are beyond the scope of this paper.

Convergence properties are a major weakness to the
EGO algorithm. Even though some convergence crite-
ria have been proposed for the EI function, none exist
for these alternative infill sampling criteria. And while
tests here indicate a clustering of the samples near the
optima, there is no guarantee that a dense cluster will
form in the limit. Of course, practical optimization in
engineering fields may not require such mathematical
rigor if the sole purpose is to locate a better design. In
addition, EGO has the capability of restart. This is an
advantageous property that allows the user to terminate
the search at any time, then continue where they left off.
There are no problem-specific parameters such as Hes-
sian updates within the algorithm that are lost. This
advantage has proven useful during the testing on the
HEYV simulation.
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Finally, it is clear that the paper shown here is only a
starting point. While the alternative infill sampling cri-
teria discussed here did not do much to illicit great
enthusiasm, there is hope. Several other infill sampling
criteria exist in the geostatistics literature that may
prove quite useful for solving these types of computer
simulation problems. Further work will be done in eval-
uating potential candidates.
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