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In this paper, a new reduced-order modeling technique is presented for bladed disks
that feature large, geometric deviations from a nominal design. Various finite-element-based
reduced-order models (ROMs) have been proposed in the literature for bladed disks with
small blade-to-blade differences, called mistuning. Many of these techniques rely on the fact
that mistuned-system normal modes can be effectively represented using a linear combina-
tion of the normal modes of the nominal (tuned) system. However, when the mistuning or
geometric deviation is large, the number of tuned-system normal modes required to describe
the mistuned-system normal modes increases dramatically. In this work, a method for large
mistuning is formulated by employing a mode-acceleration method with static mode compen-
sation. By accounting for the effects of mistuning as though they were produced by exter-
nal forces, a set of basis vectors is established using a combination of tuned-system normal
modes compensated by static modes. The obtained basis vectors approximately span the space
of the mistuned-system modes without requiring a much more expensive modal analysis of
the mistuned system, and they provide much better convergence than tuned-system normal
modes. Furthermore, in order to extend the method to higher frequency ranges, quasi-static
modes, in which inertia effects are included, are employed in place of static modes in the mode-
acceleration formulation. It is seen that ROMs based on the new technique are extremely com-
pact, yet they accurately capture the vibration response of bladed disks subject to geometric
mistuning or design changes.

I. Introduction
For many years, researchers have investigated the vibration behavior of bladed disks. Many previous studies

have been focused on the effect of small, random blade-to-blade discrepancies (mistuning). Not only is mistuning
unavoidable, but the vibration response of a mistuned bladed disk can be significantly different from that of a tuned
bladed disk. Although it comes from various sources, mistuning has generally been treated as a small deviation of
blade mass, stiffness, or natural frequency from the nominal value in a simplified model (a lumped parameter model or
a reduced-order model).1–15 However, mistuning is not necessarily small. Large, geometric variations (e.g., cracking
or fracture of a blade due to fatigue or foreign object damage) can also change dramatically the dynamic behavior of
a bladed disk, but these large-mistuning cases have rarely been studied.

When a lumped parameter model is employed, the system response can be easily obtained even for large mis-
tuning. However, the number of degrees of freedom (DOF) is so small that the characteristics of an actual bladed
disk may not be captured properly, especially when geometric mistuning is large. A finite element model (FEM) can
predict the response of actual bladed disks realistically, regardless of the amount of mistuning.16 However, an FEM
is usually computationally expensive, especially when Monte Carlo simulations are required for statistical analysis of
the mistuned response. Therefore, developing a reduced-order model (ROM) of a small size is of great importance in
the research of bladed disks.

Several FEM-based ROMs have been reported in recent years.10–15 However, most of these models are based
on the assumption that mistuning is small. Two recently developed methods14,15 are notable for generating highly
compact ROMs that feature excellent accuracy relative to the parent FEM. These models use a basis of tuned-system
normal modes to capture mistuned-system normal modes. However, as mistuning becomes large, the required number
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of tuned-system normal modes increases dramatically, and in some cases a model gives poor results regardless of the
number of retained modes.

In 1987, Gu and Tongue17 showed that modal convergence can be accelerated by using forced modes in addition
to free vibration modes. A forced mode (or static mode) is a shape that is induced in the structure by a given external
force vector. In the work by Gu and Tongue, external forces were applied to a beam by springs that were included as
additional stiffnesses. The concept of a forced mode can be extended to a mistuned system in an analogous manner, for
instance by considering mistuning as additional stiffnesses. In 1995, Caiet al.18 considered the effect of mistuning as
that of external forces in a lumped parameter model, obtained a frequency equation in a closed form, and solved it. In a
recent study by the authors,15 a reduced-order model for large mistuning based on a component mode synthesis (CMS)
technique was proposed. In this modeling method, tuned-system normal modes (free vibration modes) and tuned-
system attachment modes (forced modes) are employed, and the ROMs show good accuracy and fast convergence
with increasing number of tuned-system normal modes. However, the model size is still greater than that generated by
a small-mistuning method, because one attachment-mode DOF is retained for each physical DOF in the FEM where
geometric mistuning is present.

In this work, a non-CMS method for large mistuning is formulated by employing a mode-acceleration method
with static mode compensation. The tuned-system normal modes are compensated by static modes that account
for the effects of mistuning as though they were produced by external forces. Thus, a new set of basis vectors is
established for the mistuned system. The obtained basis vectors approximately span the space of the mistuned-system
modes without requiring a much more expensive modal analysis of the mistuned system, and they provide much better
convergence than the original tuned-system normal modes. Furthermore, in order to extend the method to higher
frequency ranges, quasi-static modes,19,20 in which inertia effects are included, are employed in place of static modes
in the mode-acceleration formulation.

In addition to modeling systems with large mistuning, the presented method can also be used in the design process.
Usually, when a change is made to a geometric design parameter, the new FEM must be analyzed in order to determine
the effects of the design change on the system vibration response. However, if the changes to the mass and stiffness
matrices due to the design change are known, the new modeling technique can be used to construct an updated ROM
for the revised design without requiring additional finite element analysis of the vibration response. In this manner,
the process of evaluating geometric design changes can be expedited.

This paper is organized as follows. The authors’ previous approach for large mistuning is briefly reviewed in
section II. In section III, the new modeling technique is formulated starting from the original mode-acceleration
formulation, and it is refined using the modified mode-acceleration formulation with quasi-static modes. Then, a
bladed disk with a rogue blade whose geometry deviates severely from the nominal blade design is examined as a
case study in section IV. The newly developed method is validated using the parent FEM, and its performance is
compared with previous methods for large and small mistuning. As further applications of this modeling technique,
two additional cases are examined in sections V and VI: a bladed disk with a fractured blade, and a bladed disk subject
to geometric design changes in the disk. Finally, conclusions are summarized in section VII.

II. Background: Reduced-Order Modeling by CMS
In this section, a general reduced-order model for large mistuning, which was developed previously by the au-

thors,15 is briefly reviewed. A mistuned bladed disk is divided into a tuned bladed disk (MS ,KS) and mistuning
components (M δ,Kδ) that represent the difference between the mistuned and tuned mass and stiffness matrices.
The mistuned system model is constructed using a hybrid-interface CMS technique: the tuned system is treated as
a free-interface component, and the mistuning components are treated as fixed-interface components. Because the
mistuning components are not physically separate from the tuned system, all DOF in the mistuning components are
interface DOF. Thus, both tuned-system attachment modes (ΨS) and a truncated set of normal modes (ΦS) are used to
describe the displacements of the tuned system, but only constraint modes (Ψδ = I) are used for the mistuning com-
ponents. The synthesized mass and stiffness matrices (µsyn,κsyn) of a mistuned system are assembled by enforcing
displacement compatibility at the interface DOF:
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whereΓ denotes the interface DOF where mistuning exists.
Eq. (1) shows that a mistuned system can be described with the normal modes and attachment modes of the tuned

system. Since a tuned bladed disk features cyclic symmetry, normal modes and attachment modes can be obtained
using only the FEM of a single sector. However, when attachment modes are involved in the CMS formulation, matrix
ill-conditioning and numerical instability may occur. This is due to the fact that the displacement values of attachment
modes are much smaller than those of normal modes, and also because attachment modes and normal modes may
not be clearly independent. The former problem can be overcome by performing a secondary modal analysis on the
attachment mode partition of the synthesized mass and stiffness matrices. In order to reduce the effect of the latter
problem, the number of retained normal modes must be decreased. However, in this case, the accuracy of the ROM
also decreases. To compensate for this loss of accuracy, more attachment modes can be included in the ROM. Of
course, including more attachment modes leads a larger model size. In fact, in the authors’ previous work,15 the size
of the ROM for large mistuning using this approach was much larger than the typical size of a small-mistuning ROM.
Therefore, a new, more efficient method is introduced in the next section.

III. New Modeling Technique Using Static Mode Compensation
In this section, a new modeling technique for a mistuned system is formulated using the mode-acceleration method.

In the derivation, the effect of mistuning in a mistuned system is converted to that of external forces.

A. Static Mode Compensation
The mode-acceleration method is usually used to improve the accuracy of forced response predictions by including

a static mode (K−1f ).21 The formulation of the mode-acceleration method for an undamped system is as follows:

x = K−1f +
∑

i

(
ω2

ω2
i

)
φiηi, (2)

or

x−K−1f =
∑

i

(
ω2

ω2
i

)
φiηi, (3)

wherex is the displacement vector,f is the external force vector,ω is the excitation frequency,ωi is the natural
frequency of theith mode,φi is the ith normal mode, andηi is the ith modal amplitude that is used in the mode-
displacement method. In Eq. (3),x − K−1f is expressed as a linear combination of normal modes. Note that, in
this combination, lower normal modes will dominate due to the coefficients,ω2/ω2

i , if the external forces excite every
mode evenly. That is,x −K−1f can be described with a small set of normal modes. Now, suppose that the normal
modes are unknown, but a set of vectors of the formx−K−1f are known in a lower frequency range. Then, reversely,
lower normal modes can be obtained accurately by employing the set ofx−K−1f vectors as a basis, unlessf excites
higher modes much more than lower modes.

This concept can be applied to a mistuned system when the tuned-system normal modes are known. Consider a
forced response case in which a mistuned system is vibrating at a natural frequency of a tuned-system mode and the
motion of the mistuned system is exactly the same as that of the tuned-system mode. Then, Eq. (3) can be rewritten
as:

φS
j −Km−1f j =

∑
i
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j
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i

2
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i ηij . (4)

The external forces required to enforce this motion are
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, (5)
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whereMm andKm are the mass and stiffness matrices of a mistuned system,ωS
j andφS

j are thejth natural frequency
and mode shape of the tuned system, andηij is the modal participation factor of theith mistuned-system normal mode
for the jth tuned-system normal mode. The advantage of using tuned modes is that tuned-system modes are readily
available because an analysis of a bladed disk usually starts with computing tuned modes that can be obtained from
the FEM of a single sector. Another advantage is that non-zero forcing terms appear only at the DOF where mistuning
exists, as indicated by the partitioning of the right-hand side of Eq. (5).

The static modesKm−1f j can be obtained from the FEM of the mistuned system. It is also possible to obtain the
static modes from the FEM of the tuned system by using the following relation:

Km−1f j = KS−1
(I + K̄

δ
KS−1

)−1f j = KS−1
gj , (6)

where

gj = (I + K̄
δ
KS−1

)−1f j =

{
0(

I + Kδ ΨS
Γ

)−1

fΓ ,j

}
, (7)

KS denotes stiffness matrix of a tuned system,K̄
δ

denotes a matrix of the same size as that ofKS , which consists
of Kδ and zero terms, andΨS is a set of tuned-system attachment modes. That is, the static deflection of a mistuned
system induced by the forcesf j is the static deflection of a tuned system induced by the forcesgj . Here, sincef j has
non-zero terms for only the DOF where mistuning exists, so doesgj . Computing static modes of a mistuned system
by using a tuned system is especially useful for a bladed disk system, because any static deflection of a tuned bladed
disk can be computed using only the FEM of a single sector.

Static modes can be obtained by directly applying the forces,f j or gj , or they can be computed as a linear
combination of tuned-system attachment modes with the coefficients being the corresponding forces. That is,

Km−1f j = KS−1
gj = ΨSgΓ ,j . (8)

If many mistuned systems need to be analyzed, the latter method would be more efficient, because the obtained
attachment modes can be used for anyKδ. However, if the number of mistuning DOF is so large that the computation

of ΨS andgΓ ,j requires higher cost, one should consider computingKm−1f j or KS−1
gj directly.

Now, a truncated set of tuned-system normal modes compensated by static modes,φS
j −KS−1

gj , may be used
as an alternative basis that approximately spans the space of the lower mistuned-system normal modes. The reduced
mass and stiffness matrices are:
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where the matrixGΓ is a set of the vectorsgΓ ,j . The size of these reduced matrices isN × N , whereN is the
number of tuned-system normal modes in a truncated set. As mentioned above, the accuracy will be determined by
(ωS

j
2
/ω2

i )ηij . If the value of(ωS
j

2
/ω2

i )ηij for theith mode is relatively small compared to those for other modes, the
ith mode obtained by this method will be less accurate. That is, mistuned-system normal modes in a high frequency
range may be inaccurate because the value ofωS

j
2
/ω2

i is smaller for a high mode than for a low mode.

B. Quasi-Static Mode Compensation
For a better representation in a higher frequency range, the formulation of the mode-acceleration method in Eq. (2)

is modified. First, the equations of motion of an undamped system are written as follows:[
−ω2M + K

]
x =

[
−
(
ω2 − ω2

c

)
M +

(
K − ω2

cM
)]

x = f , (10)
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whereωc is a pre-determined frequency, which is the centering frequency used in the quasi-static mode compensation
method introduced by Shyuet al.19,20 to improve CMS models in higher frequency ranges. As can be seen in Eq. (10),
inertial effects corresponding to a centering frequency are transfered to the stiffness term. Thereby, the motion of the
original system,M andK, at a frequency ofω becomes the same as the motion of an equivalent system,M and
K − ω2

cM , at a frequency of
√

ω2 − ω2
c . The equivalent system has the same mode shapes as those of the original

system. However, its eigenvalues are shifted by−ω2
c from the original values. Note that the original system can be

considered as a special case in which the centering frequency is zero.
Applying the mode-acceleration method to this equivalent system,x becomes
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where
(
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cM
)−1

f are quasi-static modes.19,20 Now, as can be seen in Eq. (11), the coefficient ofφi is
[(ω2 − ω2

c )/(ω2
i − ω2

c )]ηi. Therefore, ifωi is close toωc, the coefficient of theith mode can have a larger value

than the other modes. Therefore,x −
(
K − ω2

cM
)−1

f can be described by a small number of mistuned modes
around the centering frequency.

Following the same procedure as that for static mode compensation using the original mode-acceleration formula-
tion, the quasi-static modes of a mistuned system can be computed from the tuned system as follows:(
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whereP Γ is a set ofpΓ,j .

The accuracy of this approach depends primarily on the value of[(ωS
j

2 − ω2
c )/(ω2

i − ω2
c )]ηij . If ωS

j = ωc, then

φS
j −ΨS,QpΓ ,j will be a null vector, and the reduced mass and stiffness matrices will have a null column and a null

row. If ωi = ωc, then the inverse ofKm −ω2
cMm will not exist. So,ωc should be chosen so that it is not too close to

a natural frequency of the tuned or mistuned system.
Note that it is possible to introduce an iteration scheme to the method presented in this section, or to use a higher

order expression for the mode-acceleration method in order to improve accuracy. However, in those cases, the external
force vectors (G or P ) used for the computation of static modes would be fully populated, and thus the whole set of
attachment modes would be needed, and the inversion of a full-system size of matrix would be required. Thus, the
cost of such a scheme would probably be prohibitive.
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IV. Comparison of Methods
In this section, the newly developed static mode compensation (SMC) technique is validated by examining the

vibration response of a turbine engine compressor stage with a rogue blade that has a significant geometric distortion
relative to the nominal blade design. Also, the performance of the SMC method is compared with three other methods:

1. The CMS method for large mistuning,15 which was reviewed in section II.

2. Classical modal analysis (CMA) for small mistuning. In this model, a subset of tuned-system normal modes are
employed,14 and blade mistuning is projected directly onto the system modes.

3. Component mode mistuning (CMM) technique15 for small mistuning. As in the above model, tuned-system
normal modes are used for building a ROM. However, mistuning is projected to tuned-system normal modes
by relating the blade motion in the system modes to the tuned cantilevered-blade normal modes. Thereby,
eigenvalue mistuning of a cantilevered blade is projected onto the system modes.

The second and third techniques listed above are extremely accurate and efficient, relative to finite element analysis,
for small-mistuning cases.14,15

For the SMC technique and the two small-mistuning methods, the model size is determined by the number of
tuned-system normal modes selected. However, the model size for the CMS-based large-mistuning method is much
larger, because the number of DOF is the number of tuned-system normal modes plus the number of attachment modes
employed. For this study, the tuned-system normal modes and attachment modes were obtained from the single-sector
FEM. Also, the static deflections of a tuned system due to external forces were obtained from this FEM. For the test-
case rotor, the number of DOF where mistuning exists due to the geometry deviation is 594, and thus 594 attachment
modes are used.

A. Description of the Test-Case Model
The rotor considered in this study is a 29-blade compressor stage of a gas turbine engine that was used in a previous

study by the authors.15 Figure 1 shows the finite element mesh of this rotor, which is constructed with standard linear
brick elements (eight-noded solids) and has 126,846 DOF. This figure also shows a tuned blade of the nominal design.
For this test case, the effect of having one damaged blade with significant geometric mistuning, or a rogue blade, is
investigated. The rogue blade geometry used in this study is shown in Fig. 2. The geometry corresponding to the
worst-case blade damage is referred to as 100% distortion. By scaling the difference between the nominal and 100%
distortion models, intermediate cases were generated, such as the 10% distortion case shown in Fig. 2. The Young’s
modulus and mass density values used for the rogue blade were the same as those for the nominal blade. Nevertheless,
due to the geometry change, the mass and stiffness matrices were significantly changed around the distorted geometry,
even for the case of 10% distortion.

First, the natural frequencies and mode shapes of the rogue blade were investigated with increasing distortion.
Figure 3a) shows geometry distortion versus eigenvalue mistuning for the 1st (first flexural mode, FEM natural
frequency 2.22 kHz), 5th (second torsion, 20.95 kHz), 8th (third torsion, 33.68 kHz), and 9th (second stripe, 35.11
kHz) modes of a cantilevered blade that was fixed at its root. An eigenvalue mistuning value is the ratio of the
eigenvalue deviation to the nominal eigenvalue. The modal assurance criterion (MAC) values between the modes of
a nominal blade and a rogue blade are shown in Fig. 3b) . Although all the eigenvalue mistuning values are smaller
than 0.07, it is seen that the mode shapes are significantly different. The mode shapes of cantilevered tuned and rogue
(100% distortion) blades are depicted in Fig. 4. As can be seen, the 1st and 5th modes of a tuned and a rogue blades
are similar, while the 8th and 9th modes are quite different.

The tuned system of the test-case model has many mode groups that can be characterized by blade motion (see
Fig. 2 in the paper by Limet al.15). Similarly, the modes of the mistuned system can be characterized by blade
motion, but cannot be characterized by the number of nodal diameters. In Fig. 5, the natural frequencies for the tuned
system and for the mistuned system with a rogue blade (100% distortion) are shown for the 1st, 5th, 8th, and 9th
blade-dominated mode groups. The blade motion for each system mode is highly correlated with that of a tuned or
rogue cantilevered blade. Note that each mode group has one mistuned-system mode whose natural frequency is away
from the others: the mode at 2.1405 kHz in the 1st group, the mode at 19.605 kHz in the 5th group, the mode at 32.912
kHz in the 8th group, and the mode at 34.350 kHz in the 9th group. These modes are localized about the rogue blade,
as shown in Fig. 5. Since these modes are extremely localized, it is expected that the effect of these modes on the
forced responses will appear for any engine order of excitation. Therefore, the ability to capture these modes is an
important consideration for assessing the performance of a test-case ROM.
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Nominal Blade

Figure 1: Finite element mesh of the test case rotor

10% Distortion 100% Distortion

Figure 2: Rogue blade geometry
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Figure 3: Effect of increasing rogue blade geometry distortion on free response
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Figure 4: Mode shapes of a tuned blade and a rogue blade (100% distortion)
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Figure 5: Natural frequencies and mode shapes of a bladed disk with a rogue blade (100% distortion)
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Figure 6: Convergence of natural frequency errors for the 1st blade-dominated mode group

B. Free Response Results
Figures 6 and 7 present the convergence to the FEM results of ROM natural frequencies for the four different

methods: CMS (Component Mode Synthesis,◦), SMC (Static Mode Compensation using the mode-acceleration for-
mulation,×), CMA (Classical Modal Analysis with mistuning projection,M), and CMM (Component Mode Mistun-
ing, �). The rogue-blade-dominated modes mentioned in the previous section had much larger error than the others.
Therefore, maximum frequency errors were used for the convergence study.

Figure 6 shows the maximum natural frequency errors for the lowest blade-dominant mode group as the number
of tuned-system normal modes increases, for the cases of 10% distortion and 100% distortion. There are 29 mistuned
normal modes in the lowest mode group. For the SMC method, static, not quasi-static, modes are used, because the
modes of interest are the lowest modes. For the 1st cantilevered blade mode, the mode shapes of tuned and rogue
blades were almost the same (the MAC value at 100% deviation is 0.9982). However, as can be seen in Fig. 6, the
results from the CMA method are poor, even for the case of 10% geometry distortion.

Figure 7 shows natural frequency errors of the 5th and the 8th–9th blade-dominated mode groups for the case of a
rogue blade with 100% deviation. There are 32 normal modes in the 5th mode group, and 66 normal modes in the 8th
and 9th mode groups. The 8th and 9th mode groups are so close that they need to be included in a single ROM. The
results by the CMA method were excluded because the errors were too large. The models by the SMC method were
obtained using quasi-static modes. The used centering frequency was 20 kHz for the 5th mode group, and 34 kHz for
the 8th and 9th mode groups. For fair comparison, the models by the CMS method were constructed using quasi-static
attachment modes, and the number of normal modes was increased by including both higher and lower modes around
the centering frequencies. As shown in Fig. 7, the SMC method gives the best results. The CMS method also shows
good results after many more normal modes are retained. The results by the CMS method in this paper are different
from those in the authors’ previous paper.15 This is because 594 attachment modes were used in this study, while
2496 attachment modes were used in the previous work. The maximum errors for the 8th and 9th mode groups by the
CMM method are around 0.4%, which is still very small. However, the ratio of the standard deviation of the natural
frequencies to the average natural frequency is 2.3% for the 8th and 9th mode groups. So, an error of 0.4% may not
be acceptable.

Figure 8 illustrates a tuned-system normal mode, a static mode, a quasi-static mode, and the resulting basis shapes
used in the SMC method. All the displacements of these modes and shapes were applied on the geometry of the bladed
disk with a rogue blade. As can be seen in this figure, the basis shapes obtained by a static mode and by a quasi-static
mode are very different. In addition, the motion of a rogue blade in the basis shape obtained by a quasi-static mode
is very similar to the 9th cantilevered-blade mode of a rogue blade shown in Fig. 4. Therefore, it is clear that using
quasi-static modes can significantly improve the convergence of a model in a higher frequency region.

The rogue-blade dominated mode in each mode group was selected for the test of the accuracy of mode shape
representation. Table 1 shows the convergence of the MAC values between the modes by ROMs and the modes by the
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Figure 7: Convergence of natural frequency errors for the case of 100% geometry distortion
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Table 1: Convergence of MAC values for the rogue-blade-dominated modes calculated with various ROMs,
using the FEM modes as reference

No. of normal MAC value MAC value MAC value
Mode group modes selected (CMS) (SMC) (CMM)

29 0.996140 0.996114 0.998239
1st 59 0.996141 0.996131 0.998237

group 90 0.996141 0.996138 0.998237
123 0.996141 0.996138 0.998237
32 0.999975 0.999636 0.930084

5th 99 0.999992 0.999974 0.921637
group 164 0.999993 0.999987 0.921462

265 0.999994 0.999992 0.921296
66 0.974233 0.994455 0.000723

8th 136 0.993267 0.999569 0.000688
group 205 0.999217 0.999828 0.000685

268 0.999980 0.999889 0.000680
66 0.999893 0.999854 0.355521

9th 136 0.999946 0.999943 0.356131
group 205 0.999958 0.999945 0.356410

268 0.999957 0.999951 0.356573

FEM. For the mode in the 1st mode group, all three methods show good results. For the 5th mode group, the CMM
results are worse than the others. For the 8th and 9th mode groups, the tested modes obtained by the CMM method are
completely different from those by the FEM, even though the natural frequency errors were not so bad, as shown in
Fig. 7. This is because the mode shapes of a mistuned system with large mistuning cannot be captured properly with
a basis of tuned-system normal modes.

For the free response results, the CMS and SMC methods showed a similar degree of accuracy. However, it should
be noted that the SMC method shows good accuracy for a much smaller ROM size compared to the CMS method.

C. Forced Response Results
For the forced response results, the SMC and CMM methods were considered to compare the performance of a

large-mistuning and a small-mistuning ROM. Due to the distorted geometry of the rogue blade, aerodynamic external
forces may not be the same as those for a bladed disk with nominal geometry. However, for validation purposes, pure
engine order 2 and 5 excitations were considered, and two frequency regions corresponding to the 5th (19–22 kHz),
and the 8th and 9th (32–36 kHz) mode groups were investigated. The applied forces were unit loads normal to the
blade surface at the tip of each blade. The degree of distortion for the rogue blade was 100%.

Figures 9 and 10 show envelopes of maximum forced response from the ROMs and the FEM. Euclidean displace-
ment norms for every blade were calculated, and the maximum norms were found at every excitation frequency. The
99 tuned-system normal modes in 14–26 kHz were used for the 5th mode group, and the results are plotted in Fig. 9.
The 136 modes in 26–43 kHz were used for the for the 8th and 9th mode groups, and the results are depicted in
Fig. 10. The results by the SMC method match well with those by the FEM, while the results by the CMM method
show big differences for both the 5th and the 8th and 9th mode groups. As can be seen, the difference occurs around
the natural frequencies of the rogue-blade-dominated modes (19.6 kHz, 32.9 kHz, and 34.3 kHz). This is because the
CMM models cannot capture the rogue-blade-dominated modes. Note that the CMM method yields poor results, even
when the MAC value between the 5th cantilevered-blade modes of a tuned and a rogue blades is around 0.9.

Another case was considered with higher MAC values for tuned and rogue cantilevered-blade modes. The same
model and external forcing were used, except that the geometry deviation of the rogue blade was 10%. The excitation
frequency range was 32–36 kHz. The MAC value was 0.9922 for the 8th cantilevered-blade mode and 0.9916 for
the 9th mode (see Fig 3b) ). The forced response results are shown in Fig. 11. Although the mode shapes of the
cantilevered-blade modes of the rogue blade are much closer to those of a tuned blade than for the case of 100%
geometry deviation, there are still significant differences between the FEM and CMM forced response results. This
indicates that the performance of the CMM method may be very sensitive to geometric mistuning.

12
American Institute of Aeronautics and Astronautics



19 19.5 20 20.5 21 21.5 22
0

0.1

0.2

0.3

0.4

0.5

0.6

Excitation Frequency, kHz

E
uc

lid
ea

n 
B

la
de

 D
is

pl
ac

em
en

t N
or

m
, m

m SMC (99 DOF)
CMM (99 DOF)
FEM
Tuned

a) Engine order 2 excitation

19 19.5 20 20.5 21 21.5 22
0

0.1

0.2

0.3

0.4

0.5

0.6

Excitation Frequency, kHz

E
uc

lid
ea

n 
B

la
de

 D
is

pl
ac

em
en

t N
or

m
, m

m SMC (99 DOF)
CMM (99 DOF)
FEM
Tuned

b) Engine order 5 excitation

Figure 9: Forced response in the range 19–21 kHz for 100% geometry distortion

32 33 34 35 36
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Excitation Frequency, kHz

E
uc

lid
ea

n 
B

la
de

 D
is

pl
ac

em
en

t N
or

m
, m

m SMC (136 DOF)
CMM (136 DOF)
FEM
Tuned

a) Engine order 2 excitation

32 33 34 35 36
0

0.05

0.1

0.15

0.2

0.25

Excitation Frequency, kHz

E
uc

lid
ea

n 
B

la
de

 D
is

pl
ac

em
en

t N
or

m
, m

m SMC (136 DOF)
CMM (136 DOF)
FEM
Tuned

b) Engine order 5 excitation

Figure 10: Forced response in the range 32–36 kHz for 100% geometry distortion
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Figure 11: Forced response to engine order 5 excitation in the range 32–36 kHz for 10% geometry distortion
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Figure 13: Free and forced response results for a bladed disk with a fractured blade

V. Application to a System With a Fractured Blade
So far, the number of finite element DOF of a tuned system and that of a mistuned system have been assumed to be

the same. However, the SMC method can also be used for cases in which some DOF are removed. As an example, a
bladed disk with a fractured blade, which is represented by removing some elements from the blade FEM, is discussed
in this section.

The same nominal rotor model as used in section IV is employed again. A fractured blade and its mode shapes
obtained by fixing its root are shown in Fig. 12. Although finer meshes near the fractured area are required to obtain
more accurate results, the original meshes were maintained, since stress concentration is not considered in this study.

Figure 13a) shows the natural frequencies of a bladed disk with the fractured blade for the frequency range 32–36
kHz. A line is shown for 33.929 kHz, which is a natural frequency of a fractured-blade-dominated mode. Note that
there are 65 mistuned-system normal modes in this frequency range, but there are 66 tuned-system normal modes.

In order to derive the reduced matrices, first, the degrees of freedom in the bladed disk model are sorted into three
groups: the removed DOF due to fracture (denoted byβ), the DOF at boundaries between the removed part and the
remaining part (denoted byΓ ), and the interior DOF of the remaining part (denoted byα). Note that mass and stiffness
terms corresponding toα remains unchanged, but the terms corresponding toΓ change, when theβ part is removed.
Also, note that there is no mass or stiffness coupling terms between theα part and theβ part. Therefore, the mass and
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stiffness matrices of the tuned system and the fractured-blade system can be written as follows:

MS =

Mαα MαΓ 0
MΓα MΓΓ MΓβ

0 MβΓ Mββ

 , KS =

Kαα KαΓ 0
KΓα KΓΓ KΓβ

0 KβΓ Kββ

 , (14)

Mm =
[
Mαα MαΓ

MΓα MΓΓ + M δ

]
, Km =

[
Kαα KαΓ

KΓα KΓΓ + Kδ

]
, (15)

Then, the required external forces when the motions of a fractured bladed disk are those of tuned-system modes can
be computed as follows:[

F α

F Γ

]
= Km

[
ΦS

α

ΦS
Γ

]
−Mm

[
ΦS

α

ΦS
Γ

]
ΛS =

[
0

(KδΦS
Γ −KΓβΦ

S
β )− (M δΦS

Γ −MΓβΦ
S
β )ΛS

]
. (16)

Note thatMm andKm are multiplied by onlyα andΓ parts of tuned-system modes, but theβ part appears in the
resulting expression.

Now, as mentioned in section III, static (or quasi-static) modes can be computed in two ways: directly applying
F Γ to a mistuned system, or applying equivalent forces (GΓ or P Γ ) to a tuned system. However, since the number
of DOF changes in this section, the expression forF Γ (Eq. (16)) is different from Eq. (5) so that the expression for
equivalent forces should also be different from Eq. (7). It should be noted that theβ part of the static modes obtained
from a tuned system is not used. Therefore, any equivalent forces that can induce the same static deflection in onlyα
andΓ parts as those induced byF Γ from Eq. (16) can be used. Since there is no coupling betweenα andβ parts, any
static deflection inα andΓ parts of a tuned system can be induced by only the forces onα andΓ parts. Furthermore,
sinceF α is 0, Gα is also0. That is, any necessary static deflections can be computed by using the quasi-static or
static attachment modes corresponding to the DOF in theΓ part. So, using quasi-static modes,GΓ can be computed
from the following equation.([

Kαα KαΓ

KΓα KΓΓ + Kδ

]
− ω2

c

[
Mαα MαΓ

MΓα MΓΓ + M δ

])[
ΨS,Q

α GΓ

ΨS,Q
Γ GΓ

]
=
[

0
F Γ

]
, (17)

whereΨS,Q is a set of quasi-static attachment modes corresponding to the DOF in theΓ part. Since

(Kαα − ω2
cMαα)ΨS,Q

α + (KαΓ − ω2
cMαΓ )ΨS,Q

Γ = 0

(KΓα − ω2
cMΓα)ΨS,Q

α + (KΓΓ − ω2
cMΓΓ )ΨS,Q

Γ + (KΓβ − ω2
cMΓβ)ΨS,Q

β = I,

the equivalent forceGΓ becomes

GΓ = (I + (Kδ − ω2
cM δ)ΨS,Q

Γ − (KΓβ − ω2
cMΓβ)ΨS,Q

β )−1F Γ . (18)

Using the quasi-static modes obtained in this way, the reduced mass and stiffness matrices can be obtained in the same
way as in section III, except that only the mode shapes at the DOF corresponding to theα andΓ parts are used.

Since the number of DOF in theΓ part of the fractured blade is 72, the 72 attachment modes were employed to
compute the necessary static modes. The centering frequency was chosen to be 34 kHz. The tuned-system normal
modes selected were 136 modes in 26–43 kHz. Figure 13b) shows the forced response results by the obtained ROM
and by the FEM. The same unit forces were applied as in section IV, and engine order 5 excitation was considered. For
the forced response amplitudes, the maximum value was taken at every frequency among 29 Euclidean displacement
norms for nodes located at every blade tip end. As can be seen, the results by the ROM and the FEM match very well.
Note that the peak around 34 kHz is due to the fractured-blade-dominated mode at 33.929 kHz.
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VI. Application to a System Subject to Design Changes
When an engineer modifies a design of a bladed disk for a certain purpose, new full FEMs or single-sector FEMs

need to be analyzed again to check the effect of the modification. However, using the SMC method, the dynamic
responses of the modified system can be easily obtained without repeated FEM analyses by considering mass and
stiffness variation due to design change as mistuning.

The change in mass and stiffness matrices due to design change is considered as mistuning that exists in all the
sectors. Here, note that a modified bladed disk still features cyclic symmetry, and that a modified-system mode of
harmonich is described by only original-system modes of harmonich. Therefore, the SMC method can be formulated
for a certain harmonich, and the problem size is more reduced. For example, ifn blade-dominated mode groups of
an original system are selected in building a SMC model, the size of reduced mass and stiffness matrices will be about
n× n for a single harmonic, or2n× 2n for a double harmonic, not(n×Nb)× (n×Nb), whereNb is the number of
blades. Of course, in order to obtain modes throughout all the harmonics, one should solve aboutNb/2 problems.

Cyclic symmetry is a useful tool in the analysis of cyclic structures, such as bladed disks. Many researchers have
used cyclic symmetry to analyze a whole structure based on a single-sector FEM.10,11,22–24Note that in Bladhet al.’s
work,11 the definition and application of the real Fourier matrix and a pseudo-block-diagonal matrix, which are used
in this section, are well explained.

Reduced matrices are built by projecting mass and stiffness matrices in physical coordinates to a basis (here, a
selected set of system normal modes compensated by static modes). This projection can be performed for each sector
separately. In order to use cyclic symmetry, all the DOF in a FEM need to be arranged sector by sector, and the DOF
in boundaries between two sectors need to appear redundantly in the two sectors. The mass and stiffness matrices
of a system can be represented by single-sector mass and stiffness matrices, and the modes in physical (cylindrical)
coordinates can be represented with the modes in cyclic coordinates and the real Fourier matrix (F ) as follows:

MS = I ⊗mS (19a)

KS = I ⊗ kS (19b)

ΦS = (F ⊗ I)Φ̃S (19c)

ΨS,Q = (F ⊗ I)Ψ̃S,Q(F T ⊗ I), (19d)

where⊗ denotes the Kronecker product. Here,mS andkS are mass and stiffness matrices of a single-sector model,
and ˜ denotes the modes in cyclic coordinates, which is a pseudo-block-diagonal matrix. A pseudo-block-diagonal
matrix has(Nb + 1)/2 diagonal blocks, ifN is odd, orNb/2 blocks, if N is even. The column size of a block
corresponding to harmonich depends on the number of selected modes corresponding to harmonich, and can be
different from each other. And, the row size of a block corresponding to a double harmonic is twice the row size of a
block corresponding to a single harmonic. Note thatI ⊗mS andI ⊗ kS are block-diagonal matrices in which each
block has the same number of rows and columns.

From Eqs. (5) and (12), the external forces corresponding to the variation of mass and stiffness matrices are
represented in cyclic coordinates as follows:

P Γ =
[
I +

(
I ⊗ (kδ − ω2

cmδ)
)

(F ⊗ I)Ψ̃S,Q(F T ⊗ I)
]−1

×
[
(I ⊗ kδ)(F ⊗ I)Φ̃S

Γ − (I ⊗mδ)(F ⊗ I)Φ̃S
ΓΛS

]
= (F ⊗ I)

[
I +

(
I ⊗ (kδ − ω2

cmδ)
)
Ψ̃S,Q

]−1 [
(I ⊗ kδ)Φ̃S

Γ − (I ⊗mδ)Φ̃S
ΓΛS

]
= (F ⊗ I)P̃ Γ ,

(20)

where

P̃ Γ =
[
I +

(
I ⊗ (kδ − ω2

cmδ)
)
Ψ̃S,Q

]−1 [
(I ⊗ kδ)Φ̃S

Γ − (I ⊗mδ)Φ̃S
ΓΛS

]
.

Here,P̃ is a pseudo-block-diagonal matrix representing the external force matrix in cyclic coordinates.
Now, by replacing all the matrices in Eq. (13b) with the above matrices defined in cyclic coordinates, the following
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reduced matrices are obtained.

µsyn = I + Φ̃S
Γ

T
(I ⊗mδ)Φ̃S

Γ −
[
(ΛS − ω2

cI)−1Φ̃S
Γ

T
+ Φ̃S

Γ

T
(I ⊗mδ)Ψ̃S,Q

Γ

]
P̃ Γ

− P̃
T

Γ

[
Φ̃S

Γ (ΛS − ω2
cI)−1 + Ψ̃S,Q

Γ

T
(I ⊗mδ)Φ̃S

Γ

]
+ P̃

T

Γ

(
Ψ̃S,QT

(I ⊗mS)Ψ̃S,Q + Ψ̃S,Q
Γ

T
(I ⊗mδ)Ψ̃S,Q

Γ

)
P̃ Γ

(21a)

κsyn = ΛS + Φ̃S
Γ

T
(I ⊗ kδ)Φ̃S

Γ −
[
ΛS(ΛS − ω2

cI)−1Φ̃S
Γ

T
+ Φ̃S

Γ

T
(I ⊗ kδ)Ψ̃S,Q

Γ

]
P̃ Γ

− P̃
T

Γ

[
Φ̃S

Γ (ΛS − ω2
cI)−1ΛS + Ψ̃S,Q

Γ

T
(I ⊗ kδ)Φ̃S

Γ

]
+ P̃

T

Γ

(
Ψ̃S,Q

Γ + ω2
cΨ̃

S,QT
(I ⊗mS)Ψ̃S,Q + Ψ̃S,Q

Γ

T
(I ⊗ kδ)Ψ̃S,Q

Γ

)
P̃ Γ .

(21b)

Note thatµsyn andκsyn are square pseudo-block-diagonal matrices whose sizes are determined by the number of
original-system normal modes selected. Therefore, each block in these matrices can be handled separately according
to harmonic number as follows:

µ̃syn
h = I + Φ̃S

Γ ,h

T
(Ih ⊗mδ)Φ̃S

Γ ,h −
[
(ΛS

h − ω2
cI)−1Φ̃S

Γ ,h

T
+ Φ̃S

Γ ,h

T
(Ih ⊗mδ)Ψ̃S,Q

Γ ,h

]
P̃ Γ ,h

− P̃
T

Γ ,h

[
Φ̃S

Γ ,h(ΛS
h − ω2

cI)−1 + Ψ̃S,Q
Γ ,h

T
(Ih ⊗mδ)Φ̃S

Γ ,h

]
+ P̃

T

Γ ,h

(
Ψ̃S,Q

h

T
(Ih ⊗mS)Ψ̃S,Q

h + Ψ̃S,Q
Γ ,h

T
(Ih ⊗mδ)Ψ̃S,Q

Γ ,h

)
P̃ Γ ,h

(22a)

κ̃syn
h = ΛS

h + Φ̃S
Γ ,h

T
(Ih ⊗ kδ)Φ̃S

Γ ,h −
[
ΛS

h(ΛS
h − ω2

cI)−1Φ̃S
Γ ,h

T
+ Φ̃S

Γ ,h

T
(Ih ⊗ kδ)Ψ̃S,Q

Γ ,h

]
P̃ Γ ,h

− P̃
T

Γ ,h

[
Φ̃S

Γ ,h(ΛS
h − ω2

cI)−1ΛS
h + Ψ̃S,Q

Γ ,h

T
(Ih ⊗ kδ)Φ̃S

Γ ,h

]
+ P̃

T

Γ ,h

(
Ψ̃S,Q

Γ ,h + ω2
cΨ̃

S,Q
h

T
(Ih ⊗mS)Ψ̃S,Q

h + Ψ̃S,Q
Γ ,h

T
(Ih ⊗ kδ)Ψ̃S,Q

Γ ,h

)
P̃ Γ ,h,

(22b)

where the subscripth denotes a harmonic number, andIh is an identity matrix. Note thatIh, µ̃syn
h and κ̃syn

h are
square matrices whose size is determined by the number of selected normal modes corresponding to harmonich.
Therefore, the amount of computation for sector design change is smaller than that for the case in which only one
blade has mistuning.

As an example, a case in which the thickness of rim changes is discussed. The same nominal rotor model as used
in the previous sections was used for this case. As shown in Fig. 14, the thickness of the rim on one side of the rotor
was varied by stretching some elements in the radial direction. The ratio of stretch (r) is defined as the ratio of the
radial coordinate of a modified node to that of a original node. The range of stretching ratio was 0.980 to 1.015 with
increment being 0.001. Thereby, 36 different designs were obtained. The ratio 0.980 indicates a thicker rim, and
1.015 indicates a thinner rim. This change of rim thickness will affect disk-dominated modes. The change in natural
frequency veering characteristics will be attendant, which can cause significant changes in mistuned forced response
levels.25–27

The 34 modes in the range 26–30 kHz were observed as the thickness of the rim was varied. In order to build
a model, 34 normal modes of the original system are selected. For quasi-static modes, 27 kHz was chosen as the
centering frequency. So, 2-DOF models were obtained for harmonics 0, 1, and 4–14; and 4-DOF models were obtained
for harmonics 2 and 3. Figure 15a) shows the plot of the maximum natural frequency errors versus the stretching ratio.
When the stretching ratio is 1, the error is zero, because there is no modification. As can be seen, the error level tends
to increase as the amount of stretch increases, although the error level is quite small.

The variations of natural frequencies resulting from the 36 thickness variations are depicted in Fig. 15b) . As
would be expected, the natural frequencies become lower as the thickness decreases. The natural frequencies of blade-
dominated modes, which are located at harmonics 1 and 4–14, do not change much. The rim thickness changes affect
only disk-dominated modes. Figure 15b) also shows the variation of a harmonic 0 mode shape. As the rim becomes
thinner, less blade motion and more disk motion is observed in the mode shape.

As shown in this case study, the SMC method can be used to evaluate the effects of geometric design changes. If
a design is changed just once, a finite element analysis may be more efficient. The cost of computing normal modes
may be cheaper than that for computing static modes and building a ROM. However, if the geometry modification of a
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certain region needs to be repeated for a design sensitivity analysis or a design optimization procedure, then the SMC
method will provide improved computational efficiency.

VII. Conclusions
A new reduced-order modeling technique for bladed disks with large, geometric mistuning has been developed

by utilizing the mode-acceleration method. In this technique, by converting the effect of mistuning to that of exter-
nal forces, static modes used in the mode-acceleration method are computed. In order to improve the convergence
and accuracy in a higher frequency range, the original mode-acceleration formulation was modified, and quasi-static
modes were used. In the modified formulation, the advantage of quasi-static modes was clearly observed. The devel-
oped technique produces a reduced-order model whose size is comparable to that generated by previously developed
techniques for small mistuning.

The newly developed technique was compared with three other reduced-order modeling techniques using a test-
case model that had a rogue blade whose geometry was severely distorted. The reduced-order model obtained by a
component mode synthesis technique reported in the authors’ previous work gave good accuracy. However, the size
of the model was much larger than those of the other methods. The small-mistuning model using classical modal
analysis could not capture mistuned-system normal modes, even when geometry deviation was small. Another small-
mistuning model by the CMM method could capture the motion of the mistuned system only when the change in the
mode shapes of a cantilevered blade was negligible. As the amount of the mode-shape change increased, the error of
the CMM model increased, especially in the estimation of the rogue-blade-dominated modes. This indicates that, even
when a mode shape of a blade differs only slightly from that of the nominal blade, a small-mistuning model may not
be able to predict the behavior of the bladed disk. In contrast, the results obtained by the newly developed technique
showed good agreement with those by the FEM, regardless of the amount of the mode-shape change due to mistuning.

As other applications, a bladed disk with a fractured blade and a bladed disk subject to a geometric design change
were examined. The case of a fractured blade, which was represented by removing some elements from the finite
element model of the blade, showed that the new technique could be used even for the extreme case of a blade with
missing material. Furthermore, it was seen that the new method can be used for the efficient evaluation of the effects
of geometric design changes on the system vibration response.
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