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CHAPTER I

INTRODUCTION

The investigation described in this dissertation is concerned
with the calculation of gamma ray scintillation crystal detector effi-
ciencies. As gamma ray detectors, scintillation crystals are superior
to gas-filled detectors in their ability to measure the total energy of
incident gamma rayé, and their much higher gamma detection efficiency.
HOfstadter(l) first suggested the use of NaI(TZ) as a gamma scintilla-
tion detector in 1948, and this material has remained the most important to
date. The high density of Nal (3.667 gm/cmB) and high atomic number (Z=53)
of iodine account for its superior gamma ray detection characteristics
over gas-filled detectors.

The scintillation crystal can totally absorb the energy of
an incident gamma ray, making possible a measurement of source energies,
and use of the crystal detector in gamma ray spectrometry. Gas~-filled
detectors are not suitable for energy measurements, since total absorp-
tion of high energy gammas i1s negligible. Recent application of cooled
germanium diode detectors in gamma ray spectroscopy show outstanding
resolution characteristics, but are limited to much smaller volumes
and efficiencieg than readily available Nal crystals.

Calculation of efficiencies for gas-filled detectors is con-
siderably more difficult, and probably less accurate than efficiency
calculations for large volume solid medium detectors. The difficulties

arise because of the mechanism for gamma interactions with a gas-filled
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detector. The primary means of gamma detection is through the gas
ionization produced by secondary electrons formed when a gamma inter-
acts in the solid detector wall. The variationg in range and energy
_of these electrons introduces congiderable uncertainty in the calcula-
tion of the gas-filled detector efficiency.(g) Al so, the sensitive
volume of these detectors may be difficult to define accurately. How-
ever, the scintillation crystal efficiency is more readily calculated,
as will be discussed subsequently. Once the efficiency of a given
crystal has been obtained, another crystal of the same size will have
exactly the same theoretical efficiency. The precise definition of
the scintiilation crystal sensitive volume insures reproducibility of
the efficiency, independent of the electronic counting system.

Since scintillation crystals are the most widely used gamma
ray detectors, the present calculations of detection efficiencies are
useful in a variety of applications. Right circular cylinders, with
and without a coaxial cylindrical well, are the specific crystal shapes
used almost exclusively in gamma ray counting. Therefore, this investi-
gation has concentrated exclusively on these two crystal shapes. Know-
ledge of the detection efficiency is required to obtain a quantitative
measurement of the absolute gamma ray source emission intensity (Iy),
Determination of the absolute source strength is required in many appli-
cations such as quantitative activation analyses, and absolute neutron
flux measurements. The source strength may be related to the absolute

disintegration rate of an isotope source if the decay scheme is known.



If the appropriate efficiency (€) of a ganma ray detector is known,
experimental observation of the count rate (C.R.) will give the absolute

)

source strength (I7

1, = c.R./g (1.1)

A. Gamma Detector Scintillation Spectrometry

Consider a monoenergetic point source of gamma rays of energy

E located such that some of the emissions interact with a scintilla-

o 2
tion crystal. If the differential count rate of the detector is observed
with a pulse height spectrometer, it may appear idealized as H(E) in

Figure I-1 below. The differential spectrum of emitted energy is as G(E).

< G(E)

Back H(E)

Scatter \\\\ Compton

Peak Positron Conti
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0 Eb .51 Eo—l°02 1.02 EO—.5l Eo E,Energy

Figure I-1. Idealized Differential Spectrum for Gamma Ray Spectrometer.



The interactions which may contribute to the observed spectrum

are depicted in the following sketch and are identified below.

Photomultiplier
Tube
Scintillation
Crystal

Gamma, rays from the source may have any one of three primary inter-
actions in the crystal or surrounding media. Labeléd rays from the
source indicate these possible initial events:

1. Pair production event

2. Photoelectric absorption event

3. Compton scattering event.
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These initial events give rise to the following secondaries, as labeled
in the above sketch:

4. Compton scattered gammas

5. Positron annihilation photons (.51Mev)

6. Bremsstrahlung

7. Electrons

8. Iodine X x-ray

9. X-rays from surrounding media.

Other radiation may be present from the source, or background, which
further complicates the observed spectrum.

The important features of the spectrum shown in Figure I-1
are as follows. The peak at EO corresponds to total absorption of
the source gamma within the crystal, and is conventionally defined
as the photopeak. In addition to primary photoelectric events, the
total absorption peak has contributions from successive events in the
crystal which eventually result in total absorption of the source
energy. Since these successive events occur within the crystal resolv-

6 sec, in NaI<2)), the energy deposited in each

ing time (0.25 x 10~
event is assumed to give a single output pulse. TFor energies below

Eo , the observed continuum is due to gammas that deposit less than

the total source energy in the crystal. For example, gammas which undergo
an initial Compton event frequently are scattered from the crystal with
only part of the source energy,in the form of electron kinetic energy,

being absorbed in the crystal. This process is the major source of the

observed continuum, which is conventionally called the Compton continuum.
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Superimposed on the Compton continuum may be found a number of peaks
which are identified on the figure. The backscatter peak at F%

is due to Compton events in the material surrounding the crystal which
result in near 180° scattering of the gamma into the crystal. The
peaks which may be observed at EO - .51 Mev and EO - 1.02 Mev are
due to initial pair production events within the crystal in which
respectively one, or both positron annihilation gammas escape from

the crystal. Also, positron annihilation in material surrounding the
crystal may give rise to peaks at .51 and 1.02 Mev, if eithef, or

both annihilation gammas are subsequently absorbed in the crystal. In
some systems, peaks due to low energy x-rays may be seen near the
region of electronic noise. The gamma emission intensity and observed

total integral count rate are related to the differential spectra by:

I,Y=fmG(E)dE

(1.2)

C.R.=me(E) dE

E(dise)

where E(disc) is the discrimination level of the counting system.

B. Absolute Total Efficiency

Identifying the total area under the experimentally observed

pulse height spectrum Ap with the total integral count rate, C.R.,
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at zero discrimination level we have:

A =wa(E)dE (1.3)

©

and making further definitions:

A; = ideal total area, i.e., the total area under the ideal
pulse height spectrum that would be obtained if no
attenuating and scattering effects were present due to
material surrounding the crystal (e.g. shielding) or
due to gamma interactions within the source,

€AT = absolute total efficiency associated with the ideal total

area, i.e., the fraction of gammas emitted from the source
‘which interact with the crystal at least once and transfer
energy to the crystal,

Equation (1.1) becomes:
1. = AT/G (1.4)

From the above equations, if A; = Ap and GAT can be cal-
culated, one should be able to determine the source intensity in gammas
emitted per second from the observed integrated total count rate. In
practice however, A% % AT , 1.e., the ideal total area is not the
observed total integrated count rate because of the perturbing effects
of material surrounding the crystal and source self-absorption and
scattering. As defined, EAT is associated with A% rather than AT’

because interactions of the source gammas with anything other than the
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scintillation crystal are ignored. For example, the backscatter peak
usually observed in a pulse height spectrum is not taken into account.
In addition, the observed total area may include pulses due to positron
annihilation in the shield as well as pulses at low energy due to
electronic noise. The observed total area is not a parameter uniquely
related to the absolute source emission intensity, but it also depends
on the presence of other materials and the electronic system. For a
given experimental arrangement, it is concluded that calculation of I7

from AT is not feasible, and one must seek another measurable gquantity

that can be accurately reproduced for any experimental arrangement.

C. Absolute Pegk Efficiency

Instead of Ap , we will make use of the integrated pulse

height under the photopeak (see Figure I-1). Making the definitions:

App = photopeak area, i.e., the experimentally observed area of
the pulse height spectrum under the photopeak,
€,, = absolute peak efficiency, i.e., the fraction of gammas
AP

emitted from the source which interact with the crystal

such that their total energy is transmitted to the crystal.
Physically, A.PP measures the number of source gammas incident on the
crystal whose total energy is absorbed in the crystal. An implicit
assumption made here is that the differential pulse height spectrum
is proportional to the spectrum of energy deposition in the crystal.
Investigations of this proportionality have been made by various workers,
€.8. Verheijke,(3) Engelkemeir(h) and for most applications the assump-

tion has been shown to be justified.



When the photopeak is clearly defined App may be measured
by direct summation of the appropriate portion of the differential
spectrum. For cases when the spectrum is more complex and the photo-
peak is not ag clearly defined, App is conventionally obtained by
assuming the photopeak to be a Gaussian curve. Based on this assump-

tion, it can be shown that
_1~/ 1T E
APP—2 10362 Cmg

where Cm = maximum of the photopeak (at EO)

ok

full width of the photopeak at half maximum (FWHM).

When a source gamma ray has an interaction before entering
the crystal (i.e., scattering in the detector shielding) some of its
energy will be lost, preventing deposition of its total energy with-
in the crystal and thus it will not be counted under the full energy
peak. The photopeak area serves the purpose of providing a readily
measurable quantity which can be related uniquely to the absolute
source intensity. For a given geometry, and source intensity aﬁd
energy, App remains constant (assuming no change in the amount of
shielding interposed directly between the source and the crystal) inde-
pendent of changes in the counting system or the amount and positicn
of external materials. For identical geometries and crystal sizes, the
pulse heights may differ between two crystals and another photo-
multiplier may give different resolution, but the total number of counts

under the photopeak does not depend upon pulse height or resolution.
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The photopeak area is solely a measure of those source gammas which
are totally absorbed in the crystal, and is reproducible since the

experimental arrangement has essentially no effect App .

D. Photofraction

From the above definitions of EAP and App , one may

write:
I’Y = APP/GAp (1.5)

Since App can be experimentally determined uniquely, I7 may be

obtained if EAP can be calculated. Conventionally is not

GAP
calculated directly, but rather is determined by the following:

%*
T = APP — /\T
- - 1.6
7 E;P QAT ( )
ae =6l 27 ) (.7)
AP ~ Sat| A X 1.7
Al
where %
App/AT = peak-to-total ratio, or photofraction.
€ is divided into these two factors primarily because , can
AP AT

be obtained from explicit analytical expressions (see Chapter II),
while the photofraction must be calculated by simulation of the trans-
port of particles through the crystal by Monte Carlo methods (see

Chapter III).
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E. Intrinsic Total and Intrinsic Peak Peak Efficiencies

It will be convenient to define two other efficiencies, which

have the solid angle dependence removed:

€IT

intrinsic total efficiency, the fraction of source

gammas incident upon the crystal that interact with
the crystal at leéeast once and transfer energy to the
crystal, and

€. = intrinsic peak efficiency, the fraction of source
Ip

gammas incident upon the crystal which interact with
the crystal such that their total energy is transmitted
to the crystal.

Thus we have,

02
Cr= 27 Cm
_.Q
o= S

where
0 = mean solid angle subtended by the crystal at the source.

F. Calculation of the Absolute Total Efficiency and Photofraction

In the present work €

AT is calculated directly from

analytic expressions (Chapter II). The quantity App/A; ; known as the
peak to total ratio or photofraction, is calculated by Monte Carlo

methods for practical cases of interest (Chapter III). The photofraction
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represents the ratio of the number of gammas that are completely absorbed,
including all secondary radiation, to the number of source gammas that
interact at least once. Calculation of the photofraction is performed

by simulating with Monte Carlo methods the successive physicai proces-
ses which an incident gamma undergoes. An analytical treatment involving
solution of the problem is entirely impractical on account of the mathe-
matical complexity of interactions, multiple secondary particles, and
geometry. It should be noted that calculation of EAT can also be done
by the Monte Carlo process, but to obtain results with an accuracy

equivalent to that obtained by numerical integration of the analytic

expressions would require excessive computer time.



CHAPTER IT

CALCULATION OF THE ABSOLUTE TOTAL EFFICIENCY

A, Definition of Absolute Total Efficiency (€AT)

As previously defined in Chapter I, the absolute total efficiency,
€ AT » is the probability that a gamma ray emitted from the source will
interact with, and deposit some of its energy in the crystal. G‘AT is
considered here to be the product of two independent probabilities. First,
the probability that the source gammas are incident upon the crystal sur-
face and second, the probability that those gammas will interact with the
crystal., These two probabilities are respectively the geometry factor,
Q/4x , and the intrinsic total efficiency, € 17 . Making the definitions:

0 = solid angle subtended by the crystal at the source

[ (1-e7)
& ae probability that gammas incident upon the crystal will
aqQ
fQ interact - with the crystal = €~IT
where,

x(Q) = path length in the crystal extrapolated in the direction
of emission of a source gamma
7(E) = total gamma ray cross section (without coherent scatter-
ing) for the crystél material
E = energy of the monoenergetic source gammas

one obtains,

e = L h (- de
A A
L, de
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and finally,

€ =

o | (1-e7 e

<

It should be noted that the coherent (Rayleigh) scattering
cross section has been removed from the total cross section values used.
This process occurs only at the lowest energies, where photoelectric
absorption predominates. For gamma energies above about .20 MeV in Nal,
the cross section for Rayleigh scattering is negligible. Below this
energy, the photoelectric cross section is approximately 10-50 times
greater than the Rayleigh cross section. Even when a coherent scattering
event occurs, the photon is scattered by the atomic electron cloud and
the entire atom recoils, so that only a slight change in direction and
energy of the photon occurs.

Equation (2.1) forms the basis for all calculations of €AT .
For perfectly collimated monodirectional photon beams parallel to the cylinder

axis, Equation (2.1) reduces to:

~TH
=€_= ' - e (2.2)

where H = axial length traveled through the crystal cylinder., In Equa-

tion (2.1), the element of solid angle dQ , can be written as:

do=sing df dpp = -dy do
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Referring to Figures II-1 and II-2, the definitions are made:

© = polar angle
L = cos ©
¢ = azimuthal angle

and Equation (2.1) becomes:

-T
€ar = —’-—[o@ﬂ/—e X(“’QS)J du (2.3)

For both the well and solid crystals, the extrapolated path
length, x(u,p) is a complicated function, which is discontinuous at the
edges of the crystal and well., Solution of Equation (2.3) for an iso-
tropic point source a distance, m , from the crystal axis for either the
well or solid crystal provides a point kernel which can, in principle, be
integrated to determine €}m3 for any arbitrary source. The analysis
here considered point sources, an isotropic disk source of zero thick-
ness, or an isotropic cylindrical volume source of finite thickness.
These point kernels are derived in Appendix A, using the definitions of

Figures II-1 and II-2. The results are summarized here.

1. Isotropic Point Kernel for €AE

For a solid crystal:

il

2
: By
E‘AT(oW—a.xts Pt-) :‘?—/T—{—:/dd) fu FI (,L[)(Z})du +j}; E(ﬂ)¢)du (2,4)
.._11 2

2
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Figure II=l. Solid Crystal Geometry.
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Well Crystal Geometry.

Figure II-2.



-18~

where y

= (H+b)/[(H+b) + )

2 Ay

U, = b/(b +S)
Flup)=] — exp(-TH/W)

F )=/ “e"f’["r(v—/—-jﬂ*? i f—ﬂ

S =-m STn(}S +\/R2 —-m’cosqu

For a well crystal, with the point source within the well:
1T

6 (ofF-axis 'P“->=—§—T dcb[ j Fusbdy +

[ Fugda i b of T du] e

As discussed in Appendix A, the functions Fp , Wy , and uy

depend on the inequalities:

Case 1: % < _Sa_

S S
C D Al %
ase N >
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where

S,

-m S.\\\d) + -t_“—m“-cOs"gb

s Vet - w cod?
S,= —m sing +VR* -nfcosP
The results are:

F=/- exp(-Talu)

=/ - )

=/ - expT(£ +72)]

| — L2
U = ¢
3— 2 2
Ve +S2
Uy = — c
c*+s?

Sy S,
b < o+ b
=/ — _~[a+b S,
o=l — exp[—T (%2~ ===
b
A Vst
U o+ b
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or for Case 2:

§b.— 2 o.S:b
R=1 - exP[_T( /S—zw- %)]

Ve o

Equations (2,&)‘and (2,5) are the desired point kernels for an off-axis
point isotropic source for solid and well crystals, respectively. Any
desired isotropic source geometry can be obtained from these equations,
and in particular, the symmetrically located point, disk, and cylindri-

cal volume sources are considered,

2. €pp for On-axis Point Sources

The point source on the crystal axis equation for €AT is
obtained by letting m = 0 in Equations (2.4%) and (2.5), and performing
the integration over ¢ . The results are:

For a solid crystal:

[ 2
€, . (on-anis pt) =i{f Faodu + f» z F () di (2.6)



where

+ b
/u'I: a

\[(H+b)2+ R*
b

MU=
F W=/ — exp(=TH/U)

ACYEYES exF[—T( /iﬁ - 7‘1—)]

These results have been previously obtained.(5’6>

For a well crystal, with the point source within the well:

| s M
€ (On-ais Pt-)=-§/—UF.(Mo\»i F;de[u Fodp @
My 2 3

+ awdp}

where Lh

F (W) =/ - exp(-Ta/w)
_ R-t
L) =/ — exP[—T( == )}

L=/ — 6XP{T(ﬁ ¥ ,E#z >]
_ C

u, =
’ VeTLRE

_ c

A ST Ve




PP

and when t R
b5 ¢ Tarb
— | _ b
L=l explot (852 - o)l
_ b
H %2 + b*
a+ b

U =
: 2/ R*+ (asb)’

t R
b 7 a+b

=1 - exp-T (s -

a+b

VR + (a+b)?
b

for a point source on the crystal axis, but outside the well,

or when

o~
N—
| WO

K

I

Uy

Expressions

are given in Appendix A,

3. €7 for Disk and Cylindrical Volume Sources

The expression for a homogeneous isotropic disk source of radius

g , located with its center on the crystal axis, is also derived in Appen-

dix A and is given by:

J
GAT(diSK) - —a‘%—._f m: €AT (oFF-o.x'\s pL.) dwn (2.8)
°



-23-

The expression is derived in Appendix A for a homogeneous isotropic
cylindrical volume source of radius g and height (bp-by), located

with its axis along the crystal axis. The source cylinder axial distances
are measured from the same plane as b , given in Figures II-1 and II-2

(by > bq) .

b, 9
2 .
Car (VOh) = (b By f dbf M +€xr (ofF-axis pr.)dm  (5,)

4, Geometry Factors

For the point source on the crystal axis, it is easily shown

that the geometry factor, %_ is given by:
i

For solid crystal:

Q. _ L(/ - ) (2.10)
417 e VEZ+ R?
For well crystal, source inside well:

— (/ ~ _______) (2.11)
g Ve
For well crystal, source outside well:
< _ ! — ¢ (2.12)
4m T 2 (1 W)
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B, Calculation of €AT

It is not possible to obtain solutions of Equations (2.4 - 2.9)
in any closed-form analytical expressions, nor can these integrals, in
general, be reduced to the form of any known tabulated functions. For a
restricted number of special cases, series solutions have been found by
Grosjean, Reference 7 and the unpublished derivation of N, McCormick
given in Appendix B. Complete solution of these equations was carried
out by numerical integration techniques on the Michigan IBM-7090 Digital
Computer, using a Gaussian quadrature formula. Tabulations of calculatéd
results are given in Appendix G. The computational algorithms used for
the centerline point, disk and volume, and off-axis point sources are
designated the BURP-1,2,3 Computer Programs, respectively. Operating

instructions for use of these computer programs are given in Appendix E,

C. Checks Applied to Calculated €pp Results

Numerous independent methods are available to ascertain the
proper operation of these computer programs. Since considerable computa-
tional data are available for solid crystals, with point and disk

sources§5’6’8'l3) direct comparisons are possible with other calculations

(14)

for these source geometries. Only one published article gives any
results for right circular cylindrical crystals with a coaxial cylindrical
well, Reference 1} gives data for only one crystal size. Comparisons
were made with these references and agreement within all significant

figures (usually three) was obtained, except for the calculations of

Reference 11, These references generally used numerical integration
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techniques based on the trapezoidal rule, using a small number of sub-
intervals, since the computations were performed on older, smaller capacity
machines than the IBM-7090. There are two reasons for the slight dis-
agreement with the results of Reference 11, First, Reference 1l uses some-
what different cross sections, and second, the integration was performed
by a different technique (Monte Carlo). However, since the maximum differ-
ence was less than 0.25%, no significant discrepency is indicated for the
different approaches taken by Reference 11 and the present computer pro-
grams., Tables II-1, II-2, and II-3 give some of the comparisons made for
€IT and €AT for centerline point sources, Figures II-3 and II-4
compare some of the results obtained for off-axis points with that of

Reference 5,

TABLE IT-1

COMPARTSON OF € 1 FOR POINT SOURCES
ON CENTERLINE OF SOLID CRYSTALS

EIT Crystal Size, cm, Source Height

Energy Present Reference Dia. Ht. b, cm.
MeV Calc,

0.2 .5491 .55  (10)* 3.81 .635 0.7
1.0 L1157 .12 (10) 3.81 .635 3.0
1.0 L0715 .07 (10) 3.81 L3175 1.5
2.0 .0798 .08  (10) 3.81 .3175 0.3
0.32 L7793 L7773 (L1)** 7,62 7.62 11.0
0.661 6284 L6277 (11) 7.62 7.62 11.0
b.h3 .3973 3976 (11) 7.62 7.62 9.3
7.48 .3997 .3995 (11) 7.62 7.62 9.3

* Plotted wvalues
**Tabulated values
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TABLE II-2

COMPARISON OF € app VALUES FOR POINT SOURCES
ON CENTERLINE OF 2 x 2 IN, SOLID CRYSTAL

€ AT
Energy  Present Source Height
MeV Calc, Reference(5) b, cm,
0.01 .01539 ,01539 10.0
0.129 . 10605 .10619 3.0
1.10 ,0Lk118 .0lk119 3.0
2,0l .8233 x 107%  ,823 x 10k 100.0
2,0k 5877 x 102,585 x 107 10.0
2.04 .03343 .0334% 3.0
5,50 . 02940 .02940 3.0
7.90 . 02994 .02995 3.0

TABIE II-3

COMPARISON OF €AT VALUES FOR POINT SOURCES
ON CENTERLINE OF 3 x 3 IN. WELL CRYSTAL

€ AT
Energy  Present Source Height
MeV Calc, Reference( 1) b, cm,
0.010 .9800 .980 0.0
0.10 9712 971 0.5
0.30 .6989 .699 2.0
0.60 .6203 .620 0.0
1.00 .0831 .0832 6.81
1,00 01737 017k 13.81
2.00 .Lo48 405 0.0
3.00 . 3314 . 332 0.5
5,00 . 3169 317 0.5
5.00 . 3551 . 355 0.0

Well size: 7/8 in. dia., x 1-1/2 in, deep
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An independent check is provided for disk sources with solid
crystals by the tabulations of Reference 5.% Table II-4 gives some of
the comparisons made. In addition, Reference 15 provides some tables
of the geometry factor for off-axis point sources. Since the present
calculation of Ejmj reduces to calculations of %; for large values of
the total cross section, 7 , a direct comparison is possible. Table
IT-5 presents this comparison. Another check on the proper calculation
of €AT for disk and volume sources is the asymptotic results obtained
when the disk or cylindrical volume 1s made progressively smaller compared
with the results obtained for the point source on the axis. As discussed

later in this chapter, when the variation of E.AT with the size of a

distributed source is investigated, correct asymptotic values are obtained.

TABLE II-k4

COMPARISON OF GjmjVAlUES FOR DISK SOURCES
ON CENTERLINE OF 3 x 3 IN., SOLID CRYSTAL

€ar

Energy Present Disk Radius Source Height
MeV Calc. Reference(5) G, cm. b, cm.
0.0484 . 36105 .36119 1.905 1.0
0.0484  ,03201 .03206 1.905 10.0
0.081 .. 35804 . 35954 1.905 1.0
0,129 - ,34713 . 34856 1.905 1.0
0.212 . 31189 . 31250 1.905 1.0
0.566 . 21269 .21291 1.905 1.0
0.129 .08557 .08591 2,857 5.0
7.9 .03173 .03194 3.086 5.0

*Reference 5 contains an error in Appendix III (Table VI) page 59. The
heading at the top of this table specifies a value of R (disk radius),
when actually this is r (crystal radius), in accordance with the authors'

~notation.
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TABIE II-5

COMPARISON OF SOLID ANGIES SUBTENDED BY
2 IN, DIA, SOLID CRYSTAL AT OFF-AXIS POINTS

Q/bx

Present Source Distance Source Height
Calc, Reference(15) Off-axis m, cm. b, cm.
,082065 .08206 0.635 3.81
.002479 .002479 0.635 25.4
.024781 .02479 1.27 7.62
.052270 0.5 5.08
.050758 1.0 5.08
.049529 .04956 1.27 5.08
.04836L 1.50 5.08
.045257 2.00 5.08
.041650 2.50 5.08

D, Results of €pp Calculations

Having performed all of these checks on the proper operation
of the BURP-1, 2, and 3 computer programs, various detailed calculations
were made, the results of which can be used for laboratory applications.
In Chapter V, it is pointed out that changes in source geometry have only
a small effect on the photofractions, whereas, the values of absolute
total efficiency are strongly dependent upon these changes. In order to
show the geometrical dependence of €p , a number of different calcu-
lations have been performed as follows:

(a) Solutions for on-axis point sources for well and solid crystals

(b) Effect of moving a point source from the crystal axis

(c¢) Determination when a disk source can be considered a point

source
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() Variations in €pp with disk size and disk axial position
(e) Determination when a thin cylindrical volume source can be
considered a disk source
(f) Variation in € pap with the size of cylindrical volume
sources
(g) Effects on €pp of crystal and well size, and thallium
concentration,
A1l of the data of this chapter are for NaI(Tl) crystals; some data for
other scintillation materials used for gamma ray detection (i.e., CsI and

Calp) are given in Appendix G,

1, On-axis Point Sources

As will be shown later in this chapter, the two and three-
dimensional sources of small enough extent can be well-represented by an
on-axis point source., Therefore, the tabulation of results in Appendix
G for on-axis point sources covers most of the commonly-used well crystals.
The compilations are primarily for well crystals, since a considerable
amount of data is available for solid crystals,(5’6’8_13) and except for
Reference 14 no data is available for well crystals. Some calculations
for 2 x 2 in, and 3 x 3 in. solid crystals, with on-axis point sources,
are given to supplement those of the references.

Assuming the source to be a point on the crystal axis, Figures
IT-5, II—6, and II-7 show the variation in efficiency as the source-
crystal distance is increased. Figure II-5 shows the intrinsic total

efficiency, EiT for a solid crystal, while Figures II-6 and II-7 are
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Figure II-7. BEffect of Moving Point Source Axially in 8F8 Well Crystal.
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for the absolute total efficiency, € pp for solid and well crystals,
respectively. These figures are plotted for two commonly used crystals,
the Harshaw Chemical Company Well Crystal No., 8F8 (2 in, dia. x 2 in. ht.,
with 1-1/8 in, dia, x 1-1/2 in, deep Well)(l6> and a 2 x 2 in, solid

cylindrical crystal., TFigure II-5 is interesting because with the solid

_ €ar
Q/bx
extrapolated path length, x(u) , with source-crystal distance is more

angle dependence removed ( Ei ) , the effect of variation of the
clearly evident., The average path length in the crystal is longest for
very large and very small source=-crystal distances because few gammas
escape out the cylindrical surface, As this distance increases from

zero to infinity, the intrinsic efficiency decreases rapidly, passing
through a minimum at a distance equal to approximately the crystal dia-
meter, and then increasing again as the distance increases further, Other
investigations have shown this same trend.(12’17) Increasing the source
distance from the crystal causes the divergence of the gamma rays from an
isotropic point source to become a smaller effect, until finally the rays
are essentially monodirectional., The latter effect can also be seen in
Figure II-5 as the intrinsic efficiency asymptotically approaches the value
calculated from Equation (2.2). Figures II-6 and II-7 show that a signi-
ficant change in Eﬁmr can result from only a slight axial movement of

the point source,
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TARLE II-6

ISOTROPIC POINT SOURCE OFF CRYSTAL AXIS AT RADIAL DISTANCE=M
3 x 3 IN. SOLID CRYSTAL

D = 7.620000
ENERGY M= .CC
.L1C 3731
.C15 <3731
.02¢ L3731
+G3C .372¢
540 «3731
«050 .373¢C
L0660 L2727
.C8C <3706
. 100 +3€75
. 15¢C £ 2550
.2C8 3341
300 <2887
4030 2571
«5CC .23251
<600 02205
805 $20C1
1.CC0 «1857
1.59C W1€22
2.CCC 1496
3.0020 L1380
4,000 .1236
5.CCC .1325
6.CCC .1325
8.CCG .1345
1C.0C3 L1377
15.C0C Ll4e8
2C0.CC% o 15430
30.0C0 L1€56

H = 7.620000
S0 .25
.5598 L5994
.5998 «5994
.5998 ©5994
.5998 .5994
.5698 L9994
L5598 .« 5994
L5598 .5994
.5994 ©5993
L5598 .5993
.5963 L5992
.5997 .699C
.5997 .5989
L5957 <9989
.5697 « 9989
L5997 .5989
L5997 269892
.G997 + 9989
.5G697 .9989
.5997 <5989
«5997 . 5969
L5997 .59¢
L6597 L9989
.5997 L5939
.5997 .5989
L9597 L9989
«GG97 . 5989
«5997 «S5GE9
L5997 +5989
TABLE II-7

.50
+9361
.9961
«9961
. 9960
. 9961
e 5560
«9959
.9358
<9956
»9946
. 9937
«9629
.5629
.9929
5929
«9930
L9631
.9932
£9933
«9933
«3933
.9934
«5334
« 9933
«G933
.9333
.5932
«9552

B = 1.000000

1.0 1,58
.G838 . 95609
.5838 «96:59
.5838 e F60Y
.G832 +9595
.59838 .3608
<5835 L9601
«9830 .9552
£ G827 .9583
.G319 «9563
5778 9472
« 5749 .933¢
3714 «9341
.9712 <9341
5713 <9346
9715 «939¢
<3719 .936¢
9122 .9367
5726 .9378
.5729 .338>
W5T732 .9391
«5732 9355
.3733 L9394
«3733 «9394
I732 9393
G752 9391
W57 30 L9380
«GT728 «9355
3726 L9377

ISOTROPIC POINT SOURCE OFF CRYSTAL AXIS AT RADIAL DISTANCE=M
IN. SOLID CRYSTAL

D = 5.080000

ENERGY

.01
.C15
.Q2cC
.C30
.040
.05C
063
.080
. 130
.15¢C
.20C
« 300
400
+5C0
.6CC
.8C0
1.CCC
1.50C
2.GC8
3.CC0
4.0CC
5.6C0
6.CCC

.2168
.3168
.2168
.3152
<3167
3160
.3146
3111
.3C59
2823
.2528
.2C19
«1722
<1534
.1l415
.1257
.1150
.C383
.C897
.cal9
.C790
.C783
.C783

2x2

H = 5.080000

.1C .29
«GG95 +5980
G695 6980
«5995 . 5980
+«G995 G979
5995 .39979
+G695 .9979
+«G595 6979
3995 8978
+5694 «5977
+5693 3974
+5993 8972
.9993 .9973
9693 .9974
<5594 «9974
«9594 +9975
«53994 «5975
.5994 .5§976
«G5G594 .G976
«63994 «59976
«9994 9977
«G3994 «9977
G55G4 «9977
« G594 5977

50

.9871
.9871
9870
<9867
+5869
.9867
«9867
«9€862
«9854
«9833
.9826
.9831
+9836
<9840
9842
<3846
+9848
+9851
.9853
<9854
+9854
9855
9855

B = 1.000000

L.CC L.5C
. 9450 .8619
<9450 <8617
« G444 .8604
<9433 .8585
«9441 «86CC
+9435 .8569
G432 8582
9413 <8543
.9383 .8487
<8311 .8375
+ G292 8369
.9318 «8454
«9343 8516
.9358 .8554
+.3368 8578
.3381 .8609
6390 8629
«54C3 .866C
<9410 .8675
+9416 .8689
.5418 .8694
<6418 . 8695
<9418 -8695
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2, Off-axis Point Sources

No data have been previously available which indicate the effect
on € pr of moving a point source radially from the axis of a well crystal.
The BURP-3 Computer Program, described in Appendix E, was written to in-
vestigate the off-axis effect for both well and solid crystals. Reference
5 gives the results from a limited study of the off-axis effect on € AT
for solid crystals only,

Figures II-3 and II-L4 indicate the effect on the efficiency of
moving an isotropic point source from the crystal axis. These figures
are for a 3 x 3 in. solid NaI(T1l) crystal, with 0.662 and 0,075 MeV
sources at b = 1.0 cm. from the crystal, and give a comparison of results
from the present work and Reference 5. For solid crystals the trend of
decreasing E}wj, as a point source is moved radially from the crystal
axls, has been observed in all calculations with this program. Figures
II-3 and II-4 indicate such a trend, and as can be seen, agreement of the

(5)

present work with experimental and independent calculations is excellent.
Table II-6 gives the results of calculation for a 3 x 3 in. crystal, with
the point source located at b = 1,0 cm, from the crystal, over the energy
range 0.0l - 6,00 MeV. Table II-7 gives a similar calculation for a

2 x 2 in. crystal. In both of these tables, the column labeled m =0
gives the absolute total efficiency for the point source on the crystal
axis., For other values of m , the efficiencies are given relative to

the on-axis efficiencies i.e., these are values of €AT(m)/€AT(m = O).

The relative decrease in E"AT with varying off-axis distance, m is

not the same at all source heights, b measured from the face of the
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solid crystal, In fact as the data of Table II-8 show, at a given
off-axis distance, the ratio Epp(m)/€pp(m = 0) goes through a minimm a
short distance from the crystal and then approaches 1.0 as the source
height, b is increased. Thus the magnitude of the effect is reduced
further from the crystal., This is, of course, a very similar trend as
that previously seen for calculated values of €.IT for a solid crystal,
Figure II-5, The data of Table II-8 are for € p and thus the effect

of solid angle decrease, as the source-crystal distance is increased, is

included.

TABIE II-8

€ar(m)/ €pp(m = 0) FOR 2 x 2 IN, SOLID
CRYSTAL E = 1,0 MeV

b,ems. m=.5cm, m=1,0cm, m= 2,0 cm,

. L .989 .949 .763
.5 .985 940 .T45
1.0 .986 .9Lko . 759
2,0 .989 .950 .812
5.0 996 .976 .913
10.0 .999 .992 .970

Two conclusions from these data for solid crystals are evident.
First, in order to use the tabulated values for point sources on the
crystal axis, the sources must be located accurately on the crystal axis.
Second, the accuracy of this location is more critical close to the solid
crystal face. Quantitatively, a 1.0 MeV source located 0.1 cm. from a

2 x 2 in., crystal must be positioned within 0.5 cm. of the crystal axis
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for an error of less than 1% if the centrally located point source values
for E"AT are used., If the source-crystal height is 10.0 cm,, the radial
location need be accurate only within 1.0 cm, of the crystal axis for the
same error in applying centrally located point source values of € g .
The above positioning requirements have been investigated at energies
other than 1.0 MeV and are typical for energies in the range of laboratory
sources,

The effect of moving a point source radially from the axis of
a well crystal is shown by Figure II-8 for the Harshaw Chemical Company

Crystal No., 878, (16)

The effect for the well crystal 1s seen to be Just
opposite to that for the solid crystal, i.e., EAT(m)/ EAT(m = 0) > 1.0,
for m> 0 . For the source within the crystal, two factors combine to
cause the observed increase in efficiency as the point is moved from the
crystal axis., First, the solid angle subtended at a point source by fhe
top of the well decreases as the point moves off the axis(l5) and as shown
in Table II-5, and thus fewer gammas escape the well without striking the
crystal, Second, the average path length in the crystal increases as the
source moves off the axis, for well crystal dimensions presently used in
practice, Since the geometry factor for most well crystals with the source
located near the well bottom is close to unity, the first factor does not
contribute as significantly as the second. The second factor was observed
by computer analysis of the four integrands which make up the multiple

integrals of Equation (2.5). In general the rate of increase in efficiency is

less at the bottom of the well than in the upper portions (see Figure II-8)
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because the geometry factor influences the results more near the top of
the well where %; deviates considerably from unity. From the results
given in Figures II-3 through II—8, it is evident that axial position
variation for a point source has a greater influence on E‘AT than‘
radial position variation., For comparison with the solid crystal, the
requirements for accurate location of a 1 MeV point source in an 8F8
well crystal in order to use on-axis values for € ,p are as follows,
for an error of less than l%. For b = 0.1 cm. (see Figure II—E), m
must be less than 0.7 cm, from the axis. For b = 3.0 cm., m < .3 cm,
is required. Again, these positioning requirements are typical over the
energy range of laboratory sources. Tables II-9 and II-10 give results
for well crystals. The point source is located at various off-axis
radial distances, m , and at a fixed axial distance from the bottom of
the well, b = 0.2 cm. This value for b is typical of the crystal
canning and reflector thickness of available detectors.(l6> Table II-9
is for the Harshaw Crystal No. 8F8, and Table II-10 is for the 12AW(12)-W1
Harshaw Crystal, 3 x 3 in., with 0.791 in. dia. x 1.5 in. deep well. By.
reference to these tables it is evident that fairly accurate radial
location of a point source is essential if on-axis data for € ,p are
used, For counting measurements in which sources are Just dropped into
& well counter, the usually assumed reproducibility of source-detector
geometry is not justified for precise work, A possible procedure, when
an accurate radial positioning device is not available, would be to place
the sources at the corner of the well where the location is more likely
to be reproducible. Then by reference to data such as given in Tables II-9

and IT-10, suitable correction can be applied to the on-axis values for €AE .
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TABLE II-9

ISOTROPIC POINT SOURCE OFF CRYSTAL AXTS AT RADIAT, DISTANCE=M

OLQ

1.000¢
1.08CAQ
1.CCCC
1.CC00
1.6640
1.0C0C
1.0CG¢C
1.CC08
1.CC00
1.70C1
1.8CC1
1.C002
1.G00C2
1.06%02
1.00902
1.C0C2
1.CC02
1.CC02
1.00C3
1.C003
1.C00C3
L.CCO3

8F8 WELL

H = 5.080000
WH = 3.810000

«29 .56
1.CC01 1.0CG8
1.CCO1 1.0CC8
1.CC01 1.C0C8
1.CCO1 1.00G8
1.CG01 1.0008
1.0C01 1.CCCB
1.G6GC1 1.CGC9
1.6001 1.0C09
1.000C2 1.0Cl1¢C
1.0004 1.0C24
L.0C36 1.CC37
1.CCG8 1.0C50
1.00¢C8 1.0C56
1.£C09 1.CC59
1.C0C9 1.CC61
1.CCC9 1.0063
1.0010 1.0064
1.C0010 1.0C066
1.CGC10 1.8Ce67
1.0C10 1.0C68
1.CC10 1.0568
1.CC19 1.0C69
1.6C10 1.C069
TABLE II-10

B = .200000

1.00 1.42
1.C031  1.0058
1.C033  1.0058
1.CC30  1.0058
1.0032  1.0060
1.3630  1.0058
1.0631  1.0059
1.CG32  1.0061l
1.0034  1.0064
1.C039  1.0673
1.0101  1.0258
1.9175  1.0574
.0256  1.0973
1.0291  1.1148
1.€369  1.1243
1.0320  1.1298
1.0333  1.13¢6
1.0342  1.1410
1.C354  1.1473
. 1.C360 1.1505
1.6365  1.153Z
1.0367  1.1542
1.C368  1.1544
1.0368  1.1544

ISOTROIIC POINT SOURCE OFF CRYSTAL AXIS AT RADTAL DISTANCE=M
3 x 3 IN. WELL CRYSTAL

D = 5.080000
WD = 2.857500
ENERGY M=20
.010 «G£46
.015 «5€49
.C2C «GE49
.C38 «G€44
« 040 «G€48
«C5C «5€46
.060 «GE42
.C8¢C «G€33
. 1C0 <9612
.15C «9C6¢E
. 2CC « 7691
« 400 4384
«500 <3761
«6C0 «2395
.8CC 2632
1.C00 «2633
1.5C8 2160
2.0CC .1870
3.CCC .177°8
4.000 .1718
5.600 «1€31
6.C00 <1631
D = 7.620000
WD = 2.857500
ENERGY =0
.01G «5649
.015 «GE49
.G2C «G€49
.03¢0 «9€46
040 «GE49
«05C <5648
.0€Q «5€45
.08GC «G€34
.1C0C «9¢€18
«15¢C .5520C
« 260 9116
.3GC «7752
«400 «€733
.5C0 «6C41
«6CC 5585
.8C0 .4989
1.00G «4572

.10

1.0C00

.GC00
1.CCCC
l1.CCOC
1.C0C0
1.0000
r.ccoc
1.CCCC
1.C000¢C
1.0001
1.C001
1.CC02
1.0002
1.8002
1.6002
1.CCG2
1.0002

H =.7.620000
WH = 3.810000

.20

1.CCC1
1.€201
1.0301
1.0C01
1.cc01
1.0001
1.0001
1.0C02
1.C002
1.0C03
1.0004
1.0006
1.CC07
1.C007
1.0008
1.0C08
1.G008

1.0008
1.G<08
1.0CC8
1.0008
1.0C08
1.0408
1.6C08
1.0009
1.0010
1.0C16
1.0C26
1.0C40
1.0C45
1.0048
1.0C50
1.0052
1.0054

1.00

1.0031
1.2031
1.0C30
1.0C30
1.CC30
1.0030
1.0031
1.0035
1.0039
1.0061
1.C109
1.0181
1.0212
1.0229
1.0239
1.0251
1.G6259

= ,200000

1.0C58
1.0058
1.0058
1.0058
1.C058
1.C057
1.6058
1.00064
1.0071
1.0116
1.0249
1.0509
1.064C
1.0715
1.0758
1.0812
1.0847
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3. Disk Sources

The discussion so far has been restricted to sources which are
small enough to be considered mathematically as a point. Of obvious
interest then is determination of when a distributed, homogeneous source
can be considered a point source. Considering the isotropic source is a
disk, with its center located on the axis of the crystal, calculations
were made for €pp as the disk diameter was decreased, at a fixed dis-
tance from the bottom of the well. Results for 8F8 and 12AW(12)-W2
crystals are shown in Figures II-9 and II-10, respectively. Tabulated
results for these crystals, plus others, with disk sources are given in
Appendix G. The 12AW(12)-W2 well crystal is 3 x 3 in., with 1-1/8 in. dia.
x 1-1/2 in, deep well. Two facts are evident from these curves. First,
as the disk diameter goes to zero, the results from the disk source com-
puter program (BURP-2) reduce to those independently calculated by the
point source program (BURP-1). This provides another check of the proper
calculation with these programs. Second, over the range of energy
0L <E <2.0 MeV, and for both the 2 x 2 in. and 3 x 3 in. well crystals,
there is an insignificant difference between the point and disk source
values of E]m? for disks up to 0.8 cm. radius. Disks up to 1.0 cm.
radius differ from on-axis point sources by less than 2% in €AT .

Figure II-11 represents the variation in EJW3 as a disk of fixed radius

(1.0 cm.) is moved axially from the well bottom of an 8F8 crystal.
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Figure II-12 gives results for disk sources of various radii, all at

412 MeV., The 8F8 well crystal, 2 x 2 in., and 3 x 3 in. solid crystals
are compared in this figure., It should be noted that the total efficiency
increases with disk size at a fixed axial position for the well crystal,
and decreases for the solid crystal. This is a manifestation of the same
effects previously discussed for the point source moved radially from the
crystal axis., Also, the advantage in absolute total efficiency of a well
crystal over a solid crystal of the same outside dimensions can be seen
from this figure. The data for the two solid crystals indicate that for
disks located close to the crystal, little deviation from a point source
is found for disk radii up to 0.8 cm. For a disk close to the crystal and
a radius of 1.5 cm., the decrease in €y 1s approximately 6% for the

2 x 2 in, solid crystal and 3% for the 3 x 3 in. solid crystal. At a
disk-solid crystal distance of 100cm. it i1s seen that disks of 2.54 cm.,
radius cause no significant variation from the point source results. Thus
for disks, as for off-axis points, the deviation from on-axis point source
values of  €,p decreases and becomes negligible as the source-solid
crystal distance increases.

Since it has been shown that only a small error results in using
on-axis point source €AT values for disks of less than 0.8 cm. radius,
it was considered sufficient to limit extensive calculations, to point
sources only. Where greater accuracy is desired, some tables for disks
are given for a limited number of well and solid crystals. All these

tables will be found in Appendix G.
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4, Cylindrical Volume Sources

(18)

Verheijki has given the only previous results for cylindri-
cal volume sources, His work was restricted to cylindrical sources and
solid crystals of equal diameters. Again no data are available for well
crystals, and therefore a computer program was developed to consider any
sized cylindrical volume source located along the axis of either well or
solid crystals,

All calculations for homogeneous, isotropic disk sources assume
that the source is two-dimensional. The effect of finite source thickness
has also been investigated. Some results are shown in Figures II-13
through II-17. Figures II-13 and II-14 give values of €AT for a cylin-
drical source which is 0.3 cm. from the well bottom, to allow for the
combined thickness of a glass test tube, and crystal canning and reflector.
Again these figures confirm one aspect of the computer programs because
they indicate a smooth asymptotic behavior as a cylindrical volume source
approaches zero thickness, finally converging to the independently cal-
culated disk source results. Figures II-13 and II-14 are for the 8F8 well
crystal, and show that for cylinder thicknesses up to .05 cm, (approximately
20 mils), dinsignificant variation from disk source €AE values results.
For most neutron activation foils and other foil sources, this 20 mil
foil thickness would not be exceeded, In fact, seldom are foils used
which are greater than 1-2 mils in thickness, Thus, foils in general
use can be considered to be two-dimensional sources, and if they are located

at the well bottom and are well-approximated by a disk of radius less than

0.8 cm., they can be considered point sources.
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Figure II-15. €A‘I‘ Variation with Volume Source Height for
12AW12-W2 Well Crystal.
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The rapid decrease in EAT with source cylinder height is as
expected since the upper annular portion of the well crystal contributes
less to the attenuation of source gammas than does the solid lower por-
tion, and also the fraction that escape out the top of the well increases.
The decreasing efficiency with distance from the bottom of the well has
been a characteristic seen in calculations for all source geometries.
There is no available data for calculated values of volume source EAT s
except for Reference 18, so the results of some computations are tabulated
for both solid and well crystals in Appendix G. These volume sources are
assumed to be transparent to emergent gammas and no attenuation has been
considered. For volume sources in which absorption and scattering of the
source gammas is.not negligible, a separate calculation has been made.
This problem will be discussed in detail in Chapter IV, Section H, In
order to take into account the combined thickness of the crystal canning,
reflector, and source container, the tabulations for EAT are made for
various height cylinders which are placed 0.3 cm., from the crystal sur-
face. Some calculations of the effect of varying the cylindrical source
diameter have been made for a 2 x 2 in, (Harshaw No, 8F8) well crystal
at 0.661 MeV, The results of these calculations are shown in Figure II-17.
By comparison with Figure II—16, the decrease in €AE for a solid
crystal is negligible as the source diameter increases, From Figures II-15
and II-17 for well crystals, a slightly greater change in €AT is seen
with variations in source height than with increasing source diameter.
Although not as pronounced for the well crystal, this trend for €AT
with radial and axial dimensional changes is the same asg for point and

disk sources.
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E, Other Factors Effecting €AT

The final geometry variations were calculations to study the
influence of crystal dimensions on €,p . In particular, the influence
of well crystal overall dimensional tolerances, and the effect of various
well sizes were determined. Also, since Reference 19 indicates the thallium
concentration in the central portion of a typical NaI(Tl) crystal can vary
from 0,11% - .25% by weight (w/o) calculations were performed to study
this effect on the absolute total efficiencies for 8F8 and 12AW12 crystals.
The results obtained indicated that EAT varied at most by 0.2% for a
variation of thallium concentration from zero to 0.25 w/o. The effect of
well crystal dimensional tolerances on the total efficiency calculations
has been determined for a typical well crystal. According to Reference 16,
a manufacturing tolerance of +.005 in. is guaranteed. Using the worst
combinations of this tolerance on all crystal dimensions causes a maximum
deviation in the absolute total efficiency of 0.64% from a nominal sized
crystal.,

The influence that well diameter and height have on €5 are
shown in Figures II-18, II-19 and II-20. Figures II-18 and II-20 show
how GAT varies with well dimensions for an isotropic point source on
the crystal axis, at the top of the well, These two figures are plotted
from the same data, but using different coordinates. The source was
located at the top of the well specifically to illustrate that the com-
puter results for a well crystal converged to those for a solid crystal,
as the well is made progressively smaller. This provides another inde-

pendent check of the computer programs. Figure II-18 shows a rather
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surprising linear variation of eAT with increasing well diameter, for
various values of well height. Although comparison of Figures II-18 and
IT-19 indicates that increases in well height beyond about 2.0 cm. have
no further influence on €pnq , (for diameters < 2.0 cm.), it must be
remembered that the source is located at the top of the well, and that
the advantage of locating the source deeper within the crystal is not
being considered. Figure II-20, to be discussed subsequently, does show
this effect., However, one can conclude from a comparison of Figures
IT-18 and II-19 that variations in well diameter have a much greater
effect on €AT values than do variations in well height., That this is
true, even when the source is located near the well bottom, can be seen
in Figure II-20. In this figure, the same general trend is seen for two
values of gamma ray energy, 0.661 MeV, and 4.00 MeV. The decrease in
efficiency as the well diameter is increased is seen to be much greater
than the change caused by decreasing the well height the same amount.
This trend would be expected since of course the well volume goes as the
square of the diameter, and is linear with height. However, calculations
have shown that the change in EAT does not correlate with well volume
changes, i.e., for different diameter and height, but same volume wells,
the efficiency is considerably different. EAT is seen to depend on

both the diameter and height of the well, independently.

F. Accuracy of EAT Results

Correct and accurate application of all these calculations is

dependent upon many things. Primarily they are: accurate definition of



-61~

crystal dimensions, accuracy of total cross sections used, and accuracy
of the numerical integration technique used., The effect of manufacturing
tolerances was seen to be small, of the order of 0.6%. The Geussian
quadrature numerical integration technique has been optimized, with res-
pect to the number of subintervals into which each integral is divided
and the order of the approximating polynomial, such that the results are
accurate to four decimal places.

The total gamma ray cross sections for NaI(T1l) included in the
computer programs are taken from the National Bureau of Standards data
given in References 20 and 21, References 20 and 21 give the most exten-
sive summary and compilation of primary values of attenuation coefficients
for photons on 29 materials. The summary of Reference 20 includes a
detailed analysis of both theoretical and experimental results., These
data were obtained primarily by theoretical calculations, with experimental
data serving as a check., Reference 22 provides extrapolations and inter-
polations of older NBS data to include all elements up to atomic number
100,

The NBS data are reported to be accurate within 3 - 5% and this
will cause some error in the application of any efficiency calculations
to experimental results. Reference 5 presents some calculated results of
the effect of an error in cross sections on detection efficiency, An
estimate of the maximum percentage change in EIT for a given percentage
change in cross section can be made, The intrinsic total efficiency can

be written approximately as:

-TX
€=/ - ¢
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Since the average path length, x , in the crystal is of the order of the
crystal height (x < 10 cm. for most common crystals), two limiting cases
are of interest. First, for low energy gammas (E < 0.2 MeV) and an aver-
age path of about 4 cm. or more, E"IT is essentially unity, and changes
in 7 will have no effect. Second, in limit of higher energy gammas

(T generally decreases), the above expression can be expanded in a series
and written approximately as:

€=TX .

T~

This case sets an upper limit to the effect of an error in cross section
on the efficiency. The maximum effect is that a given percentage error
in cross section causes,.at most, the same percentage error in efficiency.
Thus one can conclude that an error in cross section of 3% can cause no
more than a 3% error in calculated efficiency.

The €AT tabulations are presented with efficiency as a func-
tion of incident gamma ray energy, for convenience. As can be seen from
Equation (2.1), the efficiency is a direct function of total cross section,
and is related to energy only indirectly. If in the future improved Cross
sections become available, the tabulated data in Appendix G can be plotted
as a function of total cross section, using the data of Table Il-11, and the

appropriate corrections made.
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TABLE II-11

TOTAL GAMMA RAY CROSS SECTIONS IN PURE NaI‘20,21) ysEp In
EVALUATING € p (NO COHERENT SCATTERING)

Energy, MeV T, em™ T Energy MeV T, em™t
0.01 564,718 1.0 0.212
0.015 178.950 1.5 0,171
0.02 81.041 2.0 0.151
0.03 26,806 3.0 0,135
0.03323 20.462
0.03323 111,477 4.0 0.129

5.0 0.127
0.04 66,739 6.0 0.127
0.05 37.037 8.0 0.128
0,06 22,625
0.08 10.488 10.0 0.134
15.0 0,147
0.10 5.757 20.0 0.158
0.15 2.083 30,0 0.176
0.20 1.118
0.30 0.568
0.40 0.407
0.50 0.330
0.60 0.289
0.80 0.241

G, Extrapolation of Tabulated Results

1, Other Crystal Sizes

The tabulated calculations for the absolute total efficiency

given in Appendix G have been made for scintillation crystals found to be

in most general use for laboratory gamma ray detection. Interpolation and

extrapolation of these tables is possible for other crystal and source

dimensions which are in the proportions dictated by the following scheme,

which has been given by References 6 and 10.

Although this method was

originally given by References 6 and 10 for on-axis point sources, 1t can
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be extended to any source geometry., Inspection of the expressions for
€AT given by Equations (2.4 - 2.9) shows that the crystal and source
dimensions always occur as products with the total cross section, T ,
or in ratio with one another. Thus the absolute total efficiency cal-

culated for a given set of crystal and source dimensions and cross section

equals that for N +times each of the dimensions and at a cross section

corresponding to T/N , where N 1is any number,

2, Other Source Energies

The data tabulated in Appendix G may be readily interpolated
for energy, as indicated in Figures II-21, II-22 and II-23, Figures II-21
and II-22 are for the 8F8 and 7F8 well crystals, respectively. Figure
IT-23 is for a 2 x 2 in. solid crystal. These figures give the variation
of GAT with energy, for different source-crystal distances. At the
lowest energies (highest cross section) the intrinsic total efficiency,
€IT , 1s unity, so that €AE = %; . Any of the data given in Appendix
G follows smooth curves such as these, so that accurately interpolated

€AT values may be obtained for energies not specifically tabulated.
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CHAPTER IIT

APPLICATION OF MONTE CARLO TECHNIQUES TO
THE CALCULATION OF PHOTOFRACTIONS

A, Principles of Monte Carlo Calculations

The principles of Monte Carlo calculations have been discussed

(23-29)

elsewhere and only a brief mention of some general methods used in
these calculations will be given here. Monte Carlo methods involve sta-
tistical estimates of the fraction of a given number of source particles
that can be expected to terminate in preassigned categories, after having
undergone various interactions in media of known geometry and composition.
Use of the method is only limited to those problems in which the probabili-
ties of each interaction and the relevant physical laws are known., Since
solution of the coupled set of equations describing these processes can
not be obtained in general, Monte Carlo methods provide a powerful tool
for the solution of practical problems involving particle transport. The
method consists of calculating on the digital computer the mathematical
equivalent of a low intensity experiment,

The basis of all Monte Carlo digital computer calculations is
& set of random numbers, uniformly distributed between zero and one., In
practice, however, such a set of numbers is not stored in the machine
memory. Rather, upon demand, a so-called pseudo-random number is generated
by any one of a number of techniques. The randomness of these generated
numbers has been throughly tested,(25) such that the periodicity for their
repetition is exceedingly large and that all digits have essentually an

equal probability of appearing. The method of random number generation

-68-
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)

employed in these calculations has a period of 235.(30 Henceforth when
a random number is referred to, it will mean one of these machine-generated
pseudo-random numbers.

The discussion here is limited to a general outline of Monte
Carlo techniques, as they are used in the present calculation of photo-
fractions. The entire problem is treated here, without a detailed account
of each of the physical processes and assumptions used, in order to provide
an overall picture of primary photon and secondary particle transport
through the crystal. Chapter IV will elaborate on methods of simulating
each of these physical processes and source conditions,

Two evehts are of primary interest in calculating the photofrac-
tions; the number (I) of incident source gammas that interact at least
once in the crystal, and the number (A) of incident source gammas that
deposit their entire energy in the crystal. By definition, the photofrac-
tion is given as the ratio of these two numbers, (A/I). Thus, the princi-
pal objective of the Monte Carlo calculation is to determine the number of
incident source gammas that interact, and how many of these are totally
absorbed, Figure III-1 gives the general flow diagram for the computer
program, Termination of a given problem occurs when a pre-specified number
of primary interactions (I) occur in the crystal.

Starting with a monoenergetic source of specified geometry
(e.g,, isotropic point, collimated beam, etc,), a single gamma photon is
chosen. If the photon interacts in the crystal, all the subsequent events
involving the photon and its secondary particles constitute a history, The

gamma is defined by seven variables: three rectangular coordinates (x,y,z),
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three direction cosines (u,v,w), and energy (E). Rectangular coordinates
are used, even though the medium geometry is cylindrical, since the direc-

tion cosines remain constant under linear displacements., Thus one has:

/

X =X + L‘/)
Y=yt vp
z -z + WO (3.1)
Z /
("I;yl> z')
¢
cos W
cos™ W
(X, Y5 %) = X
J cos™ vV

The unprimed coordinates are initial values and the primed coordinates are
final values after the gamma travels in a straight line radial distance o ,
in the direction wu, v, w . Assuming that a source gamma is chosen by
suitable sampling techniques to lie along a path which intersects the

crystal, the distance traveled in the crystal will depend on the total

macroscopic cross section, u . Calculation of this distance introduces
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the first application of a fundamental principle of the Monte Carlo method,

that of sampling from a properly normalized distribution function.,

1. Cumulative Probability Technigue

To sample from a given distribution, the transformation must be
obtained between that distribution, and the uniform distribution of the
random numbers, One such transformation is obtained by the defined connec-
tion between a probability distribution function (P.D.F.), f(x) and its
cumulative distribution function (C.DDF.)’ F(X) . The P.D.F. is defined
as a function that yields the probability that the random variable will
assume any particular value (within a small increment) over its range of
definition., The C.D.F, is the probability that the random variable takes

on values less than or equal to some specified value. Then, by definition:
X
F(x) :[ .F(x’) dx! (3.2)
—co

Consider now the P.D.F. and C,D.F. for the uniformly distributed
random numbers over the range O - 1, Let g(r) = P.D.F, such that g(r)dr is
the probability of obtaining a random variable in dr about r . Since
the P.D.F. is a uniform (i.e,, constant) distribution function, normaliza-

tion requires that g(r) = 1 . Thus we have:

r
C.D.F,. =G(r) =f3(r')dr'= r (3.3)
0
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9

10—

o " 1.0

Consequently the C.D.F. for the random numbers is Jjust the value
of the random number., From Equation (3.2) it is seen that F(x) is a
monotonically increasing, single-valued function of x for any f(x) >0,
and by definition f(x) 1is always positive. For a given value of the
random number r , we wish to make the connection between Equations (3.2)
and (3.3), such that we obtain a value of the variable x sampled from

the distribution f(x) . This connection is given by:

X
r=F (%) =f¥(><')d><' (3.4)

It may be seen that Equation (3.4) determines x wuniquely as a function
of r , in such a way that since r is uniformily distributed on the
interval 0 <r <1, x falls with the frequency f(x) in the interval
dx . It has been arbitrarily assumed here that the lower limit of the
interval of definition of f(x) is x =0 .

Therefore the so-called cumulative probability technique of
Monte Carlo involves solving Equation (3.4) for x in terms of a random

number r , Two objections to use of this method are immediately apparent,
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First, no analytical evaluation of the integral may be possible, and
second, even if the integral can be solved, the resulting expression may
be so complicated that repetitive calculation with it may require too much
computer time to be economical. For either case, other Monte Carlo tech-

niques are available (e,g,, rejection techniques).

2. Rejection Techniques

To avoid the problems presented by use of Equation (3.4), the
rejection technique is commonly used. Given the normalized probability
distribution function f (x) where 0 < x <a , and that the maximum
of f(x) is L , in the range definition of x , what is required is a
choice of the variable x which lies within the area denoted by
f: £(x')dx' . The procedure is to choose two random numbers ry and T, .
Set x; = a.-r; and test if rpL < f(xp) . If this inequality is satis-
fied, accept xq as a randomly obtained value for x from the function
f(x) . 1If roL > f(x1) , then reject ry , rp and obtain two new
random nmumbers, continuing the processes until the inequality r,L < £(rqa)

is satisfied. The probability of accepting X7 1s

which verifies that the frequency distribution from which the random
variates are obtained is in fact the function f(x) . Rejection of sets
of random numbers causes an inefficiency in the method, and for a normal-

ized f(x) , the acceptance rate is 1/al ., The acceptance rate may be
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considered to be ratio of the area of interest to the total rectangular

area being sampled given by
/ a
— | fw dx
al
()

£

Most frequently the cumulative probability method and rejection
techniquesAare combined (e.g., sampling from the Klein-Nishina formula
used for Compton scattering in these calculations, see Appendix C). The
advantage of combining these techniques is that if a simple approximation,
g(x) can be found to a complicated function, f(x) , the cumulative pro-
bability method can be applied to g(x) . Then g(x) and f(x) can be
related by use of the rejection technique. For a properly chosen g(x) s
the acceptance rate in the rejection technique will be high and an efficient
sampling procedure will be available for a given f(x) . Reference 24 gives
an extensive compilation of such technigues for many distribution functions

encountered in physical and mathematical problems.
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To select a random variable x from a given f(x) for
0<x<a, onefirst obtains a value for x from an approximating
g(x) by the cumulative probability technique. Thus one obtains

x| = G'l(rl) , Where ry is a random number,

Xl
no= GX) = 3<x')d><’ 5

and x is easier to obtain from g(x) than solving Equation (3.4),

with f£(x) . The relationship between g(x) and f(x) 1is obtained

from the rejection technique. Defining h(x) = £f(x)/g(x) , and L = maxi-
mum of h(x) in the range O < x < a , one obtains a second random
number To . Rejection of the set ry , rp occurs until the inequality
roL < f(xl)/g(xl) is satisfied. When this is satisfied, x 1is accepted
as the randomly chosen variable from the distribution f£(x) . The process

is depicted below.
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The probability of accepting X4 from the rejection technique is

h()/L
X))
f dp, = B

and the probability of obtaining xy 1is g(xl) , from the definition

of a probability distribution function. Thus the combined probability of

choosing and accepting Xy is the product of the independent probabilities

h(x,) . S(XI) — ;E(X.)
L L.

which again verifies that one is sampling from the correct distribution

function, f£(x)

B. Path Length Sampling

Returning to the problem of determining the distance traveled
by a gamma before any interaction occurs, we have the P.D.F., f(p) given
by:

f(p)dp = e™™u dp = probability that a photon travels a distance

0 without interaction and then has an interaction in the inter-

val between p and p + dp )

g = total cross section .

Applying Equation (3.4) we obtain:

r = random number
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Von Neumann(25) has given another method for obtaining the path length,
o , without evaluating the logarithm of a random number. The incentive
for using the von Neumann technique is to reduce the computer time, but
a comparison between his method and Equation (3.5) with the Michigan

computer give a negligible difference in computational time., Equation

(3,5) was used throughout these calculations.

C. Gamma Interactions

Having determined the path length of the source gamma in the
medium, a check is made to determine if the gamma interacts within the
crystal boundaries, by using Equations (3.1) and the crystal geometry.

If the interaction occurs outside the crystal, then the gamma is counted
in the appropriate termination category as having passed through the crys-
tal with no interaction. Another source gamma is selected and the pro-
cess is repeated. When a gamma has an interaction within the crystal,

the event is recorded, and the elementary probabilities for the possible
gamma. ray interactions dictate which interaction occurred. The possible
interactions considered are photoelectric absorption, Compton scattering,
and pair production., The following macroscopic cross sections, [em]™t ,

are defined:

2(E) = Compton scattering
k(E) = photoelectric absorption
1(E) = pair production

=

N
=

N~—
n
™
+
=
+
|
it

total.
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Then X/u , /b, T/k at a given energy are the probabilities per inter-
action of Compton scattering, photoelectric absorption, and pair pro-
duction, respectively. The Monte Carlo procedure for deciding which
interaction occured is shown by the following flow diagram, where r 1is

another random number.

. > N — - XK »| pair produc-
obtain r T >H yes r > yes tion event
no no
] ‘
Compton Photoelectric
event event

1. Photoelectric Absorption

Depending on which primary gamma interaction occurs, as deter-
mined by the technique shown in the sketch above, a different set of cal-
culations must be made, If a photoelectric absorption takes place, the
following sequence is followed. The photon is assumed to transfer all
of its energy to a single target electron. The electron originates at

the point of interaction and is ejected in a specific (energy dependent)
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polar angle with respect to the incident photon direction., The azimuthal
angle of ejection is uniformly distributed, and a transformation is made

to refer the electron direction back to the coordinate system fixed in

the crystal., Calculations are then made to determine ifithe electron
escapes the crystal., If this occurs, the history is terminated. If not,
then data for bremsstrahlung generation are sampled. These bremsstrahlung
photons are followed through the crystal, undergoing all the same processes
that primary photons do, except that electron and subsequent bremsstrahlung
generation is considered negligible. If the bremsstrahlung photons are

all absorbed, the total source energy has been absorbed, a record is made

in the appropriate category, and another source gamma is chosen.

2. Compton Scattering

If a Compton scattering occurs, both the scattered gamma and
free electron are followed. The polar angle for the scattered gamma ray
is obtained by Monte Carlo sampling from the Klein-Nishina formula,<3l>
by the method given in Appendix C. The energy for the emergent gamma
and electron, as well as the electron polar angle, are then calculated
from the relationships given in Chapter IV, The scattered gamma and
electron are assumed to be uniformly distributed in azimuthal direction.
First the electron and subsequent bremsstrahlung are followed in an
identical manner as described above. Then if the electron and brems-
strahlung are toﬁally absorbed, the Compton scattered gamma is followed

through the crystal in the same manner as for primary source gammas, with

electrons being produced at every interaction. At each interaction in a
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given history, a running summation is kept of the energy deposited in
the crystal., Termination as a total absorption occurs when the differ-

ence between the source energy and the energy deposited is < 10 Kev,

3., Pair Production

If a pair production event occurs, the two pair electrons are
assumed to share equally the incident gamma kinetic energy excess over
the rest mass of the two electrons. The electrons are ejected in an
(energy dependent) forward direction, with a uniform azimuthal distribu-
tion given to one electron, the other one correlated in azimuth at 180°,
The electrons and bremsstrahlung as followed, and if absorption of these
secondaries occurs, one of the electrons is chosen at random to be the
positron., The assumption is made that the positron comes to rest before
annihilation, and this defines the position for emission of the two
~,51 MeV annihilation gammas. These gammas are assumed to be emitted
isotropically in opposite directions, and they are followed through the
crystal in the usual fashion, with electrons and subsequent bremsstrahlung

being considered.

D. PSecondary Gammas and Electrons

All of these gamma interactions give rise to secondary gammas
and particles, i.e,, scattered gammas and free electrons (positrons and
negatrons), These gammas may interact further until they are absorbed,
or eecape from the crystal. In addition, the electrons produce positron
annihilation gammas, bremsstrahlung gammas, and further electrons., Thus

a sequence of gammas and charged particles is built up throughout the
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crystal, which must be terminated at some point for any practical calcula-

tion. For usual applications of scintillation crystals, the sequence
beyond the first few generations can be safely neglected with insignifi-
cant error, The termination of this sequence is discussed below. Gammas
and particles from a given history are followed until either escape
with more than 10 Kev energy, or the total source energy is absorbed.
Whenever the former occurs, the history is immediately terminated since
it is assumed that loss of 10 Kev energy removes the '"count" from the
total absorption peak. A count corresponds to the summation of the energy
deposited in the individual events as discussed in Chapter I. The sequence
of events from a primary source gamma is considered to be as follows:

(a) Scattered gammas due to successive Compton events

(b) Free negatrons from photoelectric and Compton events

(¢c) Pair electrons (positrons and negatrons) from pair pro-

duction events.

Further interactions of the above give:

(a) Annihilation gammas from positron annihilations

(b) Bremsstrahlung photons from energetic electrons,
It is assumed that electrons are slowed down by excitation and ionization
of the target atoms, as well as by radiative losses (bremsstrahlung), but
that the subsequent de-excitation photons and free electrons generated
are totally absorbed in the crystal. Also it is assumed that the brems-
strahlung photons can undergo any of the three primary gamma interactions,
but no electrons are generated. The justification for these assumptions

is that for the high atomic number materials used for gamma scintillation
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crystals, absorption of these low energy gammas and electrons occurs with

& very high probability., Thus the sequence is terminated at this point.

E, Typical Histories

The tables given below summarize the number of primary events
found to occur in a typical history of gammas from an isotropic source.
Reference 32 gives similar results obtained from Monte Carlo calculations
with a narrow collimated beam source normally incident on a solid crystal.
Reference 32 ignored all electrons, bremsstrahlung, and annihilation gammas,
including only Compton scattered gammas. Calculations were limited to a
maximum source energy of 1.5 MeV, All of the data given below were obtained
from the Monte Carlo program for a 2 in. dia, x 2 in. high cylindrical
solid NaI crystal. The calculations were made for 1000 primary interactions
at each source energy and neglects energy loss by escaping electrons and
bremsstrahlung. Table III-1 compares the observed fraction of primary
interactions with the elementary probabilities per interaction given by
the cross sections, Agreement is seen to be excellent, considering the
relatively few histories considered. Table III-2 indicates that for gammas
which are absorbed, most absorptions occur after zero, one, or two scatter-
ings; while from Table III-3, one sees that most escaping particles suffer
only one scattering prior to escape. In general, the results tabulated
here indicate that as a gammae suffers more scattering the probability of
absorption increases. Physically this corresponds to reducing the source
gamma energy by successive scatters, until the gamma energy is in the

range where photoelectric absorption predominates. Table III-4 gives a
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sequence of typical events when pair production occurs in the crystal.

It should be noted that relatively few pair production events occur for

a gamma that suffers an initial Compton scattering. Also, the number

of times both annihilation gammas are absorbed is significantly less than

the number of times one annihilation gamma is absorbed,

TABLE III-1

FRACTION OF PRIMARY INTERACTIONS

Energy | Photo- K P Pair T
(MeV) electric M Compton M Production M

.51 . 182 17k .818 .826 0 0
2.0 .021 .025 .938 .915 .0kl .059
3.0 .016 .017 .800 .808 . 184 L17h
4,0 .020 .013 .691 .703 .289 .285
5.0 0 .009 614 .620 . 386 . 380

TABLE III-2
FRACTION OF THE 1000 INTERACTING GAMMAS THAT HAVE
EXACTLY X SCATTERINGS PRIOR TO ABSORPTION
Energy

51 .182 212 . 105 .033 .011 .00k 0 0
2.0 .021 .076 .087 .033 .015 .003 .002 0
3.0 .016 .Okk .063 .028 ,002 0 0 0
4,0 .020 Lokl .okl .033 .009 .002 0 0
5.0 0 .032 .032 .013 .007 .002 0 .001
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TABIE III-3

FRACTION OF THE 1000 INTERACTING GAMMAS THAT HAVE
EXACTLY X SCATTERINGS PRIOR TO ESCAPE

Energy
(MeV) X=1 X=2 X=3 X=L4 X=5

Sl .367 .073 ,010 .003 0
2.0 567 .121 .027 .007 0
3.0 .525 . 106 .023 .003 .001
4,0 Ral .072 012 .00L .001
5.0 418 .084 .009 .006 0
TABLE III-4
TYPICAL PAIR PRODUCTION EVENTS
(For 1000 Primary Interactions)
No. Pair Events No., Times X Annihilation
Energy  Total No, After Initial Gammas Totally Absorbed
(MeV) Pair Events Compton X =2 X =1 X =0
2.0 67 6 6 26 35
3.0 183 L 8 62 113
5.0 Lol 12 20 139 2h2



CHAPTER IV

DETAILS OF THE MONTE CARLO CALCULATIONS FOR PHOTOFRACTIONS

The Monte Carlo programs can be divided into sections con-
sisting of':

(a) Source selection routine

(b) Particle interactién

(c) Particle escape routine

(d) Termination criteria and categories.

A, Source Geometries Considered

Two general types of monoenergetic gamma ray sources are con-
sidered, These are isotropic sources and monodirectional sources, the
latter being collimated so that all rays are parallel to the crystal
axis of symmetry., The isotropic sources are typical of small volume
laboratory sources and are restricted to point sources (on and off the
crystal axis), circular disk sources centered on the crystal axis, or
right circular cylindrical sources located along the crystal axis.
Self-absorption and scattering have been considered for the cylindrical
volume source, and will be discussed in Section H of this chapter, The
monodirectional source is the limiting case of a source at large dis-
tances from the detector, collimated to yield a parallel beam, Three
degrees of collimation are considered: a narrow beam collimated to lie
along the crystal axis, a beam collimated to any specified diameter, and

a broad beam which provides full illumination of the crystal face., The

-86-
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collimated beam sources are assumed to be normally incident upon the
crystal face or well bottom, All of these seven sources have been con-
sidered for the solid cylindrical scintillation crystal, and for the

well crystal except for the last two collimated sources,

1. Isotropic Source Routines
The objective of any source routine is to obtain the direction
of a source gamma and its coordinates at the point of intersection with
the crystal surface, This point is determined by a line having the
direction cosines u, , v, , W, from the source to the crystal. An
isotropic source is defined as one in which the probability, P(Q) of

emission into any solid angle is a constant for all solid angles. Thus
P(ﬂ>dﬂ = K dﬂ K = constant

Expressing the solid angle in terms of an azimuthal angle ¢ , and a
polar angle @ with respect to any one of the three rectangular co-

ordinate axes, we have

P(a)da = Pwo) dudp

where P = cos@ , is the direction cosine relative to the arbitrary axis.
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The probability is constant in azimuth about the arbitrarily chosen

coordinate axis, and integrating over ¢ gives

Playda =27 K du

Thus the probability of emission is a constant over all values of the
direction cosine, p . Since the reference axis was arbitrarily chosen,
this argument can be repeated for the other two rectangular coordinate
axes. One concludes that isotropic emission can be described by obtain-
ing the three direction cosines u_, , v, , w, , for a ray as shown below,
from a constant distribution function such that all values from -1 to

+1 have an equal probability of occurrence,
Z
[

X
Uy = COS
Vo = COS @
We = COS ¥ (k.1)

These direction cosines may be obtained from a set of random numbers,

uniformly distributed on the interval O - 1 by:
We=2T1 ~/

We =21, =/

~A=in%u:+vf) (4.2)

Ty, Tp = random numbers
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The last équation is a consequence of the definition of the direction

cosines; with the + or - %being chosen at random.

a. Solid Crystal - Point Source

For the solid crystal consider a point source located off the
crystal axis as indicated below. The origin, O , of the coordinate
system is fixed in the crystal face, in contrast to that defined in

Chapter II, and the initial coordinates for this point source are:

Xg =P
v, =0
z = -b

ISOTROPIC
SOURCE (X,,Y0,2,)
~—— R 'i‘ P —.W xl
K ]§:0 SELECTED |
RAY -b
i

r l
—- X
0 vz \\ _(xl,y|,z|)

\
X

Y “//,/’

| _-SOLID CRYSTAL
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Rather than sample over all directions, as indicated by Equations (M.E),
it is more efficient to restrict the directions of emission to randomly

chosen vectors, uniformly distributed within the cone defined by:

| & ) (4.3)

Wo £ b -
Vbt +(R+P)

and then to reject any rays which do not intersect the crystal face.
Obviously as the distance p increases, the efficiency of this method
will decrease since the fraction of the base of the cone which is covered
by the crystal face decreases. In addition, it may appear that calcula-
tion of the square root may require more computer time than other methods,
for example, sampling over the entire positive =z direction and accept-
ing only rays that intersect the crystal. However, for smaller distances
P , the increase in efficiency due to the geometrical effect has been
calculated to more than offset the time saved by use of more simple, but
léss efficient methods. 1In particular when p = O (point source on axis),
one has the case of greatest interest, and the conditions of Equation (M,3)
require that every gamma strike the crystal face, Applying the cumulative

probability technique of Equation (3.4) one gets:

N S R - W
Vb + (R0 VB +(RD)

and to obtain -1 < (u, , v.) <1 one uses:

Wo




-91-

\lo'—'—? rz —/

Vo = EV/—(ul W)

where 1y , T, are random numbers and the + or - is chosen at random.

The coordinates in the plane of the crystal surface are:

b
X|:p+ W uo

and for intersection with the crystal, the above process is repeated until:
2
2 2
Xl +>/‘ < R .

b, Well Crystal - Point Source

The procedure for the well crystal is somewhat more complicated,
since gammas from an isotropic source can strike either the sides or the
bottom of the well. Isotropic sources are limited to those contained
within the well as shown below. (Again note that the origin of the co-
ordinate system is different from that considered in Chapter II). The

direction cosine w_, (w = cos y) is obtained from a uniform distribution
o

We =2 "=/

r = ragndom number
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Next the sine and cosine of a uniformly distributed azimuthal angle

0 <9 <2 are obtained by the following technique first given by
(25)

von Neumann, (This procedure eliminates time-consuming series eval-

vation of the functions sing , cosp , where ¢ = 2nr).

Obtain X:Zn—/

. z . 2
- — K=x*+Yy 41| > K

sin ¢= ZXj
K

no

The other two direction cosines, wu, , v, , defined in the sketch above

Equations(4.1) are obtained from:

2.\ 2
Woe= COSd)(/ — Wo )

) 2. %
Vo= 81N (/ =W )

Then letting

H. - b

W = = Ccos ’b,\_

s+ (Ha-bY

and

Wy = —=b - COS Zu
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where

s = -p cos D —\-\/ti —p"Sinz<Z>

the tests are made

and

WL>WoéWU-

(4.4)

(k.5)

When (4.4) is satisfied the source gamma, labeled ray 1l in the sketch

below, strikes the well bottom. The coordinates at the point of inter-

section with the bottom of the well are:

%
X, =p+S$' cosd :p+(Hw—b)(/ -w,’) co\f/qb

::f)“f(}4v4"b).i£&

Woe

y= 8 sind = (H-b)(/=w!)* sing = (H.-b)

in®d =
Wo

2z, = P{VI .

Yo
Wo
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If (4.5) is satisfied the gamma, labeled ray 2 in the sketch below,

strikes the side of the well.
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The coordinates at the point of intersection with the side of the well

are:

X, =/O + S C03q>

N S S.\'I\CD

Z, = b+ WeS§
(1—we) %

If neither (4.4) nor (4.5) are satisfied, then the gamma escapes
through the top of the well without hitting the crystal. For this case,
the entire process is repeated. For most practical well crystal geometries
the efficiency for selection of a source gamma which strikes the crystal is

very high, especially if the source is located deep within the well.

c. Extension to other Isotropic Sources

The above methods are readily extended to cover the other iso-
tropic sources. For on-axis points, p =0 and the same procedures are
used. For a disk source of radius Ry , the radial distance is sampled

using the cumulative probability technique:
,D - RDV r r = random number

This is extended to a cylindrical volume source of height bp - bl by

selecting

b =r(by - by) +D r = random number.

1
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] I"—RD
|
bl
T —t "_—RD
» b,
b, i
, { Volume , A
! Sources + +
b
| +2
]
Solid Crystal Well Crystal

2, Collimated Beam Sources

The monodirectional sources have by definition,

For the narrow beam collimated along the crystal axis

X, =Yy = 0

z1 = 0 , solid crystal

z1 = H, , well crystal

For a beam collimated to any diameter, Ds (solid crystal onLy)

X|:: J}i_ rFr- r = random number
2
j=Z=O

and in particular for a broad beam, Dy = crystal diameter.
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B, Gamma Interactions

Having obtained the coordinates at the crystal surface x; ,

Y1, 29 , glven above for the appropriate source, the gamma travels into
the crystal along a path in the direction (u, , v, , w,) . As discussed
in the preceeding chapter, the radial distance traveled to the first inter-
action is obtained by sampling for the mean free path from the total cross
section, The Nal cross section data of Grodstein and MbGinnies(Eo’gl) for
Compton and photoelectric events, as well as the total cross section, are
stored in the computer as an integral part of these programs, with inter-
polation for energy being performed when required. -Table II-11 gives the
energy increments used. As previously discussed, the type of interaction
is determined by the relative probability for its occurrence. It is at

this point that the various possible physical processes are simulated, based

on assumptions made about the character of these processes.

1. Interaction Processes Considered

For gamma rays the only important interaction processes in the
crystal, for usual applications of scintillation crystals, are photoelec-
tric, Compton scattering, and pair production. Rayleigh (coherent)
scattering has been ignored, as discussed in Chapter II. The fluorescent
radiation and Auger electrons that are emitted in filling the vacancy in
the inner shell following a photoelectric absorption are neglected since
the energy released (~ 28 Kev for I) is so low. The photons will be absorb-
ed essentially at the point of the photoelectric event for all crystals

larger than ~ 1 cm,, since the absorption cross section in NaI for these
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low energy photons is so high, ~ 32 em~L, Nelms(uu) indicates that

electrons of this energy have a range < 10_3 cm,

2. Secondary Gamma Treatment

Gammas interacting in Compton events are assumed to scatter
according to the differential Klein-Nishina formula for free electrons.(3l)
Experimental confirmation of this formula has been reported by References
34 and 35. Since the Compton process occurs with the outer electron shell,
the binding energy of these electrons (of the order of a few ev.) is
negilgible compared to the incident photon energy (of the order of 1.0 MeV,).
Nelms(35> shows that the corrections required to this formula due to the
electron binding energy are negligibly small., Polarization effects in
Compton scattering were also ignored. Calculations made by Spencer and
Wolff<36) indicate that when polarization effects are considered, the
photon flux is only slightly increased (~ 1%) over calculations made when
polarization is neglected. Furthermore, these authors have shown the
increase in photon flux occurs only for deep penetrations (i.e., many
scatters), and photon energies in the range 0.1 - .2 MeV, Since typical
histories for the present calculations, as given in the previous chapter,
indicate that only 2 - 3 scatterings usually occur, and total penetration
is only a few centimeters (typical crystal dimensions), polarization of
Compton scattered gammas is negligible here.

As a photon is degraded in energy by successive Compton events,

a cut-off energy has been chosen, below which the photon is assumed to be

completely absorbed., This is required for proper termination of some
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histories in the computer program and is chosen to be .0l MeV. Since
the absorption cross section is so large (~ 564 em.”t in NaI), the prob-
ability for escape for a photon of energy < .0l MeV is negligible.

In addition to Compton scattered gammas, the position created
in the pair production events gives rise to secondary photons upon anni-
hilation. These two annihilation photons each have a kinetic energy equal
to the rest mass of an electron and are emitted from the location where
the positron is essentially stopped. HEitler(37) has shown that for pos-
itron energies below 10 MeV, over 90% of the positrons will be reduced to
essentially zero velocity before annihilation. The annihilation photons
are assumed to be emitted isotropically, since there is no preferred

(38)

orientation. To conserve momentum the two photons are emitted in

opposite directions.

3. Photoelectric Events

If a photoelectric event occurs, the gamma ray is totally ab-
sorbed and an electron is emitted with kinetic energy equal to the kinetic
energy of the photon. This neglects the electron binding energy which
is about 30 Kev for K or L ghell electrons in iodine, as being negli-
gible in comparison to the incident photon energy. The polar angle of
photoelectron emission, relative to the incident photon direction, is as-
sumed to be the average emigsion angle for the given electron energy. This
average polar angle has been given by Davisson and Evan439) as derived from

(ko)

the relativistic equation of Sauter. ~/ Use of this data takes into account the
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variation of emission angle with energy. For low energies, emission
tends to be at right angles to the direction of incidence while the
angular distribution shifts to the forward direction at higher energies.
The photoelectrons are emitted in a uniform azimuthal distribution.
These polar and azimuthal angles are measured relative to the directed
line of the photon incidence and a transformation must be performed to
relate these angles back to the coordinate system fixed in the crystal.

(23,32,38)

involve

(1)

The usual formulas for performing this transformation
computation with rather involved expressions. However Kleinecke
gives a highly efficient technique for performing the transformation.

His method has been used throughout these calculations when it is desired
to select a set of new direction cosines for a given set of original
direction cosines and polar angle, knowing that the azimuthal angle is
uniformly distributed. Kleinecke's method is given in Appendix F,
Detailed treatment of the electron and bremsstrahlung will be given

subsequently, in Sections C and D,

Lk, Compton Events

If a Compton event occurs, the differential Klein-Nishina for-

(2k4)

mula is sampled by the selection technique given by Kahn. Appendix
C gives details of the sampling procedure used, This method selects

the cosine of the polar scattering © and then the energy of the scatter-

ed gamma is obtained from the Compton relationship:

EO
(1-cos6b)

E =
| + Ee
m.C
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where E' = scattered gamma energy, MeV
E, = incident gamma energy, MeV
m002 = electron rest mass energy, MeV

The new direction cosines for the scattered gamma are obtained by the
"

Kleinecké‘l)technique, using cos © and a uniform azimuthal distribution.

Prior to following the scattered gamma ray through the crystal, calcula-

tions are performed to determine if the scattered electron, with energy

E, and polar angle ©' given by

is stopped in the crystal. Also prior to following the scattered gamma,
it is determined that any bremsstrahlung photons generated by this elec-
tron have all been absorbed in the crystal. As previously discussed,
escape of any of these electrons or photons terminates any further con-
sideration of that histéry. Assuming that the electron and generated
bremsstrahlung are absorbed, the scattered gamma is followed through

the crystal in an identical procedure as that used for source particles.

(See flow diagram, Figure IIT-1, of previous chapter. )

5. Pair Production Events

If a pair production event occurs, the incident gamma energy,
less twice the electron rest mass energy, is assumed to be shared equally

between the negatron and positron. This neglects the slight asymmetry in
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energy distribution between the position and negation. The mean polar

angle for the emitted pair electrons is given by Bethe and Ashkin(hg) as
2
9 —_ moC
Ee (4.6)
where m002 = electron rest mass energy = .510976 MeV

and FE, = electron kinetic energy in MeV
The forward peaking predicted by Equation (4.6) for increasing electron

(43)

energy, has been experimentally confirmed. The azimuthal angles for
the negatron-positron pair are uniformly distributed, 180° apart. No
differentiation is made between positrons and negatrons when electron
ranges and bremsstrahlung generation are considered (see Sections C and
D, below). If both electrons are absorbed within the crystal, as well
as any generated bremsstrahlung, then the two annihilation

photons are followed. Since the pair electrons are treated in an iden-
tical manner, one is chosen at random to represent the positron for pur-
poses of generating annihilation radiation. The two annihilation gammas
originate at the point of stopping the positron, which was calculated to
determine if the positron remained within the crystal, and are emitted
in an isotropic angular distribution correlated at 180°, with an energy
= 0,510976 MeV, One annihilation gamma is followed through the crystal
and if absorbed the second gamma is followed. All Compton scattered and

annihilation gammas are considered by the same computational procedure

which includes generation of electrons and bremsstrahlung.
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C. Approximation of Electron Transport

All of the three gamma interaction processes give rise to elec-
trons, The pair production events produce negatrons and positrons.
However, many more negatrons are produced in the crystal by successive
Compton and photoelectrié events, and since Nelms(uh) and Seliger(h5>
have indicated only a slightly greater range for positrons over negatrons,
the assumption was made that both electrons would be treated as negatrons,
as far as range calculations are concerned.

Slowing down and eventual absorption of electrons involves
many interactions., Treatment of these electrons by the same techniques
as used for gamma rays, which undergo a relatively small number of large
energy-loss interactions, is not feasible for individual electron tracks.
For the calculation of photofractions such detailed treatment of the
electrons is not necessary because the important determination is whether
the electron is stopped in, or escapes from, the crystal. This can be

readily calculated by the following approximate method. l\Telms(Lm>

gives
calculated data for Nal for the energy loss per unit path length (stopping

power, -dE/dx), and the integral:

E dE”
E)= | ——— (L. 7)
Ro(E) ESZH !
(o)
which represents an average of the actual path lengths the electron

follows from its orgin to the end of its track., Nelms' data goes to

E = 1.2 MeV and Zerby(38) gives values for RO(E) for 2 <E < 10 MeV,
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The maximum radial penetration of an electron determines whether it passes
through a given thickness of material and this distance is approximately
related to the Nelms and Zerby data by the intercept of the electron trans-
mission curve,

The transmission probability for electrons in sodium iodide is
given in Figure IV-1, The data given in this figure hads been calculated

(46)

with the Monte Carlo program of K. Wainio for an isotropic, mono-
energetic electron source within sodium iodide. An isotropic source has
been used to approximate the nearly random directions of electron inci-
dence on the crystal boundary, after an electron has suffered many de-
flections. Also, by using an internal source within the medium, the
effect of back scattered electrons is included in the transmission data
of Figure IV-1. Conventional transmission curves, such as those of

Seliger<45) <48)

and Agu, are obtained with a source of normally incident
electrons external to the medium and do not include back scatter effects.
In Figure IV-1 the percent transmission is plotted versus the normalized
range (p/RO) , which is defined as the ratio of the mean penetration
distance to the total path length traveled by the electron. This ratio
is a measure of the range straggling that occurs. At p/RO = 0.7 , the
electron transmission is less than 3%. Plotting the data from the com-

46)

puter program of Wainio( in this manner, the transmission curve has
been found to be nearly independent of energy for electron energies of
interest., Other workers(u5’u7> have also reported that electron trans-

mission data is nearly independent of energy, for low energy electrons,

when plotted against the normalized range.
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Figure IV-1. Electron Transmission in NaI.(L¥6)
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Empirical equations have been fitted to the data of Nelms<hh)
(38)

and Zerby as follows:

1.625

R, (E)= .30/ E cm. , E£.2 Mev.

1,309

— ,200 E cm. 2<2E £1.2 Mew.

b

=,2/54 E cm. , E >.2 Mev.

Also the transmission data of Figure IV-1 are fitted by:

R(E/R)= —2.05 & +.893 » R £.277

=172 (‘% ) 2-.293 % —.389 , 1,% ».277

Let p equal the distance along the directed line from the
point of the free electron emission to the nearest crystal surface and
consider the following cases:

(1) £ > 7

R.(E)

(2) £ .7
RE® ©

For Case (l), the transmission probability from Figure IV-1 is essentially
zero and the electron is assumed to be absorbed. The assumption is also
made that the energy emitted by electron=-induced excitation and ioniza-
tion is absorbed in the crystal. For Case (2) the probability for

electron escape is given by the function Py(p/R,) which has the form
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of the transmission curve, where O < Pp <1 . Sampling from the trans-
mission curve can be performed by selecting a random number r and say-

ing that escape from the crystal occurs when

r< RIR)

otherwise absorption occurs. Thus one approximately takes into account
the decrease in escape probability as the distance to the crystal surface
increases, |
For those electrons which escape the crystal, a small fraction
are returned to the crystal with nearly all their energy, due to small
angle reflections from the canning of the cfystal. Assuming the elec-
trons are isotropically incident upon the canning, the number albedo and
reflected energy spectrum data of Berger(u7) have been used to determine
the fraction of reflected electrons returned with approximately 98% of
the incident energy. These electrons are assumed to deposit all their
energy in the crystal. The number albedo data are stored in the pro-
gram as a function of energy and the fraction of the returning spectrum
that lies within about 98% of the incident energy has been determined to
be approximately 0.08 by graphical integration of Berger's data for .51
MeV electrons isotropically incident upon aluminum, The shape of the
energy spectrum for reflected electrons is expected to be nearly inde-
Pendent of incident electron energy, therefore this data of Berger has
been used for all electron energies. The overall effect of electron
reflection on the calculated photofractions is small enough so that these

approximations are justified for all usual canning materials,
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D, Bremsstrahlung Production

If the electron is stopped within the crystal boundaries, then
the bremsstrahlung photons generated by these electrons are considered,
In calculating the bremsstrahlung, the average bremsstrahlung spectrum
generated by a monoenergetic electron of known initial energy has been
used, This average spectrum is obtained by integrating over the entire
electron path as the electron slows down, andiseventually stopped. The
average spectrum, differential in photon energy, has been calculated by

(49)

Zerby and Moran for Nal and is given as Figure IV-2, This calcula-
tion is based on the Bethe-Heitler eq_uation(51> for the bremsstrahlung
cross section (includes screening effects of the atomic electrons), and
the relativistic equation of Bethe<52) for energy loss by non-radiative
collisions. No difference between the bremsstrahlung spectra generated
by negatrons and positrons has been assumed, although a slight differ-
ence could be expected because of differences in energy loss by non-
radiative collisions for positive and negative electrons. Zerby and
Moran(ug) have neglected any difference in their calculations, and Koch

(50)

and Motz, in their review article, point out that no data is avail-
able for positron bremsstrahlung spectra. The energy loss due to brems-
strahlung has assumed to be a small perturbation in comparison to the
loss by all other mechanisms,

The Bethe-Heitler equation is based on the validity of the

Born approximation., Due to this approximation the Bethe-Heitler equa-

tion is expected to be less reliable for high Z materials, and at
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)

lower initial or final electron energies. Koch and Mbtz(5o make com-
parisons between the differential cross section calculated from the Bethe-
Heitler equation and experimental measurements in thin gold (Z = 79)
targets., The greatest difference between theory and experiment exists
for electron initial kinetic energies in the range 0.1 - 2.0 MeV, The
difference is as much as a factor of two for kinetic energies close to
the electron rest mass energy, and less than 10% in the energy region
above 4 MeV, The theoretical values are consistantly lower than the
experimental values and comparisons for aluminum indicate that the dif-
ference between theory and experiment is significantly reduced as

Z decreases.

These comparisons made by Koch and Motz indicate that in cal-
culations where bremsstrahlung radiation represents a major portion of
the energy released, a large error can result when the only available
formula (Bethe-Heitler) is used. However, in the calculations being
made here the bremsstrahlung contributes a second order effect. For
example, for 5 MeV source energy gammas, the average energy of the free
electron from the first Compton scattering is 3.1 MeV. Evans,<53) page
616 gives the following semi-empirical formula for monoenergetic elec-
trons, the energy fraction, € , converted to bremsstrahlung in a

thick target:

€=.7x10'3 ZE , E in MeV,
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For 3.1 MeV electrons in Nal, €= lh%, As Figure IV-2 indicates, the
most probable radiative energy loss occurs by emission of a large number
of low energy photons, most of which will be totally absorbed in the
crystal. Even though ~ lh% of the electron initial energy may be lost
by bremsstrahlung emission, rarely will all this energy be concentrated
in one or two high energy photons. Thus the error introduced by use of
the Bethe-Heitler equation for Nal does not have a large effect on the
overall calculation for the photofraction, for usual laboratory applica-
tions of scintillation detectors.

The differential spectra given in Figure IV-2 were calculated

(49)

by Zerby and Moran, assuming that the initial monoenergetic electrons
lose energy in a continuous manner due to Coulomb scattering, and ioniza-
tion and excitation of the target atoms. This continuous slowing down
model is consistant with the previously discussed method of approximating
electron transport in the crystal. Using the Bethe-Heitler equation,<5l)
Zerby and Mbran(ug) treated the bremsstrahlung events as a perturbation
on the continuous energy loss model. Figure IV-2 gives their results

for NaI, plotted as the average number of photons\ﬁer unit photon energy
versus normalized photon energy. Zerby(38) gives the total number of
photons released, on the average, by integration of the differential
spectra from a minimum photon energy of .0k m002 up to the maximum
photon energy corresponding to the electron initial energy. The lower
limit of integration is required because the spectrum has a singularity
at zero photon energy. The assumption made here that all photons of

energy less than ,Ok mocg will be totally absorbed is justified because
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the photoelectric cross section is greater than 80 cm,—l for these low

energy photons. The results of Zerby are given in Table IV-1, below:

TABLE IV-1

INTEGRATION OF THE DIFFERENT
BREMSSTRAHLUNG SPECTRA FOR NaIl30)

Electron Initial Mean Number of
Total (Rest + Photons Released,
Kinetic) Energy, m(Ey) with Energy
E, m,cc units > .0k mge
1.1 .0009
1.5 .0325
2.0 .0972
6.0 L83k
11.0 1.9770
16.0 3.1359
21.0 LoLakh

The simulation of bremsstrahlung generation in the Monte Carlo
programs is as follows. Of the electrons created in the three primary
gamma interaction processes, only those stopped within the crystal are
considered to generate some bremsstrahlung radiation along their path
as they slow down in the crystal., (As previously discussed, if an elec-
tron escapes, the history is terminated,) For a given electron initial
energy, the mean number of photons released is obtained by interpolation
of the data of Table IV-1l, using a third order interpolation formula,
Given this mean number, m , of photons with energies > .0k moc2 emitted
over the electron path, the probability P(x) that exactly x photons

will be emitted is assumed to be given by the Poisson distribution, since
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the bremsstrahlung emission probability per electron interaction is

small.
-m X

e __m
\

p(x)= X

The probability that at most x, photons will be emitted is given by

the cumulative probability,

Xo

Px)=) px (4.8)

X=0
which is a properly normalized cumulative distribution function (C.D.F,).
The number of emitted bremsstrahlung photons, x, 1is obtained from this

C.D.F. whenever the inequality
P(x) & r£ P(x.+) (4.9)

is satisfied, where r is a random number. In these calculations,
Equation (4.8) is evaluated for successive values of x, and the in-
equality (4.9) is tested., By reference to Table IV-1l, it is apparent
that for low energy electrons, the inequality (4.9) will usually be
satisfied for x, = 0 or 1 . When X, =0 , no bremsstrahlung of energy
> 04 m.oc2 are generated. For x, > 1 , a separate selection is made
for the energy of each of the bremsstrahlung photons, by the following

technique.
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2
Making the definitions (energies in m c units):

ﬂ<E°,€M€= mean number of photons with an energy between
€ and € +d€ , emitted by an electron of

incident total (rest + kinetic) energy, E, -

Thus, h{E©,€) versus € is the spectrum given in Figure IV-2,

Table IV-1 above gives values for:

mean number of photons with an
Eql

2
energy > ,0k m.c” released by
m(E) = | n(E,€)d€ =
an electron of total (rest +
04

kinetic) energy Eg ; moc2 .

A normalized probability density function is obtained by:

4‘( = 6) de n{(E.£)d€ fraction of photons with an
°s - m (Eo) - energy between € and€ +d€

Using the cumulative probability technique, Equation (3.&), one obtains
a random sample of the probability density function f(E_, € )da€ . No
useful analytic expressions are available for f(E_, € )A€ , so that
sampling must be performed from the function in a numerical form,
Letting:

€,

6 : n(E,€)de
BR(EMG) Z’[ "HE@)G)QE = 'GE;@ (4,10)
04 Jr HW(EZQ,€>>C£€

o4
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it is evident that:
_ probability that an emitted photon will

have an energy < E‘i s

and

Thus Bi(Eo: E&) is the appropriate cumulative distribution function
(C.D.F.), defined as the probability that a random variable (photon
energy in this case) is less than or equal to some specified value.
Using the Monte Carlo technique of setting the C.D.F., equal to a ran-
dom number, r , the selection of the bremsstrahlung energy is obtain-

ed from:
BL(Ec,,eL) = r e (M—.ll)

Values of Bs versus €~i have been computed from Equation
(4,10) by integration of the bremsstrahlung spectrum(Su) and are stored
in the computer programs in discrete steps. Equation (4%.11) is used to
obtain a value for Bi(Eo, 6&) . A double linear interpolation scheme
was devised to select the photon energy. First, an interpolation using
the value of Bi(EO, E&) is made, and then an interpolation using the
electron initial energy. The photons are uniformly distributed along
the electron path in a random manner, This path i1s assumed to be a
straight line starting from the creation of the electron (location of
gamma interaction) to the greatest radial penetration. The radial pene-

tration of some electrons goes beyond the crystal, yet sampling from the
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transmission curve indicates that the electron actually does not escape.
(See previous discussion of electron treatment.) For these electrons,
the end of the path for purposes of bremsstrahlung emission,"is consid-
ered to be at the nearest crystal boundary, along the direction of elec-
tron emission.

For typical applications of gamma ray scintillation crystals,
the electrons produced in the crystal will be of sufficiently low energy
to justify the assumption that the primary mechanisms causing electron
slowing down are ionization and excitation losses. This assumption has
been made by Zerby and Mbranc%»inthecalculation of the bremsstrahlung
spectrum as a perturbation on the excitation and ionization processes of
electron energy loss. The electron energy loss by radiative processes
is assumed small compared to other mechanisms. Under these conditions,
momentum is essentially shared between the target nucleus and deflected
electron, with the bremsstrahlung photons emitted uncorrelated in angular

(53)

distribution with respect to the scattered electron direction, Only
for extreme relativistic energies is the photon emitted preferentially
in the forward direction.(55> Thus, for all of these calculations, the
photon from the bremsstrahlung spectrum has been assumed to emerge with
an isotropic angular distribution, As discussed in the previous chapter,
the bremsstrahlung photons are treated in the same manner as primary
gammas, except that no electrons or further bremsstrahlung are generated.
The escape of any bremsstrahlung generated by the above technique causes

termination of that history, since total absorption of the source gamma

energy is not possible.
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E. Escape Routines

Having considered the simulation of the interaction processes,
one must next determine if a gamma or particle traveling a known distance
in a given direction will escape the crystal. For the solid crystal,
escape occurs whenever the coordinates at the end of the path satisfy

any of the following inequalities:

2 2 2
X+y 2R Z<£0 , or Z2H (4.12)
. ;7 > )
where R = crystal radius
H = crystal height.

Although the same criteria applies for the well crystal, the
problem is considerably more complicated. The derivation of the escape
routine for the well crystal is given in Appendix D. Essentially it must
be determined if the ray intersects the well, and if so, whether it re-
enters the crystal or escapes out the top of the well. Postponing con-
siderations of absorption and scattering in a three-dimensional source to
a later section, the well volume is assumed to be a vacuum. The effect
of adding a cylindrical vacuum within the crystal is to increase gamma
ray escape through the crystal exterior surfaces, as well as escape out
through the top of the well. Reduction of the photofraction, in compari-
son with that of a solid crystal, will be the net result. It is also
assumed for those gamma rays that pass through the well, attenuation in
the crystal canning material is negligible. Aluminum is most frequently
used as a canning material; typical thickness being about 0.8 mm. In

general, gammas will not be normally incident upon the canning, but the
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directions of incidence will be nearly isotropic. Except for those few
gammas which are incident at very large angles from the canning surface
normal, the path length in aluminum will not be more than ~ 1 mm.
Attenuation through this thickness is appreciable only for that small
fraction of gammas that cut through the well with energies less than about
80 Kev, Since the absorption cross section in scintillation materials at

this energy is so high (~ 10 cm. "1

in NaI), only a small fraction of the
gammas near the well surface will be effected, most being absorbed before
reaching the well. Thus if the gamma cuts through the well and re-enters
the crystal the total distance traveled is increased by the length of path
through the well. Making this increase in the path length for these gamma

rays, the above escape criteria is applied. Allowance is also made for

escape out the top of the well,

F, Termination Categories

A photon history is recorded according to the method of termina-
tion., For off-axis isotropic point sources, and disk or volume sources
some of the selected source gammas may miss the crystal entirely, and
these are recorded in the termination category, T . Those source gammas
which are incident upon the crystal, but pass through without any inter-
action are recorded in the category, P ., For any source gammas which
interact with the crystal at least once, a count is made in I category.
Of these I photons, the number that deposit the entire source energy
(i.e., totally absorbed) are recorded in the category, A . The photo-

fraction is given by A/I and the intrinsic total efficiency, e\IT is
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given by I/(I + P) . This later quantity has been calculated by numeri-
cal integration, as discussed in Chapter II, and thus provides a check on

part of the Monte Carlo results.

G, Photofraction Standard Deviation

Estimates of the statistical significance of the Monte Carlo
results for the photofraction may be obtained by calculation of the stand-
ard deviation, Statistical fluctuations occur in the number of source
gammas totally absorbed in the crystal due to the random nature of the
Processes involved. For these calculations, the number of interacting
source gammas, I , is a preassigned number. Of these I photons two
events are of interest, either the total photon energy is absorbed, or
not. The probabilities for either event are constant, and independent)
thus satisfying the criteria for application of binomial statistics. It
should be noted that the probability for total absorption is not always
small, (the photofraction goes to 1.0 for low energies or very large
crystals), so that application of the Poisson distribution is not justi-
fied, in general. One desires the variance of the ratio A/I , where 1

is a constant. It can be shown(56) that:

4= fvin

Since in general the conditions for the binomial distribution are satis-

(56)

fied, the variance is given by:
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V[a] = Ip (1-p)

where p = probability of total absorption.

Thus:

(4] o

Since the definition of the photofraction corresponds to that given above

for p,
A-p o,
I
A
_ Al = P(I-—p)
where Op = standard deviation of the photofraction. As is generally

the case the standard deviation for an assumed constant photofraction
varies as the inverse square root of the number of histories. Also one

obtains the usual Poisson distribution result from:

= VA _./ <<l .
CT'P T -i,L 2 P

Equation (4.13), being the general case, has been used in the Monte Carlo

programs which calculate the photofraction and its standard deviation.
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H, Absorption and Scattering in the Source

Up to this point in the present work, any interactions of the
gamma rays within three-dimensional sources have been neglected, For
some sources it will be desirable to consider these effects, In a review
of the current literature, Reference 18 was found to give the only cal-
culated results in which source interactions were considered. Reference
18 has given calculated results for the total efficiency of detecting,
with a solid crystal detector, gammas from a homogeneous cylindrical
volume source in which gamma attenuation occurs. The source was assumed
to be an aqueous solution of a known energy gamma emitter. (A comparison
is given in Table IV-2 between some of these results and those of the pre-
sent work.) References 57 and 58 considered solution of a similar pro-
blem with an experimental approach, Unfortunately, the sources considered
in References 57 and 58 were not homogeneous, and thus a comparison with

the present work is not possible.

TABIE IV-2

ABSOLUTE TOTAL EFFICIENCIES SOURCE SELF ABSORPTION
AND SCATTERING INCLUDED 2 x 2 IN, SOLID CRYSTAL

Energy Presepnt Calc., Ref, 18
MeV €ar €ar' €up'
0.20 . 1490 .1373 L1380

1.00 .0k99 0453 L0L5T
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Since for some volume sources it may be necessary to consider
attenuation effects within the source, the following analysis was made.
At lower energies, where the gamma ray cross sections are the highest,
attenuation in the source may cause an appreciable reduction in the photo-
fraction and total efficiency, and thus in the absolute peak efficiency,
EAP . We will designate as GAP the absolute peak efficiency for an
ideal source which has zero scattering and absorption cross sections, and
€pp' for the same source geometry which has non-zero source cross sections.
Analogous definitions are made for the photofraction, p and absolute total
efficiency, €pp . Thus, by definition:

€AT' = fraction of source gammas that escape the source with-
out interaction, and interact at least once in the

crystal

then,

f ‘”] e’ dady (4. 14)

m<|\

3

where A

1

source volume, cm,

extrapolated path length in crystal, cm.

o]
]

extrapolated path length in source, cm.

]
N TN N
Fs)

N
n

=
]

total cross section of crystal, cm, "1

-1

LN
=
1

total cross section of source, cm.
An experimental measurement of the pulse height spectrum would
indicate a lower photopeak and increased Compton continuum for a case in

which gamma interactions occur in the source volume, as compared to a case
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of identical geometry but the source being transparent to its radiation.
This is because even with an initially monoenergetic source in the case
of interactions in the source, the crystal has gammas of many different
energies incident upon it since some variable fraction of the gamma
energy can be lost in the source., Thus fhe experimental photofraction
is reduced., Reference 59, page 87 gives a curve that shows this effect
by comparing the pulse height spectra for a point source in air, and in
water, This comparison approximates the situation considered here of a
homogeneous source volume, with and without source absorption and scatter-
ing.

However, if the calculation for the photofraction p' 1is made
for only those gammas which escape from the source unattenuated in

energy, then the desired absolute peak efficiency is given by:

/ / /
where p! = photofraction, given by the ratio A'/I'
A' = number of gammas that deposit the total source energy in

the crystal
I' = number of gammas that interact at least once in the crystal
that could deposit the source energy in the crystal, i.e.,
those gammas that escape from the source without deposit-
ing any energy and interact with the crystal.
Thus, Equation (4.15) is equivalent to writing
el = 1 _ A

A/
== .8 = L k.16
AP i Il No (l)
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where NO = gource absolute gamma intensity.

This treatment of sources in which absorption and scattering occur is seen
to be somewhat analogous to the treatment in Chapter I of the ideal total
spectrum area Ag* and the experimentally observed area Ap . In both
cases, use of the absolute peak efficiency eliminates consideration of the
observed total spectrum, since this quantity cancels out in Equations (1.7)
and (4.16)., Thus since GAT' is obtained by numerical integration of
Equation (4,1L4), the only parameter to be calculated is p'

The photofraction p' will differ from the photofraction p ,
which is calculated for the transparent source case. However, this differ-
ence is due only to a geometrical effect, based on the above definition of
p' . If the volume source could be considered to be concentrated at a
point, then this "source point" would be located nearer the crystal for
the source with non-zero scattering and absorption cross sections than for
the transparent source. This is because in the non-transparent source,
gammas being emitted nearer the crystal will have a greater probability
of escaping uncollided from the source and then striking the crystal. 1In
Chapter V, the effect of geometry on the photofraction will be shown to be
small for regular source shapes of not too large an extent., By restrict-
ing considerations to cylindrical volume sources with dimensions no greater
than approximately the crystal dimensions, one can take p' =p , to a
very good approximation,

The above discussion is equally valid for solid and well crystals,
even though the reentrant surface of the latter allows the possibility of

a gamma which scatters in the crystal to reenter the source, depositing
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some energy therein. The well crystal program was modified to study this
effect, and for sources in an aqueous solution completely filling the well
in less than 0.1% of the histories did such an event occur. Thus this
possibility can be neglected, except for sources which are nearly "black"
for their radiation.

The computer program, BURP-2 evaluates Equation (4.14k) for any
specified source total gamma ray cross section (without coherent scatter-
ing). Details of using this program to include source scattering and
attenuation are given in Appendix E, Table IV-2 above gives a comparison
of the present calculations with some results of Reference 18 for a solid
crystal detector and a homogeneous aqueous solution of the gamma source.
The source diameter is the same as the crystal diameter, with different
source heights., Agreement is seen to be excellent, Since Reference 18
provides extensive tabulations for solid crystals, no further calculations
for solid crystals are given in the present work. However, no results
have been previously published for well crystals, and therefore Table IV-3
is given below., This table gives calculated E.AT, values for the Harshaw
8F8 well crystal with various energy sources in a homogeneous agqueous
solution totally filling the well. Values of Gﬁﬂx, in which source

interactions are neglected, are also given in Table IV-3,
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TABLE IV-3

ABSOLUTE TOTAL EFFICIENCIES SOURCE SELF ABSORPTION
AND SCATTERING INCLUDED 8F8 WELL CRYSTAL,
AQUEOUS SOURCE VOLUME EQUALS WELL SIZE

Energy ! Energy ! €

o €ar €ar e €ar AT
.01 L0697 8760 .60 .2589  ,2890
.015 .2388  .8760 .80 L2261 2491
.02 4158 .8758 1.00 2049 2234
.03 .5908  .87k2 1.50 L1728 .1855
Non .6539  .8756 2,00 L1567 L1667
.05 6774 L8749 3.00 L1429 1505
.06 .6883  .8737 4,00 L1385 L 1hhh
.08 .7003  .8705 5.00 L1365 . 1429
.10 L7051  .8652 6.00 L1371 L1429
.15 .6703 8046 8.00 L1404k L1455
.20 .5698  .6725 | 10.00 L1452 L1499
.30 L4081 L4710 | 15.00 .1581  .1624
Lo .3284  ,3750 | 20.00 .1680  ,173L
.50 .2849  ,3207 | 30.00 .1864 1907



CHAPTER V

RESULTS FROM THE MONTE CARLO CALCULATIONS

A, Comparison of Experimental and Calculated Results

Both calculational and experimental approaches have been pre-
viously used to obtain photofractions for scintillation crystals., Nearly
all published results are for solid crystals, with only a limited amount
of data reported for well crystals, ZFarly calculations emphasized deter-
mination of detector response spectra, and accurate photofractions were

not reported., Typical of these were the work of Campbell and Boyle,(6o>

(61) and Maeder, Mﬁller, and Wintersteiger.<62) Experi-

Foote and Koch,
mental determination of photofractions for solid crystals have been given
in References 63 - 71. Calculations, using some type of Monte Carlo
techniques with modern digital computers, have been reported in References
8, 9, 11, 32, 38, and 72 - 76. The recent papers of Miller and Snow,(9)
and Zerby and Mbran(38) are most noteworthy because theilr photofraction
calculations for solid crystals cover a wide range of gamma energies.
Trombka(77) has given some calculated values for photofractions (calculated
by Miller and Snow) and absolute total efficiencies for a 2 in. spherical
crystal, A limited amount of experimental data for well crystals have
been reported in References 59 and 78 - 82. The only reported data for
well crystals photofractions obtained by Monte Carlo calculations are

given by W&chter,<74) but the geometry was restricted to spherical Nal

crystals with empirical extrapolations used to approximately extend the

data to cylindrical crystals.

-129-
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1. ©Solid Crystals

Results for solid crystals have generally indicated larger
values for calculated photofractions than those measured in experiments.
Since the photofraction is a ratio of the area under the total absorption
peak to the total response spectrum, it can be influenced by any experi-
mental effects which change either of these areas. Photons may undergo
an initial Compton event in surrounding media, and can enter the crys-
tal. These scattered photons may then be absorbed in the crystal. This
produces the familiar back-scatter peak in the response spectrum, as
well as contributing to the rest of the Compton continuum. Even if the
detector is well-removed from shielding and other external material such
as room walls, contributions from back-scattered gammas will unavoidably
be present in the experimentally observed Compton continuum, since some
scattering will occur from the reflector and canning surrounding the
crystal, as well as from the photomultiplier tube. For some isotopes
that are difficult to prepare as point sources, absorption and scatter-
ing effects are present within the source. The above effects would tend
to decrease the observed photofractions.

67,83)

In the careful experiments of Heath,( measurements were
made for point source geometry with the source and detector located in
the center of a 5 ft. diameter plastic bag filled with helium to reduce
alr scattering. The experiments were done in a large open room, with
minimum background present. Isotope sources were used in which electron-

capture predominates over beta emission, so that no beta absorbers were

needed, thus eliminating small-angle scattering from any beta absorber.
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In References 67 and 83 a number of independent checks were made of the
measured photofractions. By using the Ux B-y coincidence counting
methods given in Reference 84, a number of suitable sources were cali-
brated and used with these detectors. The peak efficiencies obtained
agreed within better than 2% in all cases when compared to the product
of the directly measured photofractions and the absolute total efficien-

(5)

cles of Vegors. Calibration of these sources was independently checked
by the National Bureau of Standards and Chalk River Laboratories, and
agreement within + l% was found. Data from References 67 and 83 are given
in Figure V-1.

Photofractions obtained by Monte Carlo calculations are determined
under idealized source-detector geometry, assuming no surrounding materials.
Inherent errors are present in most of the previous Monte Carlo calcula-
tions primarly due to approximations made in treating secondary particles.
At higher energies, deviation of calculated photofractions from experimental
results, obtained under ideal conditions, has been about lO~20% probably
because of these approximations. In addition, escape of secondary parti-
cles will have a greater influence on the photofractions for smaller crys-
tals. In the previous Monte Carlo calculations only References 9 and 38
have considered electron production and subsequent bremsstrahlung genera-
tion. Miller and Snow(9> have treated electrons by simple range theory,
which does not take into account the fractional leakage probability for
electrons (see Chapter IV). Cn the other hand, Zerby and Mbran(38) have
neglected electron transport altogether. In data to be given in Section B
below, 1t will be seen that electron escape has less of an effect on the

calculated photofractions than does the bremsstrahlung escape.
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Both References 9 and 38 have used the bremsstrahlung spectra

(49)

calculated by Zerby and Moran. No elaboration on the technique of
using this data in the Monte Carlo calculations has been given in
Reference 9, thus a comparison with the methods of treating bremsstrahlung
given in Reference 38 is not possible. The method used in the present
work to select bremsstrahlung photon energies (Chapter IV) is similar
to that used in Reference 38. However, the assumption has been in
Reference 38 that all electrons will give rise to some bremsstrahlung
photons of energy > .04 moc2 . In Reference 38 two bremsstrahlung
photons are selected for every electron produced, and a statistical
weight of m(E,)/2 is assigned to each, based on data given in Table
IV-1. The photon is considered to be absorbed if its weight falls
below a preassigned value. The method used in the present investiga-
tion, described in Chapter IV, obtains the number of bremsstrahlung
photons emitted based on the mean values of Table IV-1 and sampling
according to the Poisson distribution. By this method a fixed number
of photons 1s not emitted for all electrons. The difference between
these two approaches is that for low electron energies, the probability
for photon emission with energy > .0k moc2 is very low, and in most
instances no bremsstrahlung will be generated in the present calcula-
tions. Bremsstrahlung effects on the calculated photofractions are
nearly insignificant at these low energies. At higher energies, the
methods used in Reference 38 and the present calculations give

essentially the same number of bremsstrahlung photons and little dif-

ference is noted for the photofractions obtained (Figure V-1).
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Figure V-1 gives a comparison made by Davisson apd Gossett<75)
of experimental and calculated results from References 9, 38 and 83 for
photofractions of a 3 x 3 in. solid crystal, with an isotropic point
source 10 cm. from the front crystal face. Results from the present work
have also been included. The comparison in Figure V-1 is especilally
valid due to the large amount of data available for this geometry. The
data of Reference 75 given in Figure V-1 is based on Monte Carlo calcula-
tions in which electrons and bremsstrahlung are neglected, and the diver-
gence from the results of the more exact calculations can be seen at
higher energies. However, the most significant aspect of this figure is
the relatively poor agreement of References 9 and 38, especially at higher
energies. Falrly good agreement is seen among the results of Zerby and

(38) 83)

Moran, the experimental values of Heath,( and the present calcula-

tion, Results from the present work are seen to be in best agreement with

the experimental values from Reference 83. The relatively large difference
between Reference 9 results and the others, even though rather exact

(73)

simulation methods were used, is unexplained. Zerby has also mentioned
this discrepancy and attributes it to the method of simulating brems-
strahlung emission.,

Further doubt as to the validity of Reference 9 results, at
higher energies, is given by the experimental values of Jarczyk,(7o) some
of which are listed in Table V-1 below. These values, obtained for
collimated beam sources, were checked by three independent experimental
methods which are discussed in detail in Reference 70. Considerable

difference between References 9 and 7O is noted at these higher

energies, at which the effects of
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secondary particles would be expected to be more important. Excellent
agreement with Reference 70 has been obtained with the present calcula-
tions. At lower energies,comparisons of experimental results with cal-

(85) and McCall,(86>

culations from Reference 9 have been made by Roesch
For energies < 1.33 MeV, the maximum difference between experiments

and Reference 9 calculations was 9.3%, which is a considerable improve-

ment over the large discrepancies seen at higher energies.

TABLE V-1

BROAD BEAM PHOTOFRACTIONS, 2 x 2 IN. SOLID NaI CRYSTAL

Energy, MeV  Miller and Snow<9) Jarczyk, §§.§£0(7O) Present Calculation

2.68 0.189 0.156 0.152
7.10 0.056 0.042 0,046
8.00 0.045 0.035 0.037

2. Well Crystals

The data given in References 59 and 78-82 provide a basis of
approximate comparigon between experimental values of peak efficiencies
for well crystals and the calculations of the present work. References
59, 78 and 79, based on some early measurements at ORNL do not clearly
specify the source configuration and its location in the well. One can
infer from these references that the source was probably a volume source,
in some cases with the isotope in an aqueous solution. If this were
the case, scattering and attenuation in the source would tend to increase
the Compton spectrum at the expense of a decreased photopeak causing a

reduction of the photofraction. This effect is discussed in Chapter IV,
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Section H. (Reference 59, p. 87, gives experimental response curves

that show the effect of a reduced photopeak and increased Compton spec-
trum for a source located in water.) Since the comparison of the

present work and References 59, 78 and 79 is intended to show approximate
agreement only, calculations were made at the three lowest energies
neglecting the effects of electron and bremsstrahlung escape. The calcu-
lation at 0.661 MeV was made including these effects. Table V-2 below
gives this comparison for a 3 x 3 in. well crystal, 1/2 in. well dia.
x 1-1/2 in. well height. For the calculations, the source was assumed
to be a point isotropic source, 0.2 cm. from the well bottom. The values
below from Reference 59 were taken from plotted data, and are only ap-
proximate. The standard deviation for the calculated results is that

obtained from the variance in the Monte Carlo computations.

TABLE V-2

COMPARISON FOR POINT SOURCE €IP , 3 x 3 IN. WELL CRYSTAL

Energy, MeV  References Reference 59 Present Calculations

78 and 79
0,32 0.67 0.75 0,762 + ,003
0.364 0.60 0.6k 0.677 + .00k
0.638 0.3k4 0.38 0.387 + .00k
0.661 0.33 0.36 0.370 + .007

(82)

Gunnick and Stonner have given valueg for experimentally
determined absolute peak efficiencies for a 3 x 3 in. well crystal.

The crystal dimensions for the well are not specifically given, but the

well size including crystal canning and reflector has been given as
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13/16 in. dia. x 1-29/32 in. height. Information obtained from the
manufacturer (Isotopes, Inc.) indicated a probable canning thickness
of 0,025 in. and reflector thickness of 1/16 in., which were used to
determine the crystal well dimensions. Again the source position was
ungpecified and the assumption was made that it was an isotropilc point
at the well bottom, neglecting any source container. The comparison

is given below for some of the values given in Reference 82.

TABLE V-3

COMPARISON FOR POINT SOURCE, EQE” 5 x 5 IN. WELL CRYSTAL

Energy, MeV Reference 82 Present Calculations
0.412 0.465 .520 + .006
1.17 0.168 .180 + .005
2,75 0.072 079 + .003

(80)

Comparison between the experimental results of Colby and those
calculated in the present work are given in Table V-4 below. The
crystal size is 5 x 5 in., with 5/8 in. well dia. x 2-1/2 in., well

height. For the calculations, the source was again assumed to be point

isotropic, 0.2 cm. from the crystal well bottom.

TABLE V-4

COMPARISON FOR POINT SOURCE, €AP s D x5 IN. WELL CRYSTAL

Energy, MeV Reference 80 Present Calculations
0.279 0.896 0.957 + .002
0.662 0,614 0.594% + .005
1.33 0.350 0.371 + .005
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Finally, Table V-5 gives a comparison made with the experimental data
of Nablo(8l> for two well crystals, Harshaw Nos. 7F8, and 8F8. 1In
Reference 81 the experimental error is estimated to be about 3%, having
used calibrated sources. The values given in Reference 81 were for
photofractions and absolute total efficiencies, GAI determined from
a spectrometer response which included backscatter effects. As dige
cussed in Chapter I, in the product of the photofraction and €AT

to give €AP s The total spectrum area cancels. The absolute peak
efficiencies, €AP of Reference 81 are comparable to the calcula-

tions of the present investigation. For the calculations, the point

isotropic source was again assumed to be 0.2 cm. from the well bottom.

TABLE V-5

COMPARISON FOR POINT SOURCE, EAP, 8F8 AND 7F8 WELL CRYSTALS

Energy, MeV 7F8 878
Ref. 81 Present Calc. Ref 81 Present Calc.
0,080 0.97 0.983 + .008 0.98 0.963 + ,008
0.279 0.49 0.557 + .005 0.43 0.515 + .005
0.412 0.24 0.29% + ,005 0.23 0.268 + .005
0.662 0.12 0.147 + .002 0.11 0,135 + .002

The following conclusions are made, based on the comparisons
given in Tables V-2 through V-5. A direct experimental check on the
well crystal photofractions calculated in the present work is not pos-
(67,83)

sible because no careful experiments such as those of Heath

&br solid crystals)have been reported. However calculated values for

€

(Chapter II), and approximate agreement with

AT have been shown to agree with independent calculations
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various experiments is seen for GAP or Eﬁj’ values given in Tables
V-2 through V-5, Thus an approximate check is given for the well crystal

Monte Carlo calculated photofractions.

B. Effects of Bremsstrahlung and Electron Escape on Photofraction

In order to show the relative effects on the photofractions of
the energy carried away by electrons and bremsstrahlung escaping the
crystal, calculations were made in which these losses were ignored. (See
Appendix E for the method of using the Monte Carlo programs without elec-
trons and/or bremsstrahlung.) Table V-6 below gives some data for photo-
fractiong in which electrons and/or bremsstrahlung losses are neglected.
This tabulation indicates that by neglecting electron losses only (Case 2),
the photofractions for both the high and low energies considered
here agree within one standard deviation with those obtained when electron
losses are included (Case 1). However if only bremsstrahlung losses are
neglected (Case”3), then a statistically significant increase in the photo-

‘fraction occurs at the higher energy.

TABLE V-6

EFFECT OF ELECTRON AND BREMSSTRAHLUNG LOSSES ON
PHOTOFRACTIONS, ISOTROPIC POINT SOURCES

Crystal Casgse 1 Cage 2 Case 3 Case 4 Energy,MeV
8F8 Well  .0515+.0049 .0530+.0050 .0829+.0064 .1000+.0042 6.00
8F8 Well 0265Qi.0099 ,282Qi.OlOl 02945i,0102 .2905+.0102 1.17
3x3 in Solid ,1010+.011% .1055+.0069 .1535+.0081 .1705+.008k4 6.00
3x3 in Solid .3245+.0105 .3190+.0104% ,3000+.0102 .3200+.010k 1.78
Case 1 - Electron and bremsstrahlung losses consgidered
Case 2 - No electron losses, bremsstrahlung only
Case 3 - No bremsstrahlung losses, electrons only
Case 4 - No electron or bremsstrahlung losses.
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Additional calculations were made to determine at what energy
bremsstrahlung and electron losses may be safely neglected for typical
solid and‘well crystals. Figure V-2 ghows the results for a 3 x 3 in,
solid crystal. Below about 3 Mev the energy loss due to escaping elec-
trons and bremgstrahlung are seen to have a negligible effect. Also
included are some data of Miller and Snow.(9) It may be seen that the
data of Reference 9 are in good agreement at low energies with the
present calculations. However a significant divergence is noted at
higher energies indicating that the probable difference from the present
work is due to the methods of treating these secondary particles. Figure
V-3 shows the results of similar calculations for the 8F8 well crystal.
It may be seen that only for energies less than about 0.9 Mev may the
electron and bremsstrahlung losses be neglected. As anticipated,; these
losses become significant at a lower energy for the well crystal, since
it has a greater surface area to volume ratio and electron and brems-
strahlung leakage is more probable than for the solid crystal. These
results are useful for meking calculations because by neglecting
electron and bremsstrahlung losses, computer time can be significantly

reduced.

C. Effect of Geometry on Photofractions

1. Isotropic Sources

The effect of various source geometries on the photofraction
has been studied with both the solid and well crystal Monte Carlo programs.

Reference 83 gives additional data on this effect for solid crystals only.



~1h1-

*Te3s£1) PTTOS

‘Ul ¢ X ¢ woxy odeosy SuNTURI}SSWOT PUB UOIFOITH JO UOTJORIFOLOUI UO 09JJH

AW ‘AOHINIT VAWVO

o't 0¢ ol 80

9°0

*g-A dm3Tg

| |

k

(6) 434 MONS 8 3TN V¥
Q3103793N S3SSOT ONNTHVYLSHNINE GNV NOMLO3T3 O
Q343aISNOD  §3SSOT1 ATILIVd 1V B

wd O1=q ‘3NN

1
0S 1NIOd JId0¥ 108!

00

NOILOVHA0LOHd



PHOTOFRACTION

-142-

L 1 T L 1 1 L L L L 1 1 1 L] ] 1 1 1 1 L l.l 1
0.8 4
’_ -
0.7+ .
| ISOTROPIC - POINT SOURCE 0.2cm FROM WELL BOTTOM A
0.6 O ELECTRON AND BREMSSTRAHLUNG LOSSES NEGLECTED .
- [0 ALL PARTICLE LOSSES CONSIDERED
0.5
0.4
0.3
0.2
0.1+
I
0.0 1 i 1 ! 1 I TSNS I N I N N T I i | 1 1 1 L1 ||Illl||||l|]
0.1 0.2 0.4 0.6 0.8 1.0 2.0 ‘ 40 6.0 8.0

Figure V-3.

GAMMA ENERGY, MEV

Effect on Photofraction of Electron and Bremsstrahlung Escape from 8F8 Well Crystal.
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From the data given in Tables V-7 and V-8 below, most isotropic source
geometries can be well-approximated by a point source located on the
crystal axis, eliminating the need for different Monte Carlo calculations
when the source geometry is varied within reasonable limits. The geo-
metrical effect on the photofraction consequently is small when point
source results are used for a cylindrical volume source. The data given
in Tables V-7 and V-8 are intended to illustrate that the relative photo-
fractions for two typical crystals at two different energies are not
significantly different from unity when the standard deviation are con-
sidered. For precise work, it would be preferable that photofractions

be calculated for the exact experimental arrangement.

TABLE V-7
SOURCE GEOMETRY EFFECT - 3 x 3 IN. SOLID CRYSTAL

Relative Photofraction¥

Isotropic Source 412 Mev 4L.45 Mev
Point, on-axis, b=1Ocm. 1.000 1.000
Point, on-axis, b=.2cm. 0.969+.012  1.000+.078
Point, off-axis, m=3.8lcm., b=.2cm. 0.925+.012  0.850+.069
Point, off-axis, m=1.905cm.,b=.2cm. 0.970+,012  1,014+.078
Disk, radius=3.8lcm., b=.2cm. 0.939+.012  1.010+.078
Disk, radius=1.905cm.,b=.2cm. 0.979+.012  1.040+.079
Cylinder, radius=3.8lcm, by=.2cm., bp=5.0cm. 0.985+,013  1.116+.08k4
Cylinder, radius=3.8lcm, by=.2cm., bo=10.0cm. 0.990+,013  1.055+.081

* Values relative to on-axis point, b = 10 cm.

TABLE V-8
SOURCE GEOMETRY EFFECT - 8F8 WELL CRYSTAL

Relative Photofraction*
Isotropic Source 412 Mev 4 .45 Mev

Point, on-axis, b=.2cm. 1.000 1.000

Point, on-axis, b=l.2cm. 0.974+.015 1.000+.121
Point, off-axis, m=1.0cm., b=.2cm. 1.001+.016  1.1k2+.13%4
Point, off-axis, m=1.23cm.,b=.2cm. 0.979+.016  1.182+.138
Disk, radius=.5cm., b=.2cm. 0.988+.016  1.200+.139
Cylindeglrradius=l.0cm.,bl=020mo, b2=102cmo 0097hi,015 1.175+.137

* Values relative to on-axis point, b = .2 cm.
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2, Collimated Beam Source

An additional source geometry effect on the photofraction has been
studied for the solid scintillation crystal. Varying degrees of collimation
for monodirectional beams have been considered with the results given in
Figure V-4. The photofraction for a narrow beam collimated along the crystal
axis and incident on the crystal face is the largest possible value attain-
able for a given crystal size since leakage of scattered gammas through the
crystal sides is minimized. As the beam diameter increases, this leakage
increases and the photofraction correspondingly decreases. Thus the narrow
beam source provides the most easily interpretable spectrum because the
Compton continuum is minimized. From Figure V-4, for energies less than
6.13 Mev, less than 1% variation from narrow beam photofraction values are
obtained for a beam diameter up to about one-half the crystal diameter.

Also, the percent variations are not significantly different between the
2x 2 iho and 3 x 3 in. solid crystals. References 68, 70 and 72 have
also considered collimation effects. Berger and Doggett(72) have calcu-
lated this effect at 0.662 Mev and state that the relative change in photo-
fraction wiﬁh collimation could be applied at other energies with only

(68)

slight error. However, as pointed out by Kreger and Brown their exper-
imental data indicate a strong energy dependence for beam diameter/crystal
diameter > .25 . Similar variation has been calculated in the present work
and is given in Figure V-5. Since multiple scattering events are an in-
creasingly important contribution to the total absorption peak as the energy

increases (see Chapter III), one would expect that the effect of beam col-

limation on the photofractions would depend upon the source energy.
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(70)

Jarczyk, presents experimental results for broad beam and narrow
beam measurements for energies up to 10.83 Mev, which are in agreement
with those of the present work, within the experimental error given
as + 8-12%. Figure V-6, taken from Reference 70, includes the results

of the present investigation.

3. Comparison of Solid and Well Crystal Photofractions

Reference 79, p. 57, indicates that the experimental intrinsic
peak efficiency for a 3 x 3 in. well crystal (.5 in. well dia. x 1.5 in.
well height) is nearly the same as that for a solid 3 x 3 in. crystal.
Figure V-7 shows that the photofraction for well and solid crystals of
the same outside dimension agree féirly well. A check has been made on
the consistency of the separate Monte Carlo programs for well and solid
crystals by calculating photofractions for progressively smaller well
size. Convergence was obtained for the well crystal results, with sources
at the top of the well, to the solid crystal photofraction for sources

on the surface of the crystal.

D. Comparison of Monte Carlo and Integration Results

As another check on the Monte Carlo calculations, a comparison
was made with €IT values obtained from direct calculation. The
latter results for isotropic sources were obtained from €AT values
calculated by the numerical integration program, BURP-1, described in
Chapter II. For monodirectional beam sources, normally incident upon a
solid crystal face, E&T =1 - e—TH . The comparison gave excellent

agreement over a wide range of energles for both well and solid crystals,

and confirms this portion of the Monte Carlo programs.
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E. DPhotofractions Calculated for Nal

Values of photofractions for solid and well-type Nal crystals
are given in Tables V-9 and V-10, respectively. These tabulated values
have been calculated with the computer programs developed in this in-
vestigation. Calculations have been restricted to point isotropic
sources, since photofractions have been shown to be only slightly de-
pendent on isotropic source geometry.

The well crystal results are for the 7F8 and 8F8 crystals.

The photofractions should be particularly useful since these two well
crystals are the most commonly used, and no previous photofraction data

have been available for well crystals.

TABLE V-9

SOLID CRYSTAL PHOTOFRACTIONS*
ISOTROPIC POINT SOURCE ON AXIS

Fnergy, Mev 2 x 2 in.**% 3 x 3 in.¥¥¥
0.279 .8315 + .008k
0,320 .8150 + ,0087
0.h12 .6050 + .0109 7230 + .0100
0.662 L4600 + .0111 .5560 + 0111
1.17 .3055 + .0103
1.78 3245 + ,0105
2.14 .2685 + .0099
2.75 .1565 + .0081
3.57 .1790 + .0086
L. hs .0900 + 006k 1425 + ,0078
6.00 ,0760 + .0059 .1010 + .011h
7.48 0875 + .0063
8.00 .0365 + .00k2
10.00 .0180 + .0030 .0530 + .0050

¥  For 2000 primary interactions
*%*  Source-crystal distance = 0.0 cm.
*¥%¥% Source-crystal distance =10.0 cm.
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TABLE V-10

WELL CRYSTAL PHOTOFRACTIONS*
ISOTROPIC POINT SOURCE ON AXTS

Energy, Mev 7F8 8F8
0.279 .8590 + .0078 .8365 + .0083
0.412 L6460 + .0107 .6225 + .,0108
0.662 4305 + .0111 L1520 +,0111
1.17 .2775 + .0100 .2650 + .0099
2.75 .1420 + .0078 .1210 + .0073
4.5 .0785 + .0060 0815 + .0061
6.00 ,0kl5 + .00k6 .0515 + .00k9
8.00 .0235 + .0034 .0215 + .0032

10.00 .0185 + .0030 .0125 + .0025

* For 2000 primary interactions,
source 0.2cm. from crystal well bottom.

F. Photofraction for Materials other than Nal

Since scintillation materials other than NalI have been
used for gamma ray detection, a limited investigation was made of the
total absorption characteristics of CsI(T1) and CaIp(Eu) relative
to NaI(Tl) , for a well crystal corresponding to the Harshaw 8F8
dimensions. Figure V-8 shows the Nal photofraction relative to the
photofractions for CsI and Calp,. As previously mentioned, the
Monte Carlo programs contain electron and bremsstrahlung data for Nal
only and some error is introduced in the results for any other scintil-
lation material at the higher energies. It can be seen that CsI has
a significant advantage over Nal, in that the photofraction for the
latter is only 40-65% of the former, over the energy range of most

laboratory interest. This gives a better defined pulse height spectra
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for CsI crystals. The comparison given here has been made on the
basis of equal crystal dimensions and the greater density of CsI
(%.510 gm/cmB) over Nal (3.667 gm/cm3) accounts for the major part of

(73)

this advantage. Moran has made a similar comparison between Nal
and CsI , in which the two crystals were assumed to have linear dimen-
sions inversely proportional to the crystal densities. On this basis
the CsI volume is 0.665 that of the Nal, with the CsI weight 0.816
that of the NaI . On this basis Reference 73 found that CsI photo-
fractions were slightly greater than those for Nal , while the intrinsic
efficiencies were about the same, for the limited source energies and
solid crystal sizes considered. A further advantaée of CsI over Nal
is that the former is non-hygroscopic, thus decreasing the manufacturing
difficulties and allowing its use with no window between the source and
crystal, for limited periods of time. CsI crystals are useful in
applications where high shock-resistance is necessary since the material
is not subject to cleavage. However, the material is relatively plastic
and must be supported to prevent distortion during long periods of

(87)

stress. Special shapes can be bent from thin crystals for parti-

cular applicationsc(l6> Resolution of CsI crystals is comparable to

8 16
Nal, (73,87) but the light yield is considerably less.( )

More recently Hbfstadter(88)

has developed a new scintillation
material, Calg(Eu), Glos(89) has also reported information on this
material. Measurements by Hofstadter have given promising results.

Pulse heights 1.5-1.8 times those of NaI(Tl) were obtained, with resolu-

tion as good as the best NaI(T1l) values. To date only small-sized
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crystals have been produced, l~2cm2

x .3 - .6 cm. thick. CaI2 crystals
have been found to cleave very easgily when subjected to thermal or
mechanical shock, and the material is highly deliquescent. Figure V-8
includes photofraction data calculated for comparison with Nal , and
indicates less than a lO% advantage for Ca12 over the energy range
considered.

Appendix G containg some calculations of for CsI

eAT
and Calp crystals.



CHAPTER VI

CONCLUSIONS

A. Summary of Results

1. Absolute Total Efficiencies ( €pp)

The analytical expressions for €AT of solid and well crys-
tals have been derived in the form of general point kernels. Integra-
tion of these kernels can be performed to reproduce any source geometry.
Solutions have been obtained for point, disk, and cylindrical volume
sources by numerical integration, and the accuracy of the results have
been verified. Previously, solid crystal GAT values had been avail-
able,<5’6) but except for the limited calculations of Verheijki,(lu) no

€AT values for well crystals had been available. Using the computer
programs developed in the present work, numerous quantitative studies
have been carried out to investigate typical laboratory conditions for
gammea, ray detection by solid or well type scintillation detectors.
Calculations have been made to determine the accuracy with which point
sources can approximate disk or cylindrical volume sources. The errors
introduced by applying on-axis pointvsource EAT values for points
located off the crystal axis have been calculated. Also, the effect on
€AT values for variations in crystal dimensions and materials have
been investigated.

The problem of calculating absolute peak efficiencies for
scintillation detectors when absorption and scattering are present with-

in a source has been considered. The treatment has been shown to be a

_155_
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logical extension of GAT calculations developed in the present
investigation. Well crystal results are given in Chapter IV for homo-
geneous, monoenergetic sources in an agueous solution.

The tabulated results for €

AT of different commercially

available scintillation crystals for various source conditions given in
Appendix G provide an extensive reference for experiments. The €AT
values are tabulated over a range of energies. If the €AT values
are plotted versus cross section (using the energy-cross section data
of Table II—ll), interpolation may be made for any future improvements
in cross sections.

2. Photofractions

Monte Carlo methods have been used to simulate the transport
of gamma rays, and the production of secondaries (electrons and brems-
strahlung) in solid and well type scintillation crystals. The general
method of calculating photofractions by Monte Carlo techniques has
been used previously for solid crystals. However, the present investiga-
tion has extended the calculations to cover well type crystals, for which
no calculated photofraction values have previously been available in
the literature. The present work also includes an improved simulation
of electron transmission and bremsstrahlung generation through the crys-

(9,38)

tal material. When compared with calculated data, which were

limited to solid crystals only, photofractions obtained in this investiga-
tion are in closer agreement with experiment.(83)

Isotropic and collimated sources used here cover the usual

applications of gammy ray scintillation detectors. Numerous studies
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were made using these Monte Carlo programs. Photofractions have been
shown to be only mildly dependent on isotropic source position and

thus the studies made of variations with source position are

EAT

also valid for peak efficiencies, €AP . Chapter V contains tabula-
tion of calculated photofraction values for selected well and solid

crystals which are commonly used in the laboratory.

B. Application of Results

Application of the results of this work for practical gamma
ray scintillation detectors lie in two general areas. First, the
absolute peak efficiencies obtained here may be used to calculate the
absolute emission rate for gamma ray sources. Knowledge of the absolute
source activity is required in many experimental studies, including
absolute neutron flux measurements, activation analyses, etc. The second
general area of application of the present work is in the choice of a
gamme ray detection arrangement to serve a particular purpose. For
example, one could obtain the minimum crystal size for a given efficiency

or peak-to-total ratio in the detector pulse height spectrum.

C. Extension of Results

Since no tabulation of calculated results can ever cover all
possible experimental arrangements that may arise in the laboratory,
the values given here have been limited to typical situations. To per-
mit extensions of these results, the computer programs are being made

available through the Code Center of Argonne National Laboratory.



_158_

Quantitative information for gspecific experimental situations not in-
cluded in these tabulations may be calculated by obtaining the programs
from the Code Center. The abllity to perform calculations for any

scintillation materials make these computer programs useful as new

materials are developed.



APPENDIX A

DERIVATION OF EXPRESSIONS FOR THE
ABSOLUTE TOTAL EFFICIENCY

I. Isotropic Point Source Kernel

Using the notation previously defined in Chapter II, the general

expression for the absolute total efficiency is

-"' $,0)1 ..
AT 4 fd(bf e JSln@de (A.1)

Solid Cylindrical Scintillation Crystal

Referring to the sketch below it is seen that integration over ©
must be performed in two steps, due to a discontinuity in the function
X(@,@) when 6 = ©7. All gamma rays from the source enter the nearest
face of the cryétal, and as the polar angle, 6, increases, the rays first
leave the crystal through its lower face. For © > ©3, the rays leave
the crystal through its cylindrical sides. Making the transformation

sin 6 d0 = ~dp (u = cos6), and referring to the sketch below, it is seen

that: Y2

= (H+b)/ [ (H+b) 5"
= b/(bE+s") 2y

The distance s(m,p) may be determined from the sketch showing the lower

crystal face.

s(m,p) = —=m sin® +VR£—mﬁcosT<p

This expression 1s restricted to -ﬂ/Q <o < n/2, i.e., positive values

of Y, in order to have a single functional form for s. Since the prob-

lem is symmetric about the X-axis, the‘integration is performed over

_,]_59_



-/2 <o < x/2 and a factor of 2 is introduced.

root is required to insure

s >0

<*m
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The path lengths X(Q,p) may be determined from the follow-

ing sketches:

“m —T-1
°°s-',“' b oos"/.,,
I
/_ ] ~— | i
7] 1! I~ H
\
1\ m! o\ %
P M e S \
R | R T“\*\‘\\
H I \\ |
| : \ X '
\
by
by
Iy

1>p2>2m Hy 2B 2 Ho
S b
X = Hﬂi X = - - =
N1-pu2 o

For an isotropic point source located off the solid crystal axis a radial

distance m,

~ixy

_ 5
/ ~“TH/u M aEE o a)

6 (n‘**CLXIS P‘t 22—-ﬁ dqb [/ _e }du"- [/"e ]du
27 H Mz

Fd

which is Equation (2.4).
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Well Type Seintillation Crystal

This crystal geometry is considerably more complicated because
of the cylindrical well. The sketches below define the parameters to be used,
and three discontinuities exist in the path length function x(gq,u).
These discontinuities occur when the polar angle, @, equals ©7, 6o and

@3, respectively. Again transforming to u we have:

* %
U = b/(35+b) -
2
U, = (asb)/ [ S, +(a+b) |
2
U, = —c/(c*+5, )"
2\ Y
Hy = —C/(CZ“'S. ) z
Using the sketches showing the well bottom and the crystal lower face we

have 81 and sp, given as:

S,(m,®)= -m sing +Vt*-m cos P

S,(ma®)=-m Sin®d +WfRz—m2cosz¢

with the restriction -x/2 <o < n/2 . Noting that pi and M; depend
on the source-well bottom distance, b, two cases are possible, dependent
upon whether pf > pg or pf < pg . Physically this means that as the
integration proceeds over u, for pf > pg, rays from the source first
strike the well bottom and emerge from‘the lower crystal face. Second,
the rays strike the side of the well and emerge from the lower crystal
face. Third, the rays strike the side of the well and emerge ffom'the

crystal side. However, when pg > pf , the rays for the second path
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strike the bottom of the well, and then the side of the crystal. Writ-

ing the integrand in Equation (A.1) as a sum of four different functions,

€AT(O§~F-r:ins Pt.)— (dq)f F oD, u) d/.l [F(CD u)du +

o

[, u)dwf R (@,ud
(A.2)

The form of Fé(@,p) depends on the inequalities pf > ug or p§ < p;.

The derived path lengths, x(¢p,u) are shown in the following sketches.
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Thus we have

F@,U)=/-exp(-Tall)
and when pf)p’; (’t.,e, _i._ <?S+zs_)
U=l = bf(st+8)"

»* ‘/p_
Up=t = (a+b)/[ sF + (a+b)’]

e

E@,u):/—exp[_r(%b_ _ s )}

% * 7.
or wnen M <M, (Le. %>o.‘-srb)

’ 2./
U""H:: (a+b)/[g: + (a+b) ] *
U= bf(E +8D)”
E(¢7u)= /[ - eXP[—T<_V.___/f#z —_ﬁ—)}

and for both cases

F (,u)=/— ex p{—r(% l

B @)=/ —exp|-T(- % =)

This gives Equation (2.5).
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II. Isotropic Point Source On-axis

The expressions for on-axis points are readily obtained by
letting m =0 1in the previously derived results and performing the
integration.over ¢ . In the above expressions for a solid crystal
s = R; and for a well crystal s] =t, sp =R, It should be noted that
thé above derivation for the well crystal was for point sources within
the crystal well. In order to check the results given in Reference 1.,
the solution for an on-axis isotropic point source was obtained for the
point outside the well. Using arguments similar to those above, the
results for the functions F(u), and p to be substituted into Equation
(A.2) are best summarized by the following table. (Note that F; =1 - e™7*i,
for i =1, 2, 3, 4) This table includes all the limits of integration, e
and path lengths xi , for on-axis points both inside (CASE 1) and outside

the well (CASE 2), as well as the solid crystal (CASE 3).

ITII. Two and Three-Dimensional Sources

Making the assumption that these sources are homogeneous and
isotropic, the point kernel expressions can be integrated to cover any
two or three-dimensional source. In particular, the disk and cylindrical
volume sources were considered in this investigation. TFor a disk source
consider first a ring coaxial with the crystal axis, with a width dm.

The absolute total efficiency for this differential area is:

2T m dm[GAT (off -~axis p’t.)]
27T m dm
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and for a disk of radius g

J
€AT (dTSk) =27Tf meAT(oFf—axis ?’L) d m
A _
2TT[3 m d m

simplifying:

| 2 9
€, (disk) = 5;[ m €, (of f-oxis pt.) dm  (4.3)

For a cylindrical volume source, consider a differential volume of radius
g, and height db located coaxially with the crystal axis. The absolute
total efficiency for this volume, assuming the source is transparent to

the source gammas is:

79" db€y (disk)
"7‘(92 db

and performing the integration for a right circular cylinder extending
between the axial dimensions bl and Do (b1, bo Dbeing measured from

the same plane as b we have:

bz
rrqu.,. €ur (disk) db
\J7Z (b,
mg _db

€AT,(V02-)=
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which gives

by,
€ar (Vo) = = L . jb €, (disk) db
2 \ \

or

2 B9 ,
€7 (vOL) = ST, EY j; db [ m €, (off-axis pthdm , o

Equetions (A.3) and (A.4) are the seame as Equations (2.8) and (£.9),

respectively.



APPENDIX B

SERTES SOLUTION FOR THE TOTAL EFFICIENCY

The following derivation, obtained by N. McCormick, is given
for an on-axls isotropic point source located on the face of a solid
erystal. DNoting that 0/4x = 1/2 for a solid crystal, with the source
located at b = O, the derivétion will be given for the intrinsic total

efficiency. By previous definition of parameters.

_
o J?ﬁ4TY 2
and for this case,
_H
Ya.
' —TH/ 1 WRD™ TR ATIE
T::Z?G;T =/ "'J[ e CiLl ‘fj( (EB CiLL
Ho °
(W7 + R

We introduce I, Ip for the first and second integrals, respectively.

Using the definition of the exponential integrals:

Enly) = y“"‘fwe"z z " dz
J

we find

© _ Y -
[,=TH| e Z “dz - (’;%’zv;'f(k\zﬁﬂz) eZz'd=
o T2+ )%
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or

I,=E,@H - ME (TVH*®)

To obtain Ip,

let £2 =1 - }.L2 , and rewrite I,

.‘_‘2

(H 4—&12“)/z

since 0 <u<1l, then 0<f<1, and JE%EE can be expanded in a
binomial series:
/ (z)(z) (2)(3)( +-) oo
/- §* g e £ 3] £
—TR/f 3
I, / ot &Moo ¢ (e ',
2l
(Hz+R")/2
let P:-’%R—
thus 2 &
T04+R) TRS
_ -b| TR + L (TIRY , ) ENE)
L c ‘:-—p— 7 o) TS Y
TR
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This can be written as a summation:

2ems2 T (Hz"Rz)yz
Z (2m- /ZH(TR) f e_: dp
WP

where

(2m=-)1l = @Cwm=1)(2m=-3)(2m=5) ...(3)U1)
(-0il=1 , ol=l

This summation can be rearranged

- (2 2m+2 we_P
2 Z 2" ml [TR) 2m+3 dP T

2m+2 m+l _
___B_.___ o T (H R 6 P b
(H2+R > PZm-ta

Again using the exponential integrals

_w (2m~—/}ll - 2m 1112, p2
I’:L“\m.. 2™ ml [Elfﬂ% o a-l%'_ﬁ-z—)m\ E2m+3 TVHYR )J
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Combining we finally obtain the desired solution.

E, @ VH+R") —

L H
2 (H2+R2)/2.

© : 2m+2 A
Z LCo=Dlllg @R)-R___ E, aVr)|-
L o™ ml (H?+R>m“

The above equation has been used to check the results of some calcula-
tions made with the BURP-1 Computer Program. Excellent agreement was
found between results of the above equation and the computer program

values.



APPENDIX C
DERIVATION OF KAHN'S METHOD FOR SAMPLING
FROM THE KLEIN-NISHINA FORMULA

H. Kahn(2u) has given a number of selection techniques for
sampling from the Klein-Nishina formula, differential in polar angle,
for Compton scattering events. The method used in these calculations
has been shown by Kahn to be most efficient for photons below about
4 MeV, and even though source particles of greater energy are considered,
most will be either degraded in energy below UL MeV in the first or
second scatterings, or will undergo a pair production event. Thus the
technique used is the most efficient in the energy range where multiple
Compton scatterings are the principal interaction mechanism.

The differential Klein-Nishina formula(Bl) for Compton colli-

sions of incident unpolarized radiation 1s:

2
do  r? (l+cos’e) «2 (1-c0s6)
4a= > 2| [T 2 (1-C0S6)
2 [/+o<(/—(3089)} (/+cCoS 9)[)*‘0‘ ]
, (c.1)
where o = incident gamma energy, moc2 units
ry = e classical electron radius
meC
The Compton energy-angle relationship is:
o' = X|[1+A (] —cose)] (c.2)
or X=/+o((/—COse)
where Q' = scattered gamma energy, m002 units

X

i

a/a',
-175=
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Integration of Equation (C.1l) over the azimuthal angle, and rearrange-

ment using Equation (C.2) gives:

2 / 2
d@(xge,d) :z(r; % (x+ ~ + COS "/) (c.3)

Noting that in a rejection method, the normalization constant of the
probabllity distribution need not be specified, one can define the

P.D.F. for x as:

2 [y !
{:(x,@,o()=(cose—/+><+7')o;;(z (c.4)

The P.D.F. of Equation (C.4) is split into the sum of two other P.D.F.
2a+l [

Qx+9 DA X*
8 - +/ / (Cosze + / (C«»S)
2x+9 2oyt 2 X/
let
)= _ 2a*/
g, () = o 2 32()()“ 2 X*
I / 2 /
h () =4(3x-3) , h.(W=5(cos’6+x)
The procedure is to sample from f1(x) = g1(x)hy(x) and fo(x) = go(x)ho(x)
with relative frequencies %%_f_% and = i 5 , respectively. Sampling

is accomplished by applying the cumulative distribution function method
to gy(x) and gp(x) and then applying the rejection method to hj(x)
and hy(x). The functions g(x) and go(x) are properly normalized for

1 E_x S 1 + 20 and one obtains:

for gl(x): x =20r] + 1
for gg(x)g X = éoi_’_“__l__
20rs + 1

where rq, rp are random numbers.
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The method is given in the following flow diagram:

= Oobtain N,05,5 |~

\

LS
VT P2a+9
L yes no
_ _ Dot/
Y=+l J=T5an
Y
/ / -
no 5\54(T 5,2‘) K=/—%(~/
JES Y
Sw=/
r,é_/( 2 /)
37D K""y no
| yes
v X= il = v =
J Sw=/ Jos CosO=k
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APPENDIX D

WELL CRYSTAL ESCAPE ROUTINE

In the Monte Carlo calculation of photofractions for scintilla-
tion crystals with a coaxial cylindrical well, consideration must be
given to those gamma rays which intersect the surface of the well. ITf
a secondary gamme ray has (for any step in the calculation) its location
in the crystal at fhe coordinates x, y, z, and then travels a radial dis-
tance, t, in the direction defined by the direction cosines u, v, w, its

final coordinates are given by:

X'=x+ul
y=y+vt
z'=z +wt (D.1)

If the gamma ray path cuts the surface of an inner, coaxial cylinder of
infinite height and radius r,, then the radial distance to this surface

is obtained by simultaneous solution of Equations (D.l) and

2 ,2 2
X' *’:1 =Y, (p.2)

The radial distances to this inner cylindrical surface are given by:

te=-(ux +vy)iv(ux wyY = (=Wt s P =) (p.3)

(r-w?)
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The following sketch illustrates these distances.

H(x,Y,2)

Let: g — ux “+V
A= & (1-wIxE eyt

“§xVaAa
thus ty= m

and note that for the coordinates (x,y,z) assumed in the above sketch
2 N
X +y =71 (D. 1)

For a given point of departure (x,y,z) and direction (u,v,w), the gamma

cuts through the inner cylinder only if both solutions to Equation (D.3)
give different, positive, and real values for t, and t._ . (Requiring
different values for t, and t_ excludes the case of a path tangent

to the inner cylinder.) Thus for:
NE0 , or 8%0 , or ISIQVA (D.5)

no intersection occurs with the infinite height inner cylinder.
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The actual well crystal geometry, in which the well depth is
less than the crystal height, introduces a further consideration. Now
a point of departure may be located below the well so that:

xt+yf<n’ .

Except when w = + 1, all paths from this location intersect the extended
cylindrical well surface, and the condition A > 0 1is automatically
satisfied. 1In addition the restrictions for intersection, & < 0 and
ISI >VA , which insure that t_ > 0 , are no longer applicable because
t, and t_ are measured in opposite directions and one of the roots of
of Equation (D.3) must be negative.

Fbr points within the well crystal, three locations are possi-
ble and must be considered separately. These locations are characterized

by the following conditions for a point of departure x,y,z, well radius,

ro and well height, Hys

; . 2 2 2
Location A: x= + y= < s and z > H;,
: . 2 2 2
Location B: x= + y= > rg and z > Hy
location C: x° + y2 z_rg and z < H

Some preliminary considerations are applicable to all locations. ITf

w = + 1, then no intersection with the well cylindrical surface 1s possi-
ble, and a test is made first for this condition. Next, if the path
length obtained from Equation (555) is less than the distance to the
nearest well surface, in the direction u,v,w, then the particle does not
enter the well. In addition, when any of the conditions (D.5) are satis-
fied for Locations B and C, no intersection is made with the well cylin-
rical surface, extended. Assuming that a vacuum exists in the well, when

a gamms, does enter the well, no interactions occur. Under this assumption,
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the gamma path length is increased by the distance traveled through the
well. (Chapter IV, Section H, discusses the effect of absorption and
scattering by a three dimensional source, considerations of which are
ignored here.) Assuming all these conditions have been checked, then
the calculation of the particle's escape through the well, or its in-
crease in path length due to re-entry into the crystal after passing
through the well, are summarized below.

Defining:

Z't_,_ = Z +t+w
Zy = Z *'1;_VJ

L =40, +4,

“where 47 = path length in crystal from Equation (3.5)

distance traveled through well

I

£o
Thus the location of end point of the gamma path is:
X =X+ Lu

!

y'=y+ v
!
z=z+Aw (D.6)
and the criteria given in Equation (4.12) are applied. In the sketch below

showing Location A, four different rays are possible and are identified

as Cases 1l-4, below:



CASE
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LOCATION A
CONDITIONS Lo
Z <0 -
t, S
0 < 2, < Hy ty = (H-2)/w
Z > 0
v, ~ Hy
w>0 0

REMARKS
Escape through well
Re-enters crystal
Does not enter well

Does not enter well

In the following sketch which shows Location B, 5 different rays are identified

as Cases 1-5 below:

CASE

In the following sketch which

LOCATION B

CONDITIONS

zt <O

0<zy <Hy and zg <O

0<zy <Hy and O <z

Z4 > HW and O < Zt+ E HW

w>0

fied as Cases 1-~5, below:

CASE

Z

LOCATION C

CONDITIONS

Zt <0

t

0 E 24 _ < Hy and Zt+ < 0

AN

zy_ < Hy and O iZt+<Hw
<zt < Hy and 2t > Hy

- 2 HW

shows Location C,

REMARKS
Does not enter well
Escape through well

Re-enters crystal

t, - (Hy~z)/w Re-enters crystal

t, -t

+

Does not enter well

5 different rays are identi-

REMARKS
Does not enter well
Escape through well

Re-enters crystal

(erz)/w-tm Re-enters crystal

0

Does not enter well
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(x,y,2)

Location A
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(x,y,2)

Location B
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- —— X

Iocation C



APPENDIX E
INSTRUCTIONS FOR COMPUTER PROGRAMS FOR CALCULATION

OF THE ABSOLUTE TOTAL EFFICIENCY
AND PHOTOFRACTIONS*

Absolute Total Efficiency - BURP 1, 2, and 3

Three separate computer programs have been written to compute

the absolute total efficiency, € of scintillation crystal detectors.

AT’
Each of these programs will calculate €AT for either solid or well
type cylindrical crystals for various source geometries (see Figures II-1,
II-2). The programs, and the equations that are solved are:

BURP-1: Isotropic Point Source on Crystal Axis - Equatioms (2.6), (2.7).

BURP-2: Isotropic, Homogeneous Disk, or Cylindrical Volume Sources
Centered on Crystal Axis - Equations (2.8), (2.9).

BURP-3: Isotropic Point Source Located Radially off the Crystal
Axis - Equations (2.%), (2.5).

The programs are writtén in the Michigan Algorithm Decoder (MAD)
language(9o:9l) for the University of Michigan IBM-7090 computer. The
programs use a numerical integration technique to evaluate the integrals
for €AI‘- This technique, which forms a part of the available library
system (Michigan Executive System Subroutines-MESS)}Bo) is a Guassian
quadrature formuls. The subroutine allows selection of the power of the
approximating polynomial and the number of interval sub-divisions for each
integral, with no limit being placed on the multiplicity of integrals.

For the numerical integration the order of the polynomial approximation
and the number of subintervals have been optimized for maximum accuracy

in a reasonable computational time. The procedure used was to sequentially

¥ A1l computer programs are available from the Argonne National Laboratory
Code Center, Argonne, Ill.

~186-
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increase the order of the polynomial approximation and the number of
sub-intervals until the results showed no change in the first four
decimal places, These optimized values are included in the programs.
In addition, the BURP programs use another MESS library routine for
interpolation of the total cross section data at a specified energy.
This subroutine is based on the iterative interpolation formula of
Aitkena(92)

The general instructions are the same for use of each of
these programs, although due to different source geometries there are
some differences in the details of required input data. The required
data is put in on punched cards and is in the so-called "simplified

90,91) Use of this simplified

input" form, as opposed to format input.(
input provides greater flexibility in these prbgrams and insures that
these programs can be used with relative ease by those not familiar
with digital computers. All data must have dimensions in cm., energies

in MeV, and cross sections in cm'l.

For all programs, by proper choice

of certain input parameters, various options are available. These op~-
tions are: s0lid or well type crystal; evaluation of €AT for Nal at

a single energy or any number of energies; or calculation for any crystal
material at a single energy. For all three programs the data may be

given in any order, being punched in columns 1-72 on standard "IBM-Cards."
The only requirements are that each value punched must be of the form,
PARAMETER = value, separated from the next value by a comma, with the

last value followed only by an-asterisk. With this simplified input

form, the first set of data must specify all numerical values required

by the program for a given problem. However, subsequently run problems
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for which only some of the values are changed, need contain only those
values which are different. This saves considerable time when a large
amount of input data is to be prepared. Since the most common material
used for gamme ray scintillation crystals is Nal, the cross sections of
Table II-11 have been incorporated in all these programs. However, pro-
vision has been made to read in any values of cross sections so that
calculations can be performed for any material, or to take into account
future improvements of the data given in Table II-1l, To read in 4if-
ferent values, one uses the form

TAU(1l) = xx.x, y.yy, etc.

E(l) = z.zz, zw.x, etec.
where the corresponding numerical values of TAU and E are respectively

the total cross section (without coherent scattering), cm'l

and energy,
MeV. 1In addition, the integer number of cross section values read in
must be specified as KK = & , (no decimal point). When total cross
sections are read in this manner, the NaI values stored in the program
are automatically deleted. If subsequent calculations for Nal are de-
sired in the same computer run, the Nal cross sections must be read in.

All three programs require input data of':

D

1]

crystal diameter, cm

H = crystal height, cm

il

For well crystal:

CASE = 1 (no decimal point)
and WD = well diameter, cm
WH = well height, cm

or for solid crystal:

CASE = 2 (no decimal point)
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Specified integer values of J (no decimal point), depending

on the three options:

1) J =0 calculation for NaI (or any other material if
cross sections are supplied) at a single energy,
which must be specified as:

E = incident gamma ray energy in MeV, where
.01 < E <30 MeV

2) J =1 calculation for Nal (or any other material) over
all energies given in Table IT-11l, except at K-
edge of iodine (E = .03323 MeV), starting at
E = .0l MeV. The calculation is repeated for
every energy in sequence, up to and including the
value specified by NUMBER, where:

NUMBER = number of gamma energies for which cal-
culations will be performed (e.g., if
NUMBER = 25, output will give calculations
for .01 < E < 6.0 MeV).
Other requirements for source geometry data will be discussed below.

3) J =2 single calculation for any scintillation material
for which the total cross section (without coherent
scattering) must be specified as:

TAU = total cross section of crystal, cm. By
specifying TAU = some large number (e.g. 500),
one obtains the mean solid angle subtended by

crystal at the source.
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The output for J =0 or 2 1is a single value for €AE" designated
as EFFAT, while for J = 1, the output is in a tabular form similar to
the tables given in Appendix G. For BURP-1 only, the output for the
solid crystal, when J =0 or 2 includes EFFIT = € g , and OMEGA =
solid angle.

Each program also requires the following additional input data:
BURP-1

When J =0, or J =2 options are specified, must also specify:

B = source distance, cmo(see Figures II-1, II-2)u

Or when J = 1, must also specify:

B(1) = xx.X, y.yy, ...., where the xx.x and y.yy are sym-
bolic representation of the numerical values in cm. for the desired source
distances. Also specify NN = integer number (no decimal point) of these
source values read in.

Typical data for a 2 x 2 in. NaI well crystal (Harshaw No. 8F8)
and solid crystal are:
1) D =5.08, H=5,08, CASE =1, WD = 2.8575, WH = 3.81,
J =0, E=.,661l, B=.2¥%

2) J =1, B(1) = .5, 1.0, 2.0, NUMBER = 20, NN = 3%

il

3) J =2, B=.5, TAU = 500%

L) CASE

2, TAU = .519%
The problems to be calculated by this data are:
1) €pp of a Nal well crystal for an isotropic point source
of 0.661 MeV located 0.2 cm. from the well bottom.
2) €AT for the same sized well crystal, for point sources
located at 0.5, 1.0, 2.0 cm. from the well bottom having

all energies .0l < E < 3.0 MeV, tabular output.
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section TAU
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€AT for the same sized well crystal, with a total cross

some large number, (e.g., 500). For such

a large value of TAU, the calculation will give the value

for the geometry factor, Q/hn, for a point source 0.5 cm.

from the well bottom.

BURP-2

When

When

ing to the total cross section TAU = .519 cm™

€AT for a 2 x 2 in. solid crystal, for energy correspond-

1

J =0, 2 must specify either:

K =3 (no decimal point), disk source with:

o
1l

K =

G

B

disk radius, cm.

distance of disk from crystal, cm.

4 (no decimal point), cylindrical volume source with:

G

Bl

B2

I

cylinder radius, cm.
distance from crystal to bottom of cylinder, cm,

distance from crystal to top of cylinder, cm,

1, must specify either:

3 (no decimal point), disk sources of same radii,

different source-crystal distances

B(1)

1l

It

disk radii, cm.

X.XX, yy.y, etc. numerical values, in cm.,
for desired disk source-crystal distances.
integer number (no decimal point) of these

source distances.
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b) K =4 (no decimal point), volume sources of same radii,

different heights.

G = cylinder radius, cm.

Bl

distance from crystal to bottom of source
cylinder, cm.
B2(1) = x.xx, Y-¥¥s ++e, €tc. numerical values, in
cm, , for desired source cylinder heights.
NN = integer number (no decimal point) of these
source cylinder heights.

Source absorption and scattering can be taken into account
by evaluation of Equation (4.14), for the well or solid crystal. The
source volume dimensions for the well crystal must be numerically equal
to the well volume dimensions or for the solid crystal the source must
have the same radius as the solid crystal with any desired values for Bl
and B2 allowed. The additional input data required is:

SIGMA represents the source material total gamma cross

section values cm':L

corresponding to the energy
values, E.

(1) For CASE = 1, well crystal

il

ABS = 1
G = WD/2 (numerical value)
BL =0

(a) When J =0
B2 = WH (numerical value)

SIGMA(1l) = xX.X, ¥.¥, ..., €tc.
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(b) When J =1

B2(1) = WH (numerical value)
SIGMA(Ll) = x.%X, V.V, ..., etc.
NN =1
(¢) When J =2
B2 = WH (numerical value)
SIGMA = X.X
(2) For CASE = 2, solid crystal

ABS = 1

Il

G =D/2 (numerical value)

(a) When J =0, 1
STeMA(Ll) = x.X, y.¥, ..., etc.
(b) When J =2

SIGMA = X.X

BURP-3
When J =0, 2 specify:
B = source=-crystal axial distance, cm.
M = radial distance of source from crystal axis, cm.
When J = 1, specify:
B = source-crystal axial distance, cm.
M(1) = x.xx, yy.V, ..., numerical values, in cm., for desired
off-axis radial distances.
NN = integer number (no decimal point) of these off-axis

distances.
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The output for the J=1 option will give a column headed M=.00,
which are the on-axis values of EJH?’ and other columns headed
Mex.xx , M=yy.y, etc. which are values of €AT<M> normalized to the
on-axis value, at a given energy.

For all of these programs, the source dimensions must be no
greater than the well dimensions for CASE=1, or the solid crystal dia-
meter for CASE=2. The only exception is that BURP=1 will calculate for

point sources located outside the well on the crystal axis.

PHOTOFRACTION - BURP 4,5 PROGRAMS

The input data for the Monte Carlo Programs are similar to
that required for the previously described BURP 1-3 programs. The
solid and well crystals are congidered in two separate programs, de-
signated BURP 4,5, respectively, but certain data are common to both.
Again, both programs contain cross section data for Nal crystals
(Table II-11), with provision being made for other materials. For
other scintillation materials the following cross section (units of

Cmml) and corresponding energy values must be read in:

MU(1l) = x.xx, yy.y, etc. (total cross section)

KAPPA(1) = z.zz, ww.w, etc. (photoelectric cross section)
SIGMA(L) = x.yx, y.xx, etc. (Compton cross section)

E(1) = X.XY, xoyy, etc. (energy in MeV)

KK = B (no decimal point) - integer number of energy

values read in.
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As in the BURP 1-3 Programs, the Nal cross sections stored in the
BURP 4,5 Programs are automatically deleted when cross sections for
another material are read in in this manner. If subsequent calcula-
tions for Nal are desired in the same computer run, the Nal cross
sections must be read in. When obtaining photofractions for scintil-
lation crystal materials other than NaIl, some error is introduced in
the result because these programs use electron penetration data and
bremsstrahlung spectra for Nal . The magnitude of these effects is
reduced for lower energy incident gamma rays.

Termination of the calculation is based on a specified number
of primary interactions occuring in the crystal. This number is read
in as the integer value, N=a (no decimal point). The incident gamma
ray energy is specified by a single value EO=z.xx, (MeV). The crystal
dimensions in cm. are specified by D, H, WD, and WH as previously dis=-
cussed. The various source configurations are given by reading in a
numerical value for the parameter, SOURCE and other parameters, as sum-
marized below:

SOURCE=1, B=x.xx: Isotropic point source on crystal axis, located
B cm. from coordinate axes origin Which is at the top
of either the solid or well crystal. (Note difference
from Figure II-2, for well crystal.)

SOURCE=2, B=x.XX, RHO=y.y: Isotropic point source off crystal
axlis a distance equal to RHO cm., located B cm. from
coordinate axes origin.

SOURCE=3, B=x.xx, DD=y.y: Isotropic disk source of diameter equal

to DD cm., located B cm. from coordinate axes origin.
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SOURCE=k, : Monodirectional beam source, collimated to solid
crystal diameter.

SOURCE=5, DS=x.xy: Monodirectional beam source, collimated to
diameter equal to DS cm., where DS < D.

SOURCE=6, : Monodirectional narrow beam source of zero divergence
collimated to crystal axis.

SOURCE=7, G=x.x, Bl=y.y, B2=z.z: Isotropic, homogeneous cylindrical
volume source with radius equal to G cm., and distances

Bl, B2 measured to the source surfaces as shown below.

-»t.—e-—

1o
Y
v - DU

Well Crystal Solid Crystal

The solid crystal program BURP-4 considers all seven of the above
sources, while the well crystal program BURP-5 includes all sources
except 4 and 5. All sources must be located within the crystal out-
side diameter for the solid crystal, or within the well dimensions for

the well crystal.
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In addition to specifying a value for SOURCE, a value must

be read in for the parameter FORM. One must specify FORM=P and where:

™
1i
>
Il

SOURCE vealue for first problem run

™w
[}

0 for each subsequent problem run for which only the
energy is changed
B = XX, where X=SOURCE value for each subsequent problem run
in which changes are made in the crystal or source dimen-
sions, but retaining the same type of source.
Various options are provided by specifying values for the parameters
BR and ELEC. If no values for BR or ELEC are specified in the input
data, all electron and bremsstrahlung effects are considered. TFor low
incident gamma energies, or when less accurate photofraction values
are acceptable, computer time can be reduced by specifying any of the
following values for these parameters:
ELEC=0 : Neither electrons, nor bremsstrahlung considered
ELEC=1 : No electron escape, bremsstrahlung considered to
be distributed along electron path
BR=0 ¢ Electrons produced and allowed to escape, no brems-
strahlung considered.
Finally, by specifying ALPHA=1, one will obtain an unbroadened energy
deposition spectrum presented as a table of 128 values in the form of
an 8x16 matrix. These values represent the number of histories which
result in energy déposition equal to n x EO/128, where n 1s the
position in the 8x16 matrix. Thus, the lowest deposited energy is

given by the first row, first column position, and the last row, last
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column position corresponds to the unbroadened photopeak. This spec-
trum is obtained, neglecting electrons and bremsstrahlung, and requires
a relatively large amount of computer time.

The output from the Monte Carlo programs consists of columns
headed by ENERGY, PHOTOFRACTION, A, P, I. For input data of SOURCE=2,
3, or 7 an additional column headed by the parameter T is given. The
value for ENERGY is the incidenﬁ gamma energy in MeV (read in as input
data, EO), and the corresponding PHOTOFRACTION is given with its
standard deviation. A is the number of totally absorbed source par-
ticles; P 1s the number of source particles incident upon the crystal
that pass through with no interaction; I ig the number of source
particles that interact at least once in the crystal (I=N, where N 1is
part of the input data); T 1is the number of source particles selected
that are not incident upon the crystal.

Typical input data for the well crystal program might consist
of’s

1) N=5000, EO=.661, D=5.08, H=5.08, WD=2.8575, WH=3.81, SOURCE=1,

FORM=1, B=3.61%

2)  FORM=0, EO=1.17#
3)  EO=2.75%
L) FORM--'ll} B=3.51, EO=.661%
5)  SOURCE=3, FORM=3, B=3.61, DD=2.5*%
6)  ELEC=0%
The photofractions calculated by this data are: (all calculations are

for 5000 primary interactions in crystal)
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2 x 2 in. well crystal (8F8) for a .661 MeV point isotropic
source located on the axis 0.2 cm. from well bottom.

Same crystal and source, for 1.1l7 MeV gammas.

Same as 2) for 2.75 MeV gammas.

Same crystal and source, but now located 0.3 cm. from well
bottom for .661 MeV gammas.

Same crystal, .661 MeV disk source of 2.5 cm. dia., located
.2 cm. from well bottom.

Same as 5), but electrons and bremsstrahlung are not con-

sidered.



APPENDIX F
METHOD OF SELECTING FROM A UNIFORM
AZIMUTHAL DISTRIBUTION OF DIRECTIONS
The following technique is due to Kleineckeo(ul) In the
transport of particles through a medium, the various physical laws
give the cosine of the angle between the paths of the incident and
emergent particles. This polar angle, 6 defines a cone of possible

emergent directions.

Y
l
I

When the assumption of azimuthal symmetry is made, one must select a
direction from a uniform distribution over this cone. In the Monte
Carlo calculation the direction cosines, relative to a fixed rectangular
coordinate system are known for the incident paths cos © 1s obtalned
from the physical laws4 and the direction cosines for the emergent path
are desired. We will denote the incident direction cosines by Al? Blﬁ
C; and the desired emergent ones by AQ, B25 02 with u = cos © .

Now suppose U, V, W are three numbers selected such that
(U, V, W) is a point distributed uniformly within the unit sphere.
The vector U from the origin to the point (U,V,W) will be distributed
with respect to the vector A to (Al, Bl’ Cl> in a uniform azimuthal
direction. Moreover, the vector  U+kA = (Utkd;, V+kBy, WtkCy), for

any k , is also uniformly distributed in azimuth, with respect to A .

=200~



The length of the vector U+kA is
2 2 2 2 }&
S =[u +v W 2K (A +V B+ W) +K }

2 2
since Ai + Bl + Cl = 1.
Let Y = UA1 + VBl + WCl, and then the condition that the angle between

the vectors U + kA and A has the cosine, p = cos © gives

' 2 2 2
y? o+ 2kY K =0 (U W 2KY 4K

Solving, we obtain

N

K=-Y+U [&2+v2+w1-—‘(2 }
|-u*

and also
o

g= Y+kK =[ u“+v‘+wz—Y2}
|-
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Thus the vector U+kA is a vector uniformly distributed in
azimuth about the vector A , at the polar angle © . The direction
vector, % (U+kA) defines the desired direction, and has the components

(U+kA; )/s; (V+kBy)/s, (W+kCq)/s . The desired direction cosines are

A, = (U+KA)Z =Au —-Z (YA -u)
B,= (V+kB)Z = Biu —Z(YB,-V)
C,= (w+kC)Z=Cu—Z(YC, -W)

2
- L _ [ - U
Z S { u2.+\/2.+w7._Yz

In summary, the procedure followed is:

(1) Select U,V,W uniformly distributed in the unit sphere,

2 2
LL1+\I +‘W él °
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(2) Let

+WC,
= UA,+VB,
Y =

A
2

[— M r}
z= [ u+Vvi+WE=Y

(3) Then

A;r—Z(YAFU)
A,= A,

B.u —Z(YB,-V)
Bzz \

(: ;1""23 (‘X/(:l"\ﬁl)
Cjz = L



APPENDIX G

TABULATED VALUES FOR ABSOLUTE TOTAL EFFICIENCIES*

* A1l calculations for Nal crystals, with dimensions in centimeters,
and energies in MeV, unless otherwise noSedc Well crystal numbers
refer to Harshaw Chemical Co. Catalog 16) numbers.

-20k-
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000 °%
Co0°€
000°2
0o6°1
000°1
co8*
Co9*
00g*
cov*
co€ *
ez
cete
cote
080°
G90
Gso*
ovo*
0€G "
¢cZo*
s10°
010°

AQ¥3IN3

aM



WD

ENERGY

.01C
.015
.02¢C
«030
040
056G
.060
.080
.1C0
«15C
.2CC
«30C
«400
<500
0600
«8C0
1.CC0
1.5C0
2.0C0
3.000
4.000
5.000
6.C00

WD

ENERGY

.010
«015
.020
030
<040
050
<060
.080
100
+150
« 200
<300
«400
«500
«600
. 800
1.000
1.500
2.000
3.000
4.000
5.000
6.000

-209-

ISOTROPIC POINT SOURCE ON CRYSTAL AXTS (CONT'D)
8F8 WELL CRYSTAL

5.080C00, H = 5.080000

2.8575C0, WH = 3.8100C0
B=1.50 2.00 2.50 3.00 3.50
9252 8925 .8379 <7466 6060
G252 +8925 +8379 . T466 <6060
<9252 .8925 8379 « 7466 6060
9252 .8925 .8379 <7466 .6060
9252 .8925 .8379 <7466 «£060
G252 .8925 .8379 1466 «6060
«§252 .8925 .8379 <7466 «6060.
«5209 .8860 .8288 «7363 6001
5162 .8796 . 8207 7280 «5955
.8390 .8C01 « 7423 +6582 «5462
6804 «6461 «5986 «5327 <4477
«4€00 <4355 +4036 +3610 «3072
«3€10 «3415 «3166 2837 «2426
3064 «2897 2687 <2411 «2066
«2750 «2599 2411 «2164 1857
+2357 .2227 .2066 «1857 1596
«2107 1991 <1847 <1660 <1429
1741 « 1645 «1526 «1373 .1183
1561 1474 .1368 1231 1062
«1405 .1327 <1231 .1109 .0956
«1349 «1273 .1182 <1064 .0918
«13234 1260 «1170 «1053 «0909
1334 «1260 «1170 1053 .C909

TSOTROPIC POINT SOURCE ON CRYSTAL AXIS
2 x 2 IN. WELL CRYSTAL

$.080000, H = 5.080000

34492500, WH = 4.127500
8= .00 .10 20 «30 40
«9605 9587 «9569 «9549 9528
9605 9587 «9569 «9549 9528
«9605 9587 <9569 9549 9528
«9605 9587 «9569 «9549 «9528
«9605 «9587 «9569 «9549 9528
«9605 «9587 «9569 «9549 +9528
9605 9587 «9569 «9549 «9528
«9589 <9570 «9551 «9530 «9507
«9547 «9525 +«9501 9476 29450
.8693 8590 « 8498 <8413 «8334
«7201 <6982 6818 6678 «6557
5087 +4802 «4615 <4467 <4345
<4078 +3804 «3632 «3498 «3390
«3503 «3246 .3088 «2967 «2870
«3164 2922 <2774 «2662 «2571
«2736 22514 .2381 .2281 2200
<2459 «2253 2131 2039 «1965
«2048 -1869 -1763 «1684 «1622
<1844 <1679 1582 «1510 «1453
«1665 .1513 <1425 «1359 «1307
1600 «1453 .1368 «1304 .1254
«1584 «1438 +1354 «1291 «1241
.1584 «1438 .1354 1291 .1241

«503C0
«5C00
«5C0¢
«50C0
«5000
5000
«50CC
5000
<4996
<4676
«389C
<2703
<2144
.183¢
<1647
<1418
<1270
<1053
0946
.0853
.0819
.0810
.0810

<50

«9505
«9505
9505
«9505
«9505
«9505
«9505
«9483
<9423
8261
6451
4241
«3299
.2788
«2496
22134
«1904
<1570
«1406
«1264
.1213
1200
1200



WD

ENERGY

.010
.015
020
030
«040
050
060
080
«100
«150
« 200
- 300
«400
«500
600
. 800
1.000
1.500
2.000
3.000
4.000
5.000
6.000

D

WD

ENERGY

.010
.015
.020
.030
. 040
.050
.060
.080
- 100
150
.200
300
.400
.500
. 600
.800
1.000
1.500
2.000
3.000
4. 000
5.000
6.000

=210~

ISOTROPIC POINT SOURCE ON CRYSTAL AXIS

124W(10)-W3 WELL CRYSTAL

7.620000,
2.009140,
B= .00 .10
.9905 .9901
.9905 .9901
.9905 .9901
.9905 .9901
.9905 «9901
.9905 .9901
<9905 .9901
.9905 <9901
.9905 .9901
.9792 .9784
+9298 .9263
.7804 L7704
<6732 .6610
L6016 .5888
+5559 «5430
+4941 .4814
<4519 <4396
.3861 «3747
.3518 +3410
.3211 .3109
.3098 .2998
<3069 .2970
+3069 .2970

8

«20

<9897
«9897
«9897
9897
+9897
<9897
-9897
«9897
«9897
«9778
<9241
« 7652
«6549
«5825
«5367
<4753
«4338
«3693
«3360
3061
«2952
«2924
«2924

WH =

.30

+«9893
9893
9893
+«9893
+9893
«9893
«9893
+9893
+9893
9771
«9225
<7619
«6511
«5786
«5328
<4716
24302
« 3660
3329
.3033
«2924
«2896
2896

6.350000

5.080000

« 40

9889
.9889
9889
9889
.9889
.9889
«9889
.9889
.9888
<9764
«9213
« 7597
«6487
«5761
«5304
«4693
<4279
3639
3310
«3015
<2906
«2879
.2879

ISOTROPIC POINT SOURCE ON CRYSTAL AXIS

12A4W(10)-Ws WELL CRYSTAL

7.620000,
2.857500,
= .00 » 10
.9813 9806
.9813 .9806
.9813 +9806
.9813 9806
9813 «980¢
.9813 «980¢
.9813 .9806
.9813 .9806
+9801 <9792
.9671 «9658
9088 9038
7459 7333
6360 .6211
5646 5491
.5196 «5042
4597 4447
+4191 4046
+3564 .3431
23241 .3115
«2952 2834
2846 .2731
.2819 .2705
.2819 .2705

«20

«9799
«9799
«9799
«9799
«9799
«9799
«9799
«9799
<9784
«9645
«9001
« 7255
«6124
«5403
«4955
«4363
+«3966
+3358
3047
2770
«2668
«2643
<2643

«30

-9791
9791
<9791
«9791
9791
«9791
9791
9791

© 9775

<9632
8971
«T197
«6060
«5339
«4892
+4303
«3910
«3307
«2999
«2725
«2625
«2600
«2600

6.350000

5.080000

<40

.9782
<9782
<9782
«9782
«9782
«9782
«9782
«9782
9766
29619
«8944
«7152
.6011
«5291
+4845
«4259
<3867
«3269
«2963
«2692
«2593
«2568
.2568

«50

.9884
9884
.9884
«9884
9884
9884
+9884
«9884
.9884
«9757
«9203
«7582
«64T1
5745
5288
4678
«4265
<3627
«3298
«3004
2896
2868
2868

«50

«9773
«9773
«9773
<9773
«9773
«9773
29773
<9773
<9756
«9606
+8920
«7115
<5972
«5253
«4225
+3835
«3240
<2936
2667
«2568
«2544
«2544



ENERGY

.010
.015
.020
030
. 040
.050
060
.080
. 100
. 150
.200
«300
« 400
<500
600
. 800
1.000
1.500
2.000
3.000
4.000
5.000
6.000

WD

ENERGY

010
.015
.020
.030
<040
.50
<060
.080
100
«150
«200
«300
« 400
«500
« 600
« 800
1.€00
1.500
2.C00
3.000
4.000
5.000
6.000

-211-

3 x 3 IN. WELL CRYSTAL

7.620000,
1.270000,
8= <00 .10
«9932 «9928
«9932 +9928
«9932 9928
«9932 +9928
«9332 .9928
«9932 «9928
«9932 «9928
«9932 «9928
«9932 «9928
«9900 «9893
«9725 «9692
«8721 +8619
. 7778 « 7648
. 7081 «6942
<6614 .6473
+5959 +5819
«5498 «5360
<4156 «4628
<4362 <4239
«4002 .3886
«3868 «3755
+3834 «3722
<3834 <3722

B

020

«9924
9924
«9924
«9924
«9924
<9924
« 9924
<9924
«9924
+9886
<9671
«8562
«I577
<6867
«6397
«5743
«5287
<4559
<4173
<3824
«3694
3661
3661

H

]

WH =

.30

«9920
9920
<9920
«9920
9920
«9920
«9920
«9920
9920
.9878
«9653
8520
« 7526
.6813
«6343
«5690
«5235
4510
<4127
.3780
3652
3619
3619

ISOTROPIC POINT SOURCE ON CRYSTAL AXIS

7.620000
3.810000

.40

.9915
L9915
«9915
L9915
.9915
.9915
.9915
.9915
.9915
.9870
<9636
.8486
. 7486
L6771
.6300
.5648
+5195
<4473
+4092
L3747
.3619
.3587
.3587

ISOTROPIC POINT SOURCE ON CRYSTAL AXIS

124W(12)-W1 WELL CRYSTAIL

7.620C00,
2.009140,
= .00 .10
.98325 .9826
.9835 «3826
9835 .9826
9835 9826
.9835 9826
«9835 «9826
+«9835 «9826
+«9835 9826
.9819 9809
977G <9755
9528 <9478
.8418 .8287
7453 .7292
«6758 +6588
«6298 «6126
«5658 «5489
<5211 «5047
<4496 <4344
4118 «3973
<3775 3638
« 3647 3513
«3615 «3482
«3615 «3482

.20

.9817
.9817
9817
<9817
«9817
9817
9817
.9817
«9799
«9739
«9441
.8202
«7191

«6484

«6022
5387
<4947
«4252
3886
+3556
3434
+3403
«3403

«30

«9807
«9807
.9807
9807
9807
«9807
<9807
+9807
9787
«9722
« 9407
.8134
«7113
« 6403
«5941
»5309
«4872
+4182
«3820
« 3494
«3373
«3342
«3342

7.620000

3.810000

«4C

«9796
9796
9796
«9796
« 9796
«39756
<3796
<9775
9705
.9376
8077
« 7047
«6336
.5875
« 5244
.4810
<4125
«3767
+ 3443
«3324
«3294
« 3294

«50

9910
9910
«9910
<9910
+«9910
«9910
<9910
.9910
«9910
9860
<9619
« 8455
«T451
6735
«6264
5614
5161
4442
<4062
3719
3592
«3560
+«3560

.50

<9785
«9785
.9785
9785
9785
9785
9785
9785
«9761
.9686
9345
8025
«6991
#6279
5818
<5190
«4758
4077
3722
«3401
.3283
«3253
«3253



-212-

NDvHe*
8GT1¢g"*
1862°
YLlZ®
6€69¢°
§692°
66G9c”
089¢Z°
08Lc¢"
260¢c”
Lgee”
Bv6¢e*
ceew
268y °
12¢6°
9666 °
VAV A
2Ls8°*
8116°
86¢6°
99¢6”
go%¢6*
99¢6°
99¢6°
99¢6 "
99¢c6”
99¢6°
99¢6*

6Z°1

6ese
gelce”
69Q¢ *
1s8¢°
agle”
qelLe”
qele”
o9L¢*
£98¢"°
Zyie”*
HGHhe*
gooy*
Gy ®
GZ206°
96%G*°
ovi19°
l81L°
L1l8*
€6 ”
10%6°
1S%6°
LGH6*
LG¥%6*
LSY6"
Ls%6°
LSH6"
LSH6"
LGY6"

00°1

6%9¢*
gaee”
L9te”
ge6l-”
1482°
w28c*
veye”®
182"
966l °
hee
29s¢”
081%°
L1SH*®
€91s°
209¢°
0629°
6eel”
s788°
9%e6"
Y8%6°
0gG6°
nes6”
0€s6”
gese6”
Jgce”
oggé6”
dese”
0es6”

al*

eBle”
6lywe”
88c¢c*
»o0¢*
2e6c”
ste6l”
VAN T/
296¢*
oL0¢”
soee”
€e9e”
YA A
1el%*
9c¢es”
L9LG*
gowae*
gCaLe
9968°
2ev6°
26%6°
166"
1665°
16%6°
1666°
1666°
1696°
1666°
1666°

oa*

SIXV TVISAYD NO 32YNOS INIOd 31d04¥10S1

Lyee”
ohae®
lyee®
611"
Leoe”
886¢ "
8867 °
?10¢°
9c21¢*
X A2
LGle”
a6ev”
208y *
tO%G*
9%8G*
CHv6G°
Lisl®
1C6°
£9%6"°
Q9LG66°
2196°
2196°
2196°
Z196°
Z196°
Z196°
c196-°
2196°

o%*

003018°¢

000629°L

TVISXED TTHM cM-(2T)MVeT

2c6¢e
g19¢ °
v1ve*
»81¢*
o01¢ "
160¢ *
160¢*
6€LC¢e "
161¢°
Hohe o
e8e *
CFA/A
688%v*
16%G6*
9¢66°*
6299 °
669} °
%906 °
26%6"°
L6G6"
1¢96°
1¢9¢6 "
1€96°
196"
1¢96°
1€96°
Teg6°
1¢€96°

ce*

HM

1]
T

116%°
s69¢”
96%¢*

19c¢-

921¢°
9cie”
G¢c1¢*
»61¢e*
A 2
9l46¢ "
g1ece”
LGy *
egay
666G °
1%59°
tel9”
294il”®
911¢e°*
AP AT N
8196°
6%96°
6v¥c6°
6H96°
6¥%96°
6296 °
6%96°
6%96°
6%36°

ce-

ITA L L52%°
108¢ " L96¢€"
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gcgg 11gg”
122¢° 12%¢°
0zze”" g9ce”
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6H2€ c6€C”
90¢¢ £16€°
Go9¢ 2¥8¢C”
BZIY* 002+%*
269y 8lL8%H*
»116°* s0gG*
$2Lls " 0266°
1L19° L9€9"
1989° €%0L "
$98.L " (208"
2L16" cHee6*
9HGeE" cLlS6"
LE9EG " 4 G96"
999¢ * 2896°
92996 ° 2896*
9996 ° 2896°
9996 ° 2896°
9996 2896°
9966 * 2896"
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9996 ° 2896°
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$006268°2
0000292
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y
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AQYINI
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W

ENERGY

.010
.015
«020
.030
040
«050
060
.080
«100
«150
«200
«300
«400
«500
«600
.800
1.0C0
1.500
2.C00
3.000
4.000
5.000
6.000

W

ENERGY

.010
«015
.020
.030
«040
050
060
.080
«100
150
«200
« 300
«400
«500
«600
.800
1.000
1.500
2.000
3.000
4.000
5.000
6.000

ISOTROPIC POINT SOURCE ON CRYSTAL AXIS

-213-

12AW(12)-W3 WELL CRYSTAL

.20

«9897
<9897
<9897
<9897
«9897
<9897
«9897
«9897
9897
«9856
«9567
«8263
7205
«6473
«5998
«5350
«4904
«4202
«3834
«3503
«3381
«3350
«3350

x
i

.30

«9893
«9893
9893
.9893
«9893

«9893.

«9893
« 9893
<9893
<9849
« 9547
«8214
« 7147
6412
« 5937
«5290
«4846
<4148
«3784
3456
«3335
+3304
«3304

7.620000

5.080000

40

.9889
.9889
.9889
.9889
+«9889
9889
«9889
.9889
.9889
.9842
9531
8176
.7102
<6366
5891
<5245
4802
4108
<3745
<3420
+3300
3269

ISOTROPIC POINT SOURCE ON CRYSTAL AXTS

12AW(12)-W4 WELL CRYSTAL

D = 7.620000,
D = 2.0C9140,
B= .0U .10
+9905 «9901
+G99C5 <9901
9905 <9901
«9905 <9901
+9905 +9901
«9905 «9901
«9905 «9901
«9905 «9901
«9905 +9901
.9870 <9863
«9630 «9592
<8444 «8330
« 7429 . 7287
«6710 «6558
«6237 «6084
«5585 «5434
«5132 «4385
4414 «4271
«4036 «3906
«3693 «3571
«3567 3447
«3535 «3416
«3535 «3416
D = 7.62C000,
D = 2.857500,
B= .00 .10
«9813 «9806
9813 «9806
+9813 9806
9813 . 9806
.9813 «9806
+9813 «9806
.9813 .9806
9813 9806
«9801 «9793
9750 «9736
«9420 «9367
8099 «7958
«7057 6888
«6339 «6162
«5875 « 5697
5241 «5067
«4804 «4636
<4118 «3961
«3758 <3611
3435 <3295
«3315 «3179
.3285 3150
«3285 « 3150

.20

«9799
<9799
«9799
«9799
«9799
«9799
9799
«9799
<9784
«9723
«9327
7866
6780
«6051
5587
<4960
«4533
3867
3521
«3212
<3098
3069
«3069

H =

WH =

«30

«9791
. 9791
«9791
«9791
«9791
«9791
«9791
«9791
<9776
.9710
«9293
« 7792
«6695
+ 5965
«5502
4878
4454
«3795
«3454
«3148
«3036
« 3007
+3007

7.620000
5.080000

«40

«9782
«9782
<9782
<9782
<9782
9782
9782
<9782
«9766
«9697
«9262
<7731
<6626
«5896
«5433
<4811
+«4390
<3737
«3399
«3097
+2986
.2958
«2958

.50

«9884
.9884
«988¢4
<9884
.9884
.9884
.9884
.9884
.9884
.9835
<9516
«8146
<7067
<6329
. 5855
5210
4768
+4076
«3716
#3392
3272
3242
«3242

«50

9773
9773
9773
9773
9773
9773
.9773
9773
L9756
9683
<9234
7679
6568
.5837
5375
<4756
.4338
3689
3354
<3055
2945
2918
.2918



ENERGY

.Cl0
<315
020
030
040
.05C
«C60
(80
« 100
150

WD

ENERGY

« 010
.015
<020
+ 030
U430
+ 050
. 060
<080
« 100
<150
290
« 300
400
« 500
« 650
«800
1.0C0
1.500
2.000
3.600
4,200
5.200
6.000

1]

B

B

7

2

«9905
+9905
«3905
«9305
« 9905
3905
«9905
«9905
«39305
.9874
9678
«B8627
7671
6972
.6506
5855
5398
«4665
4276
3922
#3795
«3757
«3757

.3813
.9813
.9813
.9813
9813
.9813
.9813
.9813
9801
<9753
« 3469
.8282
« 1299
6602
«b1l44
«5511
<5070
«4369
«3999
+3663
.3538
«3507
<3507

~21k-

ISOTROPIC POINT SOURCE ON CRYSTAL AXIS
124W (14 )-W3 WELL CRYSTAL

«620000,

«U09140,
.10

<9901
«9901
«9901
<9901
«9901
«9901
+99C1
9901
«99351
. 98606
9648
.8509
. 7522
.6813
<6345
« 5696
5242
4520
<4138
«3791
«3662
«363C
«3632

.20

«9897
9897
. 989’,
<9897
« 9897
9897
«9897
9897
. 9897
9859
<3614
. 8438
. 1434
<6721
<6251
«56(3
<5152
« 4436
<4058
<3715
+ 3589
« 3557
«3557

H =

WH =

.30

.9893
9893
.9893
<9893
«9893
9893
«9893
9893
«9893
+9853
<9594
8385
« 7369
6652
«6182
«5535
+5:186
<4374
+3999
«3660
«3535
«3503
3503

8.890000

5.083000
<40

.9889
.9889
.9889
.9889
.9889
.9889
.9889
.9889
.9889
+9846
<9577
<8343
.7318
+6599
.6128
«5482
.5034
<4326
« 3954
<3617
+ 3493
3461
3461

ISOTROPIC POINT SOURCE ON CRYSTAL AXIS

12AW(1k )-Wh WELL CRYSTAL

N YAVIRVIvE

«857500

ol

.98.6
«98.6
. 98u6
.9806
.98.6
98,6
+98..6
»98(0
9793
e 974
<9415
+8138
o T122
0417
<5958
+5328
«4893
<4254
3842
«3515
+3395
<3364
«3364

23

9799
«9T99
. 9799
9799
« 9799
« 9739
« 97499
« 9799
<9784
$8727
«9374
. 8541
o718
» 6299
+5839
«5213
<4781
<4101
«3745
3424
3305
«3275
<3275

H =

WH =

30U

<9791
«9791
«9791
«9791
<9791
.9791
.9791
«9791
<3776
.9714
«9339
<7963
<6917
«62G5
<5747
.5123
<4694
<4021
« 3669
«3353
+3236
<3206
3206

8.89J000

5.082500

o4l

.9782
.9782
.9782
.9782
.9782
«9782
.9782
9782
9766
«970C
9308
. 7898
6842
«6128
«5610
«5048
4623
«3955
«3608
«3295
<3179
«315C
«3150

o 50

.9884
.9884
.93884
.9884
«9884
.9884
+«988%
.9884
<9884
.9838
«9561
.83C8
JT271
«6555
«6085
<5439
<4993
4287
3917
3582
<3459
.3427
«34217

9713
9713
$9T 13
«9773
<9773
9715
L9775
<9773
9756
.9687
.9279
«784i
6778
«6C63
« 5605
« 4986
4562
« 3900
«355»
«3240
«3132
«31303
«31us



D =
ENERGY

«C10
<015
«020
.030
«04Nn
«050
«060
.080C
«100
»150
. 200
« 300
«400
«500
« 600
« 800
1.000
1.500
2.000
3.000
4,000
5.000
6.000

D

WD
ENERGY

.01C
.015
«020
.030
. 040
. 050
<060
.080
» 100
» 150
200
300
« 400
«500
«600
«8C0
1.C00
1.500
24000
3.C00
44000
54000
6.000

-215-

ISOTROPIC POINT SOURCE ON CRYSTAL AXIS
SOLID CESIUM IODIDE CRYSTAL

2 x 2 IN.

5.080000,

B= .00

«5000
«5000
5000
<5000
-5000
«5000
« 5000
«5000
«5000
4999
«4954
«4531¢
4047
3682
3433
«3090C
-2847
2469
2276
2120
«2082
«2092
«2112

« 20

.4608
+4608
<4608
<4608
.4608
<4608
<4608
<4608
<4608
<4535
<4382
.3842
.3361
.3031
2812
.2518
.2312
.1997
.1838
.1709
<1678
<1687
-1702

«50

«4034
«4034
4034
«4034
4034
<4034
4034
4034
<4034
3878
«3660C
<3114
«2694
<2417
«2237
«1997
.1832
«1579
1452
«1349
1324
«1331
«1344

H =

1.00

+«3168
«3168
«3168
«3168
«3168
3168
«3168
3168
+3168
«2948
«2719
2262
«1944
<1746
<1609
«1435
.1315
«1133
«1041
«0967
0950
«0955
0964 } ]

5.080000

2.00

«1907
«1907
«1907
«1907
«1907
«1907
«1907
«1907
«1907
<1717
«1562
1293
«1114
«0999
«0925
.0827
<0759
«0655
.0603
0561
«0551
«0554
+0559

ISOTROPIC POINT SOURCE ON CRYSTAL AXIS
8F8 CESIUM IODIDE WELL CRYSTAL

2 5.08€¢C00,

% 2.

B= .20

« 9649
+« 3649
+ 3649
23649
<3649
« 93649
«9649
«3649
.9629%
23442
.8578
«6482
+5186
«4445

3454
«3097
«2341
«2148
2104
22117
.2140

8575CC,

«40

«9612
«9612
«9612
.9612
«9612
«9612
9612
«9612
«9588
«9373
«8421
« 6240
«4944
«4217
«3788
»3257
«2915
«2425
«2193
.2012
«1969
+1981

«6C

+9568
9568
<9568
.9568
9568
.9568
+9568
+9568
.9541
~9304
.8293
<6066
$4777
24062
~3642
«3124
.2793
.2320
.2096
.1921
.1880
.1892
$1912

H =

WH =

1.00

« 9457
« 9457
29457
« 9457
« 9457
» 9457
29457
«9457
«9421
«9151
«8077
«5818
<4550
« 3855
« 3449
22952
22635
<2184
»1971
« 1806
« 1766
«1778
21797

5.00

<0542
0542
0542
0542
0542
0542
0542
0542
0542
D494
0458
.0394
.0348
0316
.0295
0267
.0246
.0215
.0198
.0185
.0182
.0183
.0184

5.080000
3.810000
2.00 3.00
<8925 «T466
8925 <7466
«8925 « 1466
<8925 « 7466
8925 «T466
«8925 «7466
«8925 . T466
.8882 «1396
«8845 «7342
«8507 .7007
7420 <6106
«5274 <4361
«4102 <3402
«3466 .2880
« 3097 2575
« 2646 «2203
«2359 «1966
«1953 «1629
<1762 <1470
«1613 <1347
1578 1317
<1588 <1326
«1605 «1340

10.00

0154
.0154
01564
.01564
0154
0154
G154
.0154
0154
.0145
.0138
.0125
.0113
.0104
.0098
.0089
.0082
0073
.0C67
.0063
0062
0062
.G063

5000
5000
<5000
<5000
.5000
<5000
<5000
5000
.5G00
4901
<4391
£3233
.2554
.2175
.1952
1676
<1500
<1247
1127
<1034
<1011
<1018
.1029

20.00

0040
.004C
0040
0040
.0040
«0040
0040
.0040
0040
.0039
.0038
<0035

.0032
0030
.0029
.0026
-0024
«002¢
.0020
0019

. +0019

.0019
.0019



D =

~216-

IBOTROPIC POINT SOURCE ON CRYSTAL AXTS
2 x 2 IN. SOLID CALCIUM IODIDE CRYSTAL

5.080000,

ENERGY 8= .00

.010
.015
.020
.030
<040
050
.060
.080
.100
.150
. 200
300
400
500
. 600
. 800
1.009
1500
2.000
3.000
4.000
5.000
6.000

WD

ENERGY

201G
+C15
«020
«030
+ G40
.C50
.060
.C80
+1C0
«15C
«200
L] 300
«400
« 500
« 600
«8C9
1.000
1.500
2000
3.000
44C00
5.C00C
6.C00

«5000
+500C
«5000
«5000
«5000
«5000
«5000
<5000
«5000
24993
.4878
«4296
«3785
«3434
3198
«2871
26413
«2¢84
«2093
.1925
<1870
.1861
1867

W

= 2

B= .2C

« 3649
+ 36473
« 3649
« 3649
« 9649
‘36473
« 9649
«3634
«3619
« 9194

« 7961

«5782
<4840
4004
3640
«3131
«2815
«2351
.2118
192V
-1856
«I846
+ 1853

<20

<4608
+4608
<4608
<4608
<4608
«4608
<4608
<4608
<4608
<4492
L4281
«3597
«3122
.2813
+2610
.2332
.2141
. 1844
.1687
.1549
.1504
<1497
.1502

ISOIROPIC POINT SOURCE ON CRYSTAL AXIS

«50

4034
+4034
4034
4034
<4034
<4034
« 4034
<4034
<4034
.3808
<3512
« 2897
«2493
«2238
«2072
.1848
«1694
« 1457
<1332
«1222
«1186
1181
«1185

H =

1.00

«3168
3168
3168
3168
«3168
«3168
«3168
«3168
»3168
«2867
2586
«2096
«1796
«1609
« 1489
«1326
.1216
« 1645
«0955
G876
0851
«0847
.0850

5.080000

2.00

+1907
1907
1907
1907
.1907
<1907
1907
<1907
.1907
1660
.1481
<1199
1030
.0925
.0857
<0766
.0703
0605
0554
0509
0494
0492
.0493

8F8 CALCIUM IODIDE WELL CRYSTAL

5.08CCCC,

«8575CC,

."O

«9612
«9612
«9612
9612
«9612
«9612
«9612
9595
«9576
«9094
« 1764
»5536
« 4408
.3788
«3417
22947
«2645
«2203
.1982
#1734
-1734
« 1725
«1732

.60

+«9568
« 9568
«9568
+9568
.9568
+9568
«9568
«9548
«9527
«9003
« 7613
«5364
« 4249
«3642
#3280
‘« 2824
#2531
«2105
~1893
<1712
+ 1654
<1646
+1652

H

It

WH =

« 9457
3457
<9457
« 9457
« 9457
« 9457
«3430
« 3403
.8825
« 71376
«5124
«4036
« 3450
.3101
2665
2385
1980
<1779
«1608
«1553
1545
«1551

5.00

0542
«0542
«0542
«0542
«£542
+0542
«0542
<0542
«0542
«0481
0439
0371
<0325
«0295
0276
0248
0229
«0199
.0183
.0168
0164
0163
0164

5.08000C
3.810000

2.00 3.09
.8925 L7466
.8925 .T466
8925 7466
.8925 <7466
.8925 JT466
.8925 L7466
.8925 .T466
.8866 7372
.8812 7299
.8165 6718
<6742 5555
<4631 .3835
3632 .3016
.3C98 <2576
.2782 .2315
.2386 .1988
.2135 .1780
L1769 1477
.1589 <1327
<1435 .1199
.1386 .1158
J1379 1152
1385 1157

10.00

«0154
0154
0154
«G154
0154
0154
«0154
0154
0154
0143
01135
-0119
0106
.0098
0092
.0C83
0077
<0068
.0062
0058
.0056
.0C56
0056

«5C0C
«5C00
5600
.5C0C
«5CCC
. 50C0
5000
«5C00
<4998
24753
«4C40
2863
2274
«1952
«1759
«1516
«1360
«1132
.1C18
.0922
.0aaN
.0886
.0889

20.00

«0040
<0040
«0040
«004C
« 0040
<0040
<0040
«0040
0040
.0038
.0037
G034
-0031
0029
.0027
0025
.0023
.0020
.0019
0017
0017
.0017
.0017



-217-

€200°
zzoo-
1z00°
1200°
0z00°
0z00°
1200°
1200°
€200°
%200°
L200°
6200°
1€00°
2€00°
%€00°
SE€00°
8€00°
6€00°
6€00°
0%00°
000"
0%00°
000"
000"
0%00°
0v00°
0%00°
00°0€

0s10°
€E410°
GET0°
Zeto”
1€10°
1€10°
2€T10°
9€10°
9%10°
Ls10°
9L10°
8810°
%020°
<120°
o€zo®
1520°
0820°
1620°
z1€0"
L1€0"
02€0°
0zZ€0"
0z€o®
0zeo"
0zZ€0"
0zeo®
0zeo®
00°01

6020G00°¢

26€0°
10€0°
2se0”
YheG*
O%€e0*
O%c0*
ZHeon”
€GEDQ”
18€0°
Z14%0°
L9Y%G*
1060°
860"
1860°
0e90°
10L0°
1180°
L180°
9€60°
L560°
8960°
6960°
6960°
8960°
6960°
6963°
6960°
00°¢

1

5890°

2690°
$190°
0090°
1650°
1650°
96G0°
9190°
§990°
02L0"*
1280°
£880°
0L60°
2e0l°
9211°
%9Z21°
28%1°
219t*
Leit-
€9LT1"
Z8lit”
¥8L1*
78L1°
€8L1"
¥8L1°
¥8l1°
¥8L1°
0c°¢

996G* €LIT”
0ced” L11T°
6980° 0801~
¥4%80° G¢ot1°
2e80° I101°
2e80° 1101°
6€£80° 6101°
1L980° [ 2100 O
8e60° oyIt”
g101°* selt”
1911° ZlHy1”
Qgl1l-° 1281~
9L¢€1” sl91°
99%1° s8.L1"
€091” €G661°
%081° gel1c*
611e° qlecl*®
etec” 98L¢c°
6% £€66l”°
g8e%c* ¥66¢°
L1sc"* gice*
61ac* 110¢€"
616" 110¢~
g1s¢” c10¢°
61s2¢° 110¢e"
61sc* 110¢€"
61s¢° 110¢c"
co°¢ 0s°1
t000029°L

TVLSAED dITI0S

SIXV IViSAYD ND 3I338N0S X%SIA D1d40¥i0S1

SGHT®
G8¢1*
20¢1”
1221°
€6Z1°
€g21°
¥921°
90€T "
Yy
r4 X%
rAYA
1881°
8102"
y122°
(14 T
6112°
€91¢ "
Yece®
LG6€"
88G€E"*
L6GE "
866G¢€ *
86G€ *
86GE *
86G€E °
86S€ "
86G€*
co°1

‘NI ¢ X ¢

c981"
1 PWA &
S991°
9291°
€0971°
€09T"
9191*
CL9T*
1081°
8561 "
9¢ze*
L0%Z*
LY92°
L182°
ZL0€"
ZEvE"
0E6E”
84 T4"
82y
oLZy®
2Lzye
2Lzy”
2Ley.
zLeye
zLey:

RAXA M

[ XA A
06°

L1ee- 9862*
cite’ 93%¢*
1861° rd4 X
I961° 69¢2*
ci6t” Leces
cl61” Leees
6261° s6éce*
€651° 6cec”
11N ¥ 1 T A
geel” 81Lc*
099¢* L80¢c*
6682Z° o1ee*
Lete” 919¢*
2ecee”’ La8e”
1c9¢e° ocly*
Y10%° 126%°
2osy* (VYA
099%° 766%°
Y0LY® 0006°
soLYy* 0006¢°
soLYy* 0006°
soLYy”® 000¢*
SOLYy*® 0236°
SoLYy* 020s*
sOL%* 0006°*
Ss0LYy® 0006*
qoLy” 0006°*
oc* 00° =9
¢0000¢29°L

603°02

603°a1

300°01
003°8
Gdd°9
c0d°*s
000°%
000°¢
0o0d*¢
00s°1
g0d°1
0o08°
co9°
cos*
0o%*
ooe-*
goZ-*
ost*
0o1°
080°
0990°
060°
o%0-°
(3200 g
0co*
s10°
0190°
A9Y3IN3



-218-

9102° 2650°
9100° 2600*
91CC* 260C”
91G6¢C* »630°*
810G° 6630°
610C° %93%0°
2200° €Lan”
%200° 6130°
9¢20° 8800 °
L20G° %60C°
ceod” €010°
€eoe” S110°
L€00" [AR §o
8€00° I%10°
6€00° 8H710°
0%00° 1s1C°
oy002° {30 10
cY%0G* €S1G”
0y00* €s10°
c%02° €G610°
0%33° €sT0°
0%00° €810°
¢y30° €SIG*
060°0¢Z 00°01
000000°T = D

6820° GoLG"
682GC* cGL0"
2620° L9L0°
20€e0° 96L0°
0geG” PR
19¢0° %660°
0evo° s11t°
Ls%0° g1ct°
21s0° TLET”
2660° y¥8H1°
S190° 39931°
€£110° ca61*
8.80° OY%yes
¥860° ovlLes
€801° £86¢2°
S111° 840¢ "
oy11° cgoes
SHIT1* £80¢"
9%11° »8C¢E"
4 A% 0 z280¢”
9yIT* yg0¢°
CAAR N »82¢c°
9H11° »80¢°
co°¢ o0°1
000080°G = H

TYISAYD TITOS *NI
SIXV IVISA¥O NO EDYNOS MSIA OIJOYLOST

DGeET*™
oGeTl*
2J¢el”
eTv1”
SyST1°*
2631°
9L51°
Ls12¢°
2Zhe”
6192°
6252°
J0%¢e”
€CTy”
PAAA N
qLsy”®
286%°
€85%°
€86y °
€8sy ”
£€8ay
€8sy °
€85k °
£€85Y%°

(&)
™~
.

cXe

322°9
003°6
conTy
030°¢
330°¢
gis°1
Q32°1
0d8°
029"
006°
oL
30¢°
03e°
2G61°
7100 I
080°
098°
osn°
ov0°
0€0”
520°
[ SAd
010°

AOY3NI

000080° S = Q@

s100° 16C0°
S10C* 16C0°
9100° 16060°
9130° €600°
g100* 8600°
610C° €950°
2¢00° 2L00"
€2d0° 8.L00"
92Z0G* 9830C°
L200" Z600°
0c00” i010*
€edC” e110°
9¢00" 0c1s"
8¢e00° ge10°
6€00° sv10°
6€00° 8H10°
Q730" 6%10°
0%30° 0610°
o%05° 0G10°
04%350° Js10°
o%00° 0s10°
0%00° Ge1G”
0%00° 0s10°
00°2¢ 08°01
000000°2 = D

»12G" 1690°
%0206° 1690°
9.20° L6930
9g82¢" £€zZL0"
21€0" 0610
1¥€0° 5980°
96¢€¢0° 800T1°
oev0” ootlt"
18%0° (AN
810" Geetl”
9160° €E6HT1"
$¥990° owLT"
6080" o912
1060° €Zye*
G860° £€692°
Z1at-* 91L2*
2¢01° hGlLz®
9¢0T1" £€9L2"
LEOT" 99412°
L A7) e gslL2”
LEOT" t9Lre*
LEOT" LoLz*
LEOT" L9Lz*
00°¢ 00°1

0000g90°¢ = H

TVISAMD QITOS NI
STXV 'TVISAE0 NO EO¥NOS JSIA OIJOUIOSI

Leztie
Leete
gelt*
¥8Z1°
r4 1A
9¢G1°
16L1°
561"
[ XA
cLees
0g92°
080¢c "
6LLE"
9a1¥%*
96y ”
Lewh®
hauy
96k
LaYYy*
Saby°
LGyy*
LSYY*
Layy*

ne*

cxXe

000°9

ASY3INI

000080°G = Q



D = 4.445000
WD = 1.905000

ENERGY R=

.20

«9843
9343
«9843
« 9843
21843
«9843
. 3843
« 7840
.9831
« 9446
«8213
«598%
<4835
<4169
3772
«3268
e 294U
2452
2209
.1998
«1918
. 1899
.1899
«1933
.1991

D = 5.080000
WD = 2.857500

ENERGY

.010
.015
«020
030
040
. 050
.060
.080
«150
«200
«300
«400
«500
«600
«800
1.000
1.500
2.000
3.0060
4.000
5.000
6.000
8.000
10.000
15.000
20.000
30.000

B= .20

<9665
<9665
<9665
« 9664
«9665
<9664
<9663
+9655
9635
9112
«7755
«5537
4441
.3813
« 3443
«2975
2673
2224
.2001
«1809
«1736
.1718
.1718
« 1749
.1802
«1950
2078
2286

219~

ISOTROPIC DISK SOURCE ON CRYSTAL AXIS
TF8 WELL CRYSTAL

.9817
.9817
.9817
.9817
.3817
.9817
<2816
.9812
.9801
.9385
+8099
.5845
«47493
4045
«3655
.3161
.2842
«2367
« 2133
.1926
.1848
.1829
18293
«1362
.1919

.080000

H=5
WH = 3.810000

«80

.9783
.9783
.9783
.9783
.9783
.9783
«9783
.9777
.9763
.9332
.8731
«57176
c4047
3987
3602
<3113
.2797
2329
«2595
.1894
.1818
.1799
.1799
.1831
.1887

1.59

<9662
« 9662
«9662
«966C
<9662
« 9661
« 9659
« 9647
«9623
<9161
7857
«5632
<4520
.3882
«35u5
« 3029
.2721
022()4
.2037
.1841
<1760
«1748
« 1748
1780
«1834

2.00

«95C6
<9506
« 9506
«95C2
« 9505
«9504
«9499
« 9479
9442
«8942
« 7639
5463
«4381
<3761
«3396
«2934
«2636
.2193
.1973
.1783
«1711
. 1693
1693
<1724
<1776

«9227
«9227
«9227
<9217
«9226
«9223
9212
«9175
9117
+8557
« 7266
«5179
4151
«3563
«3217
«2779
e 2496
$29T7
« 1869
<1689
.1621
L1634
.1624
«1633
.1682

ISOTROPIC DISK SOURCE ON CRYSTAL AXTS
8F8 WELL CRYSTAL

<80

«9544
«9544
29544
«9542
«9544
« 9544
«9541
«9528
«9499
.8854
«7340
«5075
<4017
« 3425
.3081
«2649
2372
«1965
«1764
«1592
«1526
.1510
«.1511
.15138
<1586
1718
1833
.2021

80000

H=5.0
WH = 3.810000

«9310
«9310
9310
«9305
«9310
«9308
«9302
«9278
«9236
.8535
.7003
«4790
3775
«3211
.2885
2477
2216
.1834
«1645
1483
«1422
<1407
. 1407
.1433
«1478
«1602
«1710
.1886

«9027
«9027
«9027
9016
«9026
«9022
«9012
8976
8919
.8190
<6691
<4563
+ 3593
«3055
2744
«2355
2107
<1743
«1563
«1409
.1351
1337
« 1337
«1362
«1404
«1522
«1625
«1793

2.50

8560
8560
+8559
8539
«8558
«8550
8532
.8482
8405
« 7661
«6241
<4253
«3349
.2848
«2558
«2196
1965
21625
«1458
«1315
.1261
<1247
<1247
<1270
.13190
«1420
1516
«1672

G =

o 7749
« 7749
«T747
#7712
<1744
«7728
.7702
. 7639
<7547
6844
+5580
.3815
.3009
2561
2302
1977
«1770
« 1465
.1315
.1186
1137
.1125
.1125
.1146
.1181
.1280
1366
«1507

G = 1.00

3.0

<8676
8676
<8675
«8649
«8673
8662
864§
«858¢
«B8487
L1847
«6615
«4703
«3771
3238
«2924
.2527
£ 2270

0000

«5CTL

« 5020

«5C %
« 50358
« 5000
«5700
«553¢
. 5CH¢
« 4999
«482¢
4222
« 312G
«25139
<2198
« 1994
«1733
. 1563

1890 <1308
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