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Abstract 
 

This paper discusses the results of a finite element 
(FE) based study of the multiaxial compressive 
instabilities in braided glass fiber composites.  The 
micro mechanics study was carried out on a 2-unitcell 
size 3-D FE model. Computational tests were carried 
out to first determine the elastic moduli of the system. 
Once the computational model was validated with 
experimental data for the elastic moduli, the uniaxial 
compressive response of the micromodel was 
established using the RIKS option available in the 
ABAQUS commercial FE code. Subsequently, the 
response of the micromodel to biaxial loading was 
investigated. The present approach is different from 
those reported in the literature where classical 
methods based on the technique of homogenization is 
used to model the elastic and inelastic response of 
braided composites. In this work, explicit account of 
the braid microstructure (geometry and packing) and 
the inelastic properties of the matrix are accounted for 
via the use of the FE method. The macromechanical 
data pertaining to the braided composites were 
obtained through traditional means. Tensile tests were 

performed on the composites through the use of 
ASTM D 3039 standard to obtain the macroscopic 
orthotropic moduli and macroscopic response. For 
each test, the average data is reported in this paper. A 
separate test was conducted to obtain the in-situ 
matrix properties of the braided glass composites. The 
computational model provides a means to assess the 
compressive and biaxial strength of the braided 
composites and its dependence on various 
microstructural parameters. It also serves as a tool to 
assess the most significant parameter that affects 
compressive strength.  
 
1 Introduction 
 

Since the early 80’s, a considerable amount of 
literature dealing with braided composites has been 
reported in the open literature. Whitcomb and Noh 
[1], Naik and Stembekar [2], Huang [3], Naik [4] and 
Cox and Dadkhah [5] have proposed models to 
predict the elastic moduli of textile composites in 
general. Such models were based on the concept of 
using a smallest representative unit that will describe 
the architecture of the textile composite and by 
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applying suitable schemes, appropriate to achieving a 
desired end result. These methods are dependent on 
the method of unitcell discretization and also on the 
particular averaging scheme that is used to define the 
required macroscopic unit cell property.  

An alternate procedure that can be used to 
eliminate some of the dependency (on the particular 
method used) is to base the definition of macroscopic 
properties on the measured (actual) geometrical and 
mechanical properties of the textile composites’ 
constituents. The solution of the boundary value 
problem/s thus posed is/are obtained by resorting to a 
numerical technique, such as the finite element 
method.  
 

In the present paper, the response and failure of 
glass triaxial braided composites (GTBC) are studied 
via the finite element method. A micromodel (two 
unit cell) incorporating measured geometry and 
nonlinear material properties is meshed using the 
commercial software SDRC IDEAS Master Series 8. 3-
D solid elements are used for the tows and the matrix 
material. The response of the micromodel under 
uniaxial and multiaxial loading conditions was 
established using the RIKS method option available in 
ABAQUS. A similar approach has been successfully 
used for the study of compressive failure and 
compressive strength of continuous fiber laminated 
composites by Ahn and Waas [6]. The predictions of 
the computational model for the multiaxial 
compressive strength of braided composites and the 
dependence of strength on tow misalignments are 
presented and discussed. To the best knowledge of the 
authors, this is the first publication related to the 
prediction of compressive / biaxial material strength 
in the manner described. 
 
2 Properties and Architecture of the Glass 

Triaxially Braided Composite (GTBC) 
 
2.1 Macroscale measurements 
 

Using the ASTM D 3039 standard, uniaxial 
tensile tests were performed on the composites, to 
obtain the macroscopic orthotropic moduli and 
response. For each test, 3 samples were used to ensure 
accuracy and the average of the data is reported in this 
paper. A separate test was conducted to obtain the in-
situ matrix properties of the braided glass composites. 
The in-situ matrix properties will be discussed later. 
Table 1 and Table 2, show the fiber, resin type and the 
measured elastic moduli of the GTBC. 
 

2.2 Microscale measurements 
 

To more easily observe the braided tows of glass 
fibers, an image of the braided mat (dry preform) 
without the resin is shown in Figure 1. The outlined 
area is the smallest representative unit cell (RUC) 
found within the triaxial braids. Bias tows are weaved 
at 30° to the vertical axis. At least 6 measurements 
were made throughout the mat to obtain average 
values of each key dimension used to reconstruct the 
GTBC microstructure for the purpose of finite 
element (FE) modeling. The key dimensions consist of 
the wavelength, 2 , amplitude, A, axial tow cross 
sectional dimensions, a x b and bias tow cross 
sectional dimensions, a

λ

b x bb, (Figure 1). The tows are 
assumed to have an elliptical cross-section and this 
assumption has been verified via scanning electron 
microscope images. 
 
3 Finite Element Modeling of RUC 
 

Most researchers within the field of composite 
mechanics use a macromechanical approach to 
establish composite mechanical properties. Implicit in 
such an approach, is the assumption that the 
composite material is homogeneous (at the scale of the 
RUC) in nature and thus the instantaneous (tangent) 
moduli obtained are averaged over the volume of the 
particular representative unit cell (RUC). This implies 
that no local information will be available inside the 
RUC of the composite. Such “homogenized” 
approaches find difficulty in extension to situations 
that warrant modeling failure mechanisms, such as 
matrix cracking and fiber/tow debonding. These 
mechanisms require knowledge of the local stress and 
strain fields and this information cannot be obtained 
when the composite is treated as a homogeneous 
medium.  
 
3.1 Creation of Micromodel  
 

The micromodel in the present work was built 
using the commercial software package SDRC-IDEAS 
Master Series 8. Due to the complexity of the 
geometry, a sophisticated CAD tool and a finite 
element meshing tool is required. The micro 
architecture of the GTBC is shown in Figure 2. 
 

The effects of mesh density on the obtained 
results were not investigated due to geometrical 
constraints within the model. Instead, the adequacy of 
the mesh was verified via comparison of the 
micromodel mechanical properties with measured 
experimental data. The size of elements used for 
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meshing (and thus the mesh density) was controlled by 
the gaps and spaces of the actual braid architecture. 
Consequently, the smallest element size was set by the 
minimum spacing between the tows and the matrix at 
certain locations within the RUC. The spacing 
between the zero tows and bias (angle) tows were such 
that element dimensions less than 0.02 mm could not 
be used to generate the mesh. In order to have 
matching boundaries between one segregated volume 
and another, similar element sizes had to be used. To 
accommodate this ‘element size’ issue and given the 
present computational power available, the results are 
presented with the optimal mesh density that is 
sufficiently fine, so as not to create severe element 
distortion errors and violate small geometrical 
clearances. 
 
3.2 Assumptions made during modeling of the 

microstructure 
 

Table 4 shows properties of glass fibers and the 
epoxy matrix. In order to create the micromodel of the 
-30°/0°/+30° GTBC, several assumptions had to be 
made.  
 

The tows were treated as one entity with the 
assumption of transverse isotropy. That is, the tows are 
assumed to be a 3-D curved solid. The tow properties 
were generated using the values found in Table 4. Tow 
cross sectional area corrections were made when a 
smaller value was used due to geometrical constraints 
during FE modeling of the microstructure. This was 
necessary to provide a bigger spacing between the axial 
tows and the bias tows. As such, the element size for 
the matrix need not be so small that the model will 
end up having too many elements that cannot be 
handled by the present available computational power. 
Equation 1 describes the formula for the area 
corrections. 
 

* 1
1 *

1

A
E

A
= 1E                                                            (1.1) 

 

1E  is the original modulus corresponding to . A 

superscript ‘*’, corresponds to the corrected modulus 
corresponding to the new area. Other tow properties 
are based on a 10% matrix volume fraction, that is V

1A

f 
= 0.9. A series of equations below describes all the 
required properties for the tow. Details can be found 
in Herakovich[7]. 
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A superscript or subscript ‘f’ signifies fiber properties 
while ‘m’ signifies matrix properties.  
 

In order to obtain the stability of compressive 
response of the GTBC, nonlinear constituent 
properties of the matrix are required for finite 
deformation. For this purpose, the virgin matrix 
material is modeled as an elastic-plastic solid obeying 
J2 incremental theory of plasticity. For this purpose, 
the nonlinear uniaxial response of the matrix material 
was measured and used in conjunction with the 
*PLASTIC option available in ABAQUS. 
 
3.3 In-situ matrix properties 
 

It is well established that the in-situ response of 
the polymer matrix in a braided composite has 
effective properties that are different than the virgin 
resin material, due to (unwanted) residual stresses. In 
order to be as accurate as possible, tests were carried 
out to determine the in-situ matrix properties. Again, 
the standard ASTM-D 3039 uniaxial test was 
conducted on a (-45°/+45°)8 continuous fiber 
composite laminate made from the same resin. Strain 
gages were placed as shown in the schematic diagram 
(Figure 3). 
 

A shear stress versus shear strain plot is generated 
from the results obtained from this test. This is in turn 
used to produce a plot of tangent shear modulus 
against shear stress. Using the Halphin-Tsai relations 
[8], and after some manipulation, we obtain the 
relation between the tangent shear modulus of the in 
situ matrix and the composite tangent modulus as 
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Integrating this data provides the shear response data 
for the matrix.  This data is manipulated in 
conjunction with the assumptions of J2 incremental 
theory of plasticity to obtain the uniaxial stress-strain 
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relation for the in-situ matrix. Figure 4 shows the 
results obtained for the in-situ matrix shear response. 
 

Figure 5 shows the difference in the predicted 
matrix and the experimentally obtained in-situ matrix 
response. Both matrix responses were used in the 
computational model and the effect this has on the 
response of each micromodel is presented in the 
“Results and Discussion” section. 
 
3.4 Boundary conditions of micromodel and 

imperfections imposed 
 

The micromodel consists of two unit cells. Planar 
(2D) views of the micromodel and the loading under 
displacement control conditions used to obtain the 
linear elastic response (and the corresponding 
orthotropic moduli) are as shown in Figure 6. For the 
response analysis using the RIKS method, results were 
first obtained for uniaxial compression in the x 
direction. Several response analyses were conducted 
on a series of imperfect micromodels.  The 
imperfections were generated by first deforming the 
micromodel by a small known amount.  This step 
(Load Step 1), was done by displacing the points L and 
M of the end face EFGH (Figure 7) by an amount  
in the y and z directions. During this step, the points J 
and K of the face ABCD are held fixed, while all other 
nodes of the micromodel are left unconstrained. Each 
value of  produces an imperfect micromodel. Since 
the 0

δ

δ
° tow is lying along the x-direction, this initial 

load step provides a misalignment of the main 0° tow. 
Next, a response analysis for each imperfect 
micromodel was carried out (Load Step 2). During this 
step, all nodes of face ABCD are restrained from 
motion in the x-direction, while points J and K are 
fixed. Points M and L are fixed in the y and z 
directions, while the nodes on the face EFGH are 
specified to move only in the negative x-direction. 

 
The response of the micromodel to biaxial 

proportional loading was also investigated. As for the 
uniaxial compression loading case, initially the 
micromodel was deformed by a small known amount. 
This step (load step 1) was done by displacing the 
points L and M of the end face of EFGH (Figure 7) by 
0.004 mm in the y and z directions. During this step, 
the points J and K of the face ABCD are held fixed. 
Next a response analysis was carried out in a 
proportional manner. By doing this, the faces EADH, 
FBGC, EFGH and, ABCD remain flat in the 
deformed configuration. Faces EADH and FBGC 
remain parallel to each other after deformation and 
the same is true for faces ABCD and EFGH. Several 

proportional compressive-tensile load paths were 
studied. Results obtained from these studies are 
presented in the next section. 

 
 
4 Results and Discussion 
 
4.1 Elastic moduli verification of micromodel 
 

Table 5 shows the comparison between 
experimental and computational results for the 
orthotropic elastic moduli. The computational results 
obtained are in close agreement with the measured 
experimental values. It is to be noted that the 
experimental uniaxial specimens contain several unit 
cells in the gage section and the close agreement 
attests to the homogeneous deformation assumption, 
implicit in the measurement of properties through a 
uniaxial ASTM D 3039 standard test. The results for 
moduli obtained via the computational micromodel 
also rely on definitions of macroscopic stress and 
strain that is based on the micromodel. For example, 
for the determination of Ex, the macroscopic stress, Σx 
is defined as the sum of reaction forces on face ABCD 
divided by the area ABCD, and macroscopic strain, εx 
is defined as total elongation of the unit cell divided 
by the length in the direction of elongation. The good 
correlation between computation and measurement 
points to an increased level of confidence in the 
meshing and construction of the micromodel as well 
as to the accuracy of the assumptions made regarding 
simplifications to the modeling of the tows. 
 
4.2 Instabilities of micro architecture within the 

-30°/0°/+30° GTBC 
 

Accurate predictions of the elastic moduli provide 
verification of the computational model. As explained 
earlier, a two-step approach was used to carry out the 
compressive response analysis of the micromodel using 
the RIKS method option in ABAQUS, namely, 
 
• Load step 1 

Introduce a misalignment of the 0° tow (or 
the axial tow) as explained earlier. 
 

• Load step 2 
Analyze the model using nonlinear geometry, 
nonlinear material properties in conjunction 
with the RIKS method. 

 
The results obtained from the uniaxial compressive 
response study for a series of different imperfection 
magnitudes are plotted in Figure 8. 
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The uniaxial compressive response of the 

micromodel predictions can be understood by 
examining the Σx versus εx plot. Initially, all the 
micromodels display a relatively stiff linear behavior. 
The magnitude of the slope of this line for all the 
imperfect micromodels is 27 GPa and agrees with the 
tensile experimental data.  
 

As seen in Figure 8, with continued loading, the 
micromodel response becomes progressively 
nonlinear, and at a strain (εx) of approximately 0.035, 
a maximum stress (Σx) of 72,000 psi is reached with an 
imperfection of 0.01mm. The value of strain at this 
maximum or peak and the value of the corresponding 
stress itself are dependent on the magnitude of , 
which is associated with the degree of misalignment of 
the zero degree tow. The progressive reduction in the 
macroscopic stiffness is due to the geometrical 
nonlinearity associated with the bias tows and the 
main zero degree tow as well as with the material 
nonlinearity of the in-situ matrix. Indeed, as loading 
proceeds, the matrix material that is between the tows 
is required to support increasing amounts of shear 
stress. However, the equivalent stress-strain curve of 
the matrix indicates that the matrix modulus decreases 
progressively as the stress increases. Thus, because of 
the interaction of these nonlinearities, the overall 
stiffness of the micromodel progressively decreases 
leading to a limit load type instability. In an 
experimental setting, this limit load can be interpreted 
as the maximum compressive strength. However, at 
this load, other events, such as matrix cracking and 
separation of the tows from the matrix (matrix/tow 
debonding) occur, which lead to the surface angle 
tows “popping out”, as is characteristically seen in a 
compression experiment at failure (Figure 9). The 
modeling of matrix cracking and tow/matrix 
separation requires knowledge of the matrix cracking 
toughness and the tow-matrix interface toughness. 
These mechanisms are currently being modeled 
through a cohesive zone approach, Shawan and Waas 
[9].  

δ

 
Subsequent to the limit load, the axial stress is 

seen to diminish along with increasing amounts of 
axial strain (actually it is possible for both the stress 
and the strain to decrease simultaneously, due to the 
arc length tracing RIKS method that is adopted in 
ABAQUS). Thus, the micromodel response is stable. 
Eventually, the rate of decrease of stress levels off to a 
near constant plateau stress. 
 

Figure 10 shows the change of maximum stress as 
a function of imperfection magnitude, and Figure 11 
shows the same for the plateau stress. While the 
maximum stress appears to converge, the plateau stress 
does not. This is because the plateau stress is 
continually dependent on the extent (volume) of 
material that undergoes damage and with increasing 
stress level, larger portions of the matrix material in 
the micromodel are subjected to plastic straining. 
 
4.3 Effects of Instabilities with Biaxial Loadings 
 

Figure 12 shows the responses of a series of 
numerical tests under different proportional biaxial 
loads. As the ratio of tension to compression 
increases, the maximum compressive load decreases 
and shifts towards the increasing σy direction. 

 
This trend is also seen in the experiments 

conducted. Since there was a limited supply of glass 
braided composite material available, only a few tests 
were conducted for obtaining the corresponding 
failure envelope. The biaxial tests were carried out in a 
special loading fixture that is capable of applying 
proportional compression-tension biaxial loading in 
the manner that has been studied with the 
micromodel. It is to be noted that the experiments are 
conducted on material plaques that contain several 
unitcells. Figure 13 and Figure 14 show the 
experimental and computational failure points 
respectively. Although the curves do not match, the 
trend is observed to be the same. Some of the reasons 
for the higher failure loads predicted through the 
numerical simulations are discussed next.  

 
 Recall that the micromodel captures the 
instability within 2 unitcells, with the loading faces 
constrained to remain flat during the loading process. 
This implies that failure is occurring on all cells of the 
structural specimen in the experiment. As indicated in 
Figure 9, the maximum compressive load is associated 
with deformation localization, occurring within a few 
cells. Thus, it is conceivable that unitcell failure 
models corresponding to proportional compression-
tension (pressure control) would lead to lower 
numerical prediction. This aspect is currently being 
studied. The tows within the micromodel were 
assumed to be transversely isotropic and linear elastic, 
yet, in reality these tows contain matrix material that is 
stressed into nonlinear regime. Consequently, the 
tows should be modeled within the framework of an 
appropriate transversely isotropic elastic-plastic 
characterization. A generalization of the Hill 
orthotropic elastic-plastic model as proposed by Sun 
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and Chen [10] is being considered for this purpose. 
This modeling feature will also result in a lowering of 
the predicted compressive strength. Finally, matrix 
cracking occurring prior to tow instability should also 
be accounted for in the modeling of textile 
composites. A thermodynamically consistent damage 
mechanics formulation for this purpose has been 
proposed by Schapery and Sicking [11]. The 
implementation of such a formulation requires that 
the matrix cracking phenomenon be suitably 
characterized via coupon level tests. This is planned 
for the future. 
 
Conclusions 
 

Compressive instabilities of braided glass fiber 
composites in a multiaxial setting have been studied. 
A computational model has been described and is 
found to be capable of predicting compressive strength 
of the braided composite under various types of 
loading. Inputs to the model are fiber/tow 
architecture of the braid, the elastic properties of the 
fiber, the fiber volume fraction and the complete 
nonlinear stress-strain response of the matrix. Using 
only these inputs, the objective of predicting 
compressive strength of the material, and its 
dependence on tow misalignment was achieved. 
Although we have predicted describing the change of 
strength under different load ratios, only the 
qualitative aspects of the problem have been captured. 
The extension of this model to incorporate tow 
material nonlinearity, matrix cracking and tow/matrix 
separation is currently being pursued and will impact 
the predictive capability in a positive way. 
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Material Name: Braided –30°/0°/+30° Glass Fiber Polyvinylester Composite  
 

Fiber Resin No. of 
Plies 

Thickness Volume 
Fraction 

E-Glass (Owens 
Corning) 

Dow Spectrum MM364 
Isocyanurate 

3 
 

0.214 in 
5.0 mm 

45% 

 
Table 1:  Fiber and Resin Type 

 
 
 

Properties Experimental Data 
Ez 12.89 GPa 

 1.87 Msi 
Ex 27.18 GPa 

 3.94 Msi 
Gxz  4.80 GPa  * 

 0.70 Msi 
 

Table 2:  Elastic moduli of glass triaxially braided composite 
 
* Note that the value of Gxy is provided by supplier and not measured by ACL.  The measured values for 
the other moduli were generally higher; approximately 10% higher. 

 
 
 
 

                                  

λ

A

Bias Tow Sideview

ab

bb

a
b

Bias Tow Cross-section Axial Tow Cross-section

  

30° 

RUC 

 
Figure 1:  Fiber glass braided mat without resin and key dimensions 

 
 
 
 

λ  A a x b ab x bb. 
14.030 mm 0.701mm 3.012mm x 0.503mm 3.010mm x 0.498mm 

 
Table 3:  Key dimensions of –30°/0°/+30° GTBC 
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Angle Tows

Zero Tows

Matrix

3D – tetrahedron elements
39897 elements
25362 degrees of freedom
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Figure 2:  Finite element model of –30°/0°/+30° GTBC 

 
 
 
 

Material E (GPa) G (GPa) υ  
Matrix : Epoxy  (Dow 
Spectrum MM364) 

5.0 1.83 0.36 

Fibers : E-Glass (Owens 
Corning) 

72.4 29.67 0.22 

 
Table 4:  Properties of constituents. 
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Figure 3:  Schematic diagram of the test section and it’s corresponding stress state equations 
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Figure 4:  Shear Modulus versus shear 

stress for the in-situ matrix and 
the composite 
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Figure 5:  Uniaxial stress-strain curve of 

matrix used in finite element 
model 

 
Properties Experimental Data Computational Data % error 

Ex 12.89 GPa 
 1.87 Msi 

12.44 GPa 
 1.80 Msi 

 3.49 

Ey 27.18 GPa 
 3.94 Msi 

26.92 GPa 
 3.90 Msi 

 0.96 

Gxy  4.80 GPa * 
 0.70 Msi 

 5.42 GPa 
 0.77 Msi 

10.0 

* Note that the value of Gxy is provided by supplier and not measured by ACL.  The measured values for 
the other moduli were generally higher; approximately 10% higher. 

 
Table 5:  Computational model elastic moduli verification 
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Figure 6:  Loading conditions for obtaining elastic moduli 
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Figure 7:  Boundary location of micromodel where displacement constraints are applied 
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Figure 8: Macroscopic stress-strain relationship under the influence of different imperfections and nonlinear 

material properties of the micromodel. 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
Figure 9:  Typical tow buckling phenomenon seen in compression tests. The whitening of the matrix is due to  

distributed matrix cracking and fiber/matrix debonding 
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Figure 10:  Relationship between imperfection  

magnitude, δ mm, and peak stress 
(psi). 
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Figure 11:  Relationship between imperfection 

magnitude, δ mm, and plateau stress 
(psi) taken at 9% strain. 
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Figure 12:  Compressive Stress, σx versus Tensile Stress, σy 
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Figure 13:  Experimental Failure Envelope for Glass Braided Composite +30°/0°/-30° 
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Figure 14:  Computationally Predicted Failure Envelope for Glass Braided Composite +30°/0°/-30° 
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