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ABSTRACT

The analyses of two types of radio direction-finder
are presented. These systems were investigated primarily with
the VHF frequency range in mind. The analysis of the systems
is presented for the purpose of indicating one way of instrument-
ing an interferometer system and to indicate a way of eliminating
the ambiguities involved. Some discussion is given on the limi-
tations of such systems. As with most direction finders in this
frequency range and lower, the limitation on accuracy is a
function of the environment and not solely dependent upon the
instrumental accuracy of the equipment.
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TWO INTERFEROMETER-TYPE DIRECTION-FINDING SYSTEMS

1. INTRODUCTION

This report will describe two proposed radio direction-finding
systems based on the interferometer principle. From a theoretical standpoint
the systems show certain advantages over other types of systems. However,
it must be kept in mind that in a practical environment these advantages
may not be realized because of the nature of operation of the systems. Both
systems suffer in that they take samples of the wave front at only a few
widely separated points and thus do not average over the wave front as

would be desired.

2. THE "OAK-LEAF" DIRECTION FINDER

2.1 Principle of Operation

The first of the two systems investigated is called the "Oak-leaf"
DF because of the characteristic pattern produced by its antenna system.

The system utilizes five antennas, as shown in Fig. 1.

Antennas 1 and 2 form a wide-spaced pair in terms of the wave
length, A. If the phase of the signal at antenna 2 is continually advanced
with respect to that at antenna 1, a multilobed interference pattern is
produced. A similar process obtains from the antenna pair 1 and 3 except
that, since the spacing is slightly different, the resultant pattern will be

rotated slightly in space, although similar in shape.
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Each pattern alone contains information as to the bearing of the
transmitter but with ambiguities as represented by the multiplicity of
lobes in the multilobed pattern. These ambiguities are resolved by a
continuous rotation of one pattern with respect to the other so as to
produce one major lobe which will indicate the direction of the target.

There remains, however, the reciprocal bearing ambiguity, which
is resolved by using another antenna array, composed of antennas 1, 4, and

5, at right angles to the first.

2.2 System Analysis

The initial analysis concerns the antenns system comprised of
antennas 1, 2, and 3; it is subsequently applied to the system of 1, 4, and
5.

Establish antenna 1 as the reference antenna and let the voltage

at this antenna be represented by:

e, = A cos wbt s

where A involves system parameters involved with antenna 1.

Similarly,

o
]

B cos (wbt +qa) , and

(U]
i

C cos (wot +8),

where B and C represent system parameters peculiar to antennas 3 and 2,

respectively, and

a = %ﬁ (L-S) cos @ , and
)

B = %ﬂ (L) cos © .
o



Now, with reference to Fig. 2, if a locally generated signal

at a frequency of wl/Qn is mixed with €y, the following is obtained:

(1]
S
(14
H

Acoswotchosu)t

wo wl 1
AD
= 5 cos (o + wl)t + cos (wo - cul)t,
where €p. = D cos wlt is the oscillator voltage.

1
After filtering to retain only the ®y + W term one obtains

AD
-
e] = —cos (wo +a)l)t .

Now, with reference to Fig. 3, a similar process is gone through,

this time with ei and €5

o
»
o
L}

5 [‘2-2 cos (wo + wl)t] [B cos (wot + a)]

ADB
e [cos (Qmot + ot + a) + cos (o - wlt)J

i}

After filtering to retain only the Wy term one obtains

"

5 = A—Egcos (a-mlt) .
Going through a similar process for e3 , one obtains

eé‘ = é-])z—gcoas (a-wlt) .

Now introduce another locally generated signal given by

em2 = E cos wgt .
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With reference to Fig. 4 it can be seen that one obtains

»
®
|

ADB
—— cos (a - a)lt) x E cos (wet)

2 w2
= A—gPE [cos (a + Wt - wlt) + cos (o - ® b - wzt)] .
After filtering to retain only the Wy + ) term one obtains
v11 _ ADBE )
e} = =g~ cos (a @t -wgt)
Now after the processing shown in Fig. 5, we find
ABDE ADC
1o tt - - -
ey'' x eg = —g— cos [a (wl +u>2)t] x =~ cos (B wlt) .
11
€2 W, +w,la
W, a-B
i
, FILTER 2w, t+w, |a+B
MIXER }——» w, —@
2w+ w,
w18
o—
ell
3 FIG. 5



A®D®BCE

e, = —B-E—[COS (a+5-anlt-w2t)+003 (G'B*"‘Dat)] .

By definition, m = L/S.
Now, since o = %‘- (L-S) cos © , and
)
2n
B = (L) cos @ , we find that
(o
a+p = (2L-8) -iﬁ cos © = (2Sm-S) -i—’l cos © = (2m-1) _21:__8_ cos © , and
() ) )
Q-8 = = §%§ cos @ .
)
!
Now choose Wy and o, such that — = nm - 1.
2 u)2
503 a +w, = 2my, - A, +m, = 2w, -, = a>2(2m-l) .

Substituting all of this into the expression for e g one obtains:

A®D®BCE { 218

o

e =

£ cos [(Em-l) (

) cos © - (2m-1) a)et]

+cos[wt-g-’-‘—s—cose]} » Or

2 o
e A°D°BCE {cos [(Em-l)(w t - 288 og 9)] + cos (w,t - 215 cos 9)}
f 2 A 2 Mo '

Normalize €p to prevent the resultant expression from ever becom-

ing negative and call this F(8):

285 2nS
F(8) = 2 + cos [a)zt - —-}-{)— cos e] + cos [(zm-l)(mzt - —X; cos G)] .



W
let ¥y = 5% . Now if F(®) is applied on a circular sweep of
w

an oscilloscope being swept at a rate of y = 5% revolutions per second
one obtains a pattern given by:
F(e) = 2 + cos (y - §§§ cos ©) + cos [(2m-l)(7 - Q%Q cos G)] .
(o] o]
Figure 6 illustrates the particular case wherein 6 = 90°, but

the same pattern will appear for any value of @ except for a rotation around
the origin.

Now, F(e) will have an absolute maximum when

2ns cos 8 = 7y .
Ab

From this one obtains cos © as:

Xb
cos 8 = 7EW (§;§) .

the only ambiguity involved in determining © will

%

Since S < 5

be in determining the correct algebraic sign to use. This is resolved by
antennas 1, 4, and 5.

Going through the same signal processing as before, using antennas
1, 4, and 5 one obtains another value for 7, to be called 7NS’ from which

one obtains sin © by the relation:
A
e]
sin o = 7NS (§;§) .

Having obtained NS and 7gy » ©One can now determine the angle of

arrival, ©, by constructing the triangle as shown in Fig. 7.
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Note that the value of y is independent of all the arbitrary
amplitude constants, A, B, C, etc., so that the system will be relatively
immune to amplitude unbalances.

Figure 8 shows a complete block diagram for the "Oak Leaf" DF.

3. THE "SPHERICAL WAVE-FRONT" SYSTEM

3.1 Principle of Operation

The "Spherical Wave-Front" system samples the incoming wave
front at five points, one point serving as a reference point for the rest
of the phases. Under ideal circumstances the wave propagating from a point
source expands spherically, so that, by determining the shape of the wave
front, one can determine not only the bearing of the target but also the

range, thus determining the location or fix of the target.

10
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The determination of the shape of the wave front is done by
comparing the relative phases of the incoming signal at each of the sampling
points. Using these relative phases and certain approximations, one being
that the array length, L, be much less than the distance to the transmitter,
a fairly compact expression relating the bearing and range of the trans-
mitter to the relative phases at each of the sampling points can be obtained.

In the proposed system, the signals from the sampling points are
processed in such a way as to give a direct indication of the bearing and

range.

3.2 OSystem Analysis

First consider the signal processing necessary for the operation
of the system and then briefly the circuits to perform these operations.
The antenna positioning is as shown in Fig. 9. The target transmitter is
at point P.

Now consider only antennas O and E as shown in Fig. 10. One

finds that if L <R:

2 3
L L 2 L 2
QEO = R - RPE = 3 cos 6 - BR sin® @ - 16R2 cos © sin” ©
4
- L (6 00829-1)+000 .
128R3
Similarly:
2 3
_ L _ L 2 nL 2
awo = R - RPW = -3 cos © BR sin® @ + 16R3 cos © sin~ ©
L
. 2k (6 cos® @ - 1) + ... .
128R3

12
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In terms of relative phase angles referred to antenna O as the reference

point and dropping the higher order terms:

_2x_ _ nlcoso mfsin®e
®Eo » %20 ~ ™ kRN
_ 2 _ _nlcos o _nlfsin®e
% = X %wo © ~ TRN
and similarly:
- nL sin © _ nLe C082 o +
®No N LRN
= - nl, sin © - nLe 0052 o+
q)so k th LI Y

Now add wEO and ¢WO to obtain @EW:

= + = - EEE sin® © +
®ew T ®0 T %0 T ° ZRM
Similarly for QNS:
2
= = al_ 2
¢NS = ¢N0 + wSO = - RN CO8 O + o..

Next take the sum of Pew and Pns to be called PEwns®

2

Pewns = Pmw tOPns = g%x sin2 e + 0052 0 + ...
PEWNS 2R T
Solving this for R one obtains:
R = - ._EEE__
2NEwNS

Now take the quotent of gp,, and Qg ot

15



2

_ KLE sin® ©
PEW . 2RN
PEwNs _af
2RA
Solving this for sin2 © one obtains:
P
sin2 6 = N
PEwNs
Similarly:
2
cosg 0 = NS
PEwNs

N 2dn
2 Jﬁ" ]

ew\x v 4’w

m

vV ¢NS —*

FIG.1l DETERMINATION OF RANGE AND BEARING

16



Since

gy
o)+ (Vo)
and VPps
cos @
V(Sog)? + (Vo)

sin ©

we can construct the diagram shown in Fig. 1ll.

3.3 Possible Method of Instrumentation

o is the phase angle by which the signal at antenna E leads

that at antenna O. Puo is likewise the phase angle by which the signal at

antenna W leads that at reference antenna O. ILet the voltage e , and

E’ %w

eo be respectively:

o
]

B E sin (wbt + mEO)’

[0}
(]

W sin (wbt + mWO), and

e A sin (abt),

0

where E, W, and A are arbitrary constants involving the system parameters.
First, by the processing shown in Fig. 12, one takes the product

eE and ew to be called eEw:

L)
%
o
L]

E sin (wot + mEO) X W sin (wbt + @WO)

(]

EW
- [Cos (9gp = Pyo) - co8 (2ot + opy + CPwo)] ,

17
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After filtering to retain only the amo term one has:

EW
€y = - & COS (2wot + Op * cpwo)

EW
= - 75 cos (anot + cpEw) .

—@¢€y

Next one takes a locally generated signal at a radian frequency

of w, + B to be called eqt

eg = Bsin (a)0+5)t .

By processing shown in Fig. 13 one obtains the following:

e Wo 2%*',3
°o® o — B FLTER | 290 *B
2w, +8) o
EEE——
€ 3
wy +f3
LOCAL
OSCILLATOR FIG. 13
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xey = Asinat x B sin (wo+s)t

= %Ecos Bt - cos (awo +B)t .

Now, by filtering, one takes only the ano + B component of eoB’
AB
ey = - & cos (emo +B)t .

Next, as shown in Fig. 1k, one takes the product of epy and €oB

to be called e :

EWO
. L 4B
ey X €gp = - T COS (amot + q;Ew) X - > cos (Bmot + Bt)
EWAB
= 5 [cos (Bt - q)Ew) + cos (hwot + Bt + quw)] .
2w
0
Cew @
e 4w, +8 FILTER B
MIXER ———————— —@
B €ewo
2wo +B
3 ®

FIG. 14
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After retaining only the B term:

EWAB
°mio = g <08 (Bt - og) .

In & similar manner, the signals from antennas N and S together

with that from antenna O could be processed to give:

NSAB
®vso = g cos (Bt - opg) .

The next step is the derivation of a voltage proportional to

Vogy 804 Voyg -

Consider Fig. 15.

y SAWTOOTH Vor y
O@——— GENERATOR I N ADD |—= AMP |——o—@ X
,B — (A)
_7Vx2
AMP SQUARE
FIG.15
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The output voltage, Vx, is given by:

V.t
v oo .1 _9.._<l+___l____.) ,

X 24y v4

For values of A, 7, and t, such that

> - and hA27VOt > 1,

oAy

Vx can be represented approximately by:
/V Ot
VX = -;-— vt

Now one has a voltage, V

%! which is proportional to the square

root of time, t.

Now send €EWO and €oB through the wave shaping processing shown

in Fig. 16.
e e’
EWO@——— AMP CLIP DIFFERENTIATE |——@ Ewo
!
€s0 €80
o———— AMP cLiP DIFFERENTIATE }——@
FIG. I6
The output eéo is a series of sharp pulses with a recurrence
Y
interval of time, To = %1(- » but lags the pulses of g9 by & time, T = —?J-,

as shown in Fig. 17.

2l



Now if one takes the voltage Vx’ which also has a fundamental

period of To = %g ; and considers its value at t = T, one obtains &

voltage VEw proportional to ,/®_.. Similarly, VNSN\ﬁﬁﬁg .

Now, if VEW is applied to the y-axis of an oscilloscope, and VNS
is applied to the x-axis, a triangle can be constructed as shown in Fig. 18.
However, there still remains some quadrantal ambiguity. This ambiguity can
be resolved by some additional instrumentation since this information is

present in the unprocessed signals.

A complete block diegram of the system is shown in Fig. 19.

L. PERFORMANCE OF INTERFEROMETER DF SYSTEMS IN

TERMS OF ACTUAL PROPAGATION CONDITIONS

Each of the systems discussed determines the bearing of a trans-
mitter by sampling the wave front at a few widely separated points.

In the "Oak-Leaf" DF, the bearing is determined from these samples
by comparing the relative phases at each of the sampling points; from these
relative phases an imaginary phase front can be drawn which under ideal
propagation conditions, will coincide with the actual phase front. The
bearing is determined from the phase front by & perpendicular to the
phase front at the DF site.

The "Spherical Wave-Front" system proceeds one step further than
the previous system: not only are the relative phases compared, but the
differences in relative phases are compared in order to obtain as an end
result an imaginary phase front as before represented, this time, by the

arc of a circle. Again, under ideal propagation conditions, the imaginary

22
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phase front will coincide with the actual phase front. In this system the
bearing and also the range are determined by locating the center of the
circular arc.

In either system the fundemental difficulty is the same. Each
system samples the wave front at only a few widely separated points and in
no way attempts to determine the average wave front between these points.
The "Spherical Wave-Front" system is a bit worse in this respect. Not only
does it compare the relative phases at the several points and then take the
differences of these phases as does the "Oak-Leaf" DF, but it goes one step
further and takes differences of the differences of the relative phases,
thus leaving the system open to the possibility of very serious errors.
Perhaps this may be seen more clearly by referring to Fig. 20. In the
"Ogk-leaf" DF system the bearing of the transmitter is determined by
essentially comparing length Pl with length PO to derive a difference
length AL = PO-Pl, which is determined in terms of phase angles. Since
AL will be a very small quantity as compared to PO or Pl it can be seen
that a very small difference in two large quantities is being taken, which
will lead to serious errors when actual propagation conditions cause the
average velocity of wave propagation over path Pl to differ from that over
path PO.

Looking at Fig. 21, which represents the conditions involved in
the "Spherical Wave-Front" system, it is seen that in this system that
distance PO is compared to PE and also to distance PW to obtain difference
lengths AEO = PO-PE and AWO = PO-PW, respectively. Then AEO is compared
to AWO to obtain the second difference, AEW = AEO - AWO, which is expressed
in terms of phase angles, all with respect to the phase of the signal at

antenna O.

e5
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Since the array length L is very small compared to the distance
R, it can be seen that only a very small difference in the average velocity
of wave propagation over the three paths, PE, PO, and PW, can cause extremely
large errors in the bearing and range. Also, since the resultant phase
angle to be measured is likely to be extremely small except in the special
case of the transmitter being very close to the direction-finding site, the
instrumental errors are likely to be very large, if not the prime determin-

ing factor in the practicality of the system.

5. CONCLUSIONS

The analysis section of this report presents two methods of
instrumenting two interferometer DF systems. In order to determine the
usability of these systems ina real situation, one should make an error
analysis using perturbation data for the particular case involved. It
appears that as one increases the aperture in the manner of an interferometer
system without increasing the number of sampling points that the system may
be more susceptible to environmental errors than would ordinarily be the
case, and, as is pointed out in the report, more sample points in the

space are needed.
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