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Making use of Eqs. 310.02 and 310.04 of Ref. 5, we obtain
after simplification

K

Controller Design with Regional Pole
Constraints: Hyperbolic and

Horizontal Strip Regions

(23)

where E=E(k) is the complete elliptic integral of the second
kind. Note that £2 = 0 implies a = b=Q and K = E, from
which x2 = 0, as expected, since this corresponds to the center
at (*,*) = (0,0).

Thus, we have reduced the study of Eq. (16) with p = e to the
study of the averaged slow flow described by

H'=x2(H, (24)

where x2 is given at Eq. (23) and ( )' = d( )/d/x. This equation
is valid to 0(e) as long as the flow stays in region 2a (Fig. 1),
and it can be shown that if jii(0)>0 and e>0, then trajectories
originating in region 2a remain in that region.9 Numerical
comparisons show that solutions to Eq. (24) agree quite well
with the "exact" solution to Eqs. (2) and (3).

In this example there is only one region of phase space
where the unperturbed solution is periodic. In case there is
more than one such region [e.g., when V(x; ju) is quartic], then
the form of the e = 0 solution and, hence, the form of the
right-hand side of Eq. (14) are different in different regions.
When the slow flow passes from one region to another, the
averaged equation may lose validity. This is because the transi-
tion may involve crossing an instantaneous separatrix of the
unperturbed system. At a separatrix, the period of the e = 0
solution becomes infinite, so that the average computed in Eq.
(13) is over an infinite time interval, violating the conditions of
the averaging theorem (see Ref. 9 for further discussion of
separatrix crossing).

Conclusions
We have presented a general formulation for application of

the method of averaging to a specific class of nonlinear equa-
tions. The method exploits the existence of an energy integral
(the Hamiltonian) for the unperturbed system and leads to a
single first-order equation for the slow evolution of the Hamil-
tonian. By using the canonical coordinate x as the fast vari-
able, the need to identify the rapidly varying phase angle (as in
Kruskal's method) is eliminated. As shown in the example,
application is relatively straightforward when the form of
the potential leads to an explicit solution to the unperturbed
problem.
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Introduction

I N Ref. 1 , fixed-structure synthesis techniques were used to
design feedback controllers that place the closed-loop poles

within specified regions in the open left half -plane. Specifi-
cally, circular, elliptic, parabolic, vertical strip and sector re-
gions were considered with both static and dynamic output
feedback controllers. The purpose of the present Note is to
extend the results of Ref. 1 by considering two regions that
were not considered in Ref. 1, namely, hyperbolic and hori-
zontal strip regions. In practice, the hyperbolic region, which
was considered in Refs. 2-9, imposes a lower bound on the
damping ratio of the closed-loop poles, whereas the horizontal
strip region, briefly discussed in Ref. 10, imposes an upper
bound on the damped natural frequencies of the closed-loop
poles. The complicating aspect of both of these regions is that
each region is reflected into the right half-plane. Hence, it is
necessary to exclude from consideration the right-half portion
of the constraint region. The proofs of the following theorems
are lengthy and hence are omitted in this paper. Details are
given in Ref. 11.

Characterization of the Hyperbolic Constraint Region
To begin, consider the two-sided hyperbolic region 3C(#,Z?)

defined by

X < E
(ReX)2 (ImX)2

b2 >1

where a and b are positive real numbers. To specify the left-
half region that is of interest for stability, we focus on the
subset 3£L(a,b) = [X 6 3C(a,&): ReX<0], which corresponds
to the left branch of the hyperbola. It is often convenient to
write X= - fcow +700^, where 0<f < 1 and ud = o^Vl - f2. It is
also known that the settling time is related to ReX. In practice,
design criteria may involve the damping ratio f and the recip-
rocal of the settling time rj = fan. The constraint f > fmin and
T? ̂  fJmin can be enforced by the hyperbola parameters a and b
by choosing a =r/min and 6 =(r?min/fmin)Vl-f£in. Next it can
be shown that the region JC(a,Z?) can be equivalently charac-
terized by

^ [\€ C: 1 +2«5(ReX2) + 7|X| 2<0]

where

4a2b2 ' 7 =
a2-b2

2a2b2 (1)

This leads to the following result. Let "spec" denote spec-
trum.

Proposition 1: Let ,4 € (R /7X",let Vh € (R"xn be positive def-
inite, and let d and 7 be real numbers such that <5<0 and
26<7< -26. Then, if there exists an n xn positive definite
matrix Qh satisfying

0 = Qh QhA2T) + yAQHAT + Vh (2)
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then spec 04 )C 3C(#,£), where

(3)

Note that 3C(a,Z>) includes regions lying in the open left
half-plane C~ and in the open right half-plane C + . Prop-
osition 1 applies to all of 3C(#,&), not just 3CL (#,&). Con-
sidering stability, we now combine the standard Lyapunov
equation with Eq. (2). Thus, the characteristic roots will be
constrained to lie inside the left hyperbolic constraint region.

Theorem 2: Let A, F, Vh, Q, and Qh € (R"xn and Fand Vh
be positive definite matrices. Then, if there exist positive-defi-
nite matrices Q and Qh and real numbers d and 7 such that d < 0
and 26<7< -26 satisfying

0 = Qh + d(A2Qh + QHA2T) + yAQHAT + Vh (4)

(M r+F (5)

then spec(y4)C JCL (#,&), where a and 6 are given by Eq. (3).
Let ft and d € (R2"x2* be defined by

4 7 + 5(A2 ®A2) + 7.4

where (x) and © denote Kronecker product and sum.
Proposition 3: Let d and 7 be real numbers such that 6 < 0,

and 26 < 7 < - 26, and let a and b be given by Eq. (3). Then the
following statements hold.

1) Suppose a >b. Then Q and A are asymptotically stable
if and only if spec(,4)C 3£L(a,b).

2) Suppose a < b . Then <f and A are asymptotically stable
if and only if spec(,4)C WL(a,b).

Lemma 4: Let spec(^4 ) C JCL (a, b), where a and b are given
by Eq. (3), and let Fand Vh € (Rnxn be positive-definite ma-
trices. Let 6 and 7 be given by Eq. (1). Then there exist unique
n x n positive-definite matrices Q and Qh satisfying

0 = Qh yAQhAT + F, (6)

(7)

Controller Synthesis
Based on Eqs. (6) and (7), we can now perform controller

synthesis. Here we consider the linear time-invariant system

x(t) = Ax(t) + Bu(t) (8)

(9)

where x(t), u(t), w(/), andy(t) are «-, m-9 d-, and /-dimen-
sional vectors, and A, B, C, and Dl are corresponding con-
stant matrices. With static output feedback of the form

= Ky(t) (10)

it is our goal to select K such that the closed-loop system has
the following properties:

1) The closed-loop poles are constrained to lie in the hyper-
bolic constraint region 3CL(#,Z?).

2) The performance index

1
/4limS-

is minimized.
The closed-loop system (8-10) is given by

(11)

(12)

where As=A +BKC. To determine a feedback gain K satis-
fying properties 1 and 2, we begin by defining an open set of
feedback gains JC5 4 [K : spec(As)c3CL(a,b)]9 which place
the closed-loop poles in 3£L(a,b). We assume that JC5 is not
empty. Equation (11) can be written as

-\ (xTRsx)dt (13)

Furthermore, by defining the nonnegative-definite state co-
variance

1 f '
- (xxT)dt (14)

the system (8-11) combined with criterion 2 will be as follows:
Minimize J(K) = trQRS9 where R5^R1+R12
+ (KC)TR2KC subject to

where Vs=DiD?. However, to impose criterion 2, we may
overbound the desired performance index as shown in Lemma
5 so that a minimization procedure can be carried out later.

Lemma 5: Let K € JC5 and let Vs and Vh € (R"x" be positive-
definite matrices. Then there exist nxn positive-definite ma-
trices Q and Qh satisfying

0 = QH + 4- Q^f ) + yAsQHAT
8 + (15)

(16)

Furthermore, y(Ar)<^(A'), where S(K) tr(Q/2s
We can now formulate the auxiliary minimization problem:

determine K € 3C5 that minimizes $(#) where the positive-def-
inite matrices Qh and Q satisfy Eqs. (15) and (16).

Theorem 6: Let K € 3C5 minimize $(/0. Then there exist
positive-definite matrices Qh, Q, PA, andP5 € (R"xn satisfying

0 = QhA2T)

d(A2TPh + P^2) + + Ph

(17)

(18)

(19)

(20)

where, under the assumption that II defined next is nonsingu-
lar,

Rs 4 Rl - Q)C

Q)C

+ (CB®BTPhQhCT)Umxl] +y(CQhCT®BTPHB)

such that the feedback gain K is given by

K = -vec^II^vecQ (21)
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Let us now design a full-order dynamic compensator satisfy-
ing pole constraints with regulator/estimator separation. Con-
sider the linear time-invariant system

weighted estimator cost is given by

x(t) = Ax(t) + Bu(t) (22)

(23)

where x(t), u(t), w(0, and>>(/) are «-, m-, d-9 and /-dimen-
sional vectors, and A9 B, C, D\9 and D2 are corresponding
constant matrices. Now the goal is to choose AC9 Bc, Cc such
that the dynamic compensator

= Acxc+Bcy(t) (24)

(25)

satisfies properties 1 and 2.
The closed-loop system and performance criterion of Eq.

(11) can be restated as follows:
Minimize

(26)

subject to

where

r A BCCI r *, *12cc i
» r* /4 r rTT*T rTn r|_ZJCC ^c J L^c^l2 Cc ^2Wj

\ V, VnB
LBCVT2 BCV2B

The set of dynamic compensators that places the closed-loop
poles in JCL(a,Z?) is defined by

Kd 4 [&C9BC9 Cc) : spec(A*)C3CL (*,&)]

The following result is analogous to Lemma 5.
Lemma 7: Let the triple (AC9BC, Cc) € 3C</, and let Vd and

Vh € (Rw x n be positive-definite matrices. Then there exist posi-
tive-definite matrices Q and Qh € (Rnxn satisfying

0 = Qh + b(AlQh + QhA2
d
T) + jAdQHAT

d + Vh (27)

Q = AdQ + QAT
d+Vd (28)

Furthermore, J(Ac,Bc,Cc)<d(AC9Bc,Cc), where 3(AC,BC9CC)

Here we enforce regulator/estimator separation for deter-
mining (AC,BC,CC). Thus, the dynamic compensator is as-
sumed to be of the form

xc = Axc + Bu + Bc(y - Cxc)

u = Ccxc

(29)

(30)

such that AC^A +BCC-BCC. To exploit this, it is useful to
design the estimator by defining the tracking error e 4 x -xc
such that

A+BCC -BCc

0 A^

Then the goal is to separately place the eigenvalues of the error
dynamics and regulator in the hyperbolic constraint region
3CL(a,&). From Eq. (31), it is noticed that there are in fact
two separate problems for determining Bc and Cc. The sub-
problem for the estimator can be formulated such that the

-\ (eTWe)dt (32)

where W is a given n x n positive-definite matrix. However,
Eq. (32) can be rewritten as

Note that Qe satisfies the Lyapunov equation

(33)

(34)

where Ae=A+BcC and Ve = V^-B.V^- VnBc+BcV2B*.
For the regulator, we consider

(35)

(36)

(37)

=trQrRr

(38)

x = Ax +Bu

u = Ccx

which implies that

x = Arx+Dlw

The corresponding cost is

where Qr satisfies

where Ar=A+BCcandRr=Rl+RnCc
Now let 3C5be defined as 3C5 4 [K: spec(A +BcC)CWL(a,b)]
to characterize a dual set of gains for the closed-loop pole
assignment. To place the eigenvalues of error dynamics and
regulator in 3CL (#,&), it is also required that Ae and Ar be
stable as guaranteed by Proposition 1 .

Lemma 8: Let Bc € 325 and Cc € 3C5, and let Ve, Vhe, Vl9
and Vhr € (Rnxn be positive-definite matrices. Then there exist
positive-definite matrices Qhe and Qe € (R"x/2 satisfying

0 = Qhe

(40)

such that Je(Bc) < $e(Bc) = tr (QeW + QAe). Furthermore,
there exist positive-definite matrices <2/jr and Qr 6 (Rwxn satis-
fying

0 = ArQr + Qrv4^ + Ki (42)

and such that /r(Q)<&(Q) = tr(QrJRr + Q^r).
Theorem 9: Let £c 6 3?5 and Cc € 3C5 where ^Je(Bc) and

3r(Cc) are minimized, and let Ve9 Vhe, Vl9 and F^ € (Rn X A Z be
positive-definite matrices. Then there exist positive-definite
matrices Phe, Pe, Qe, and Q/je € (Rnx" satisfying

4- Ke (43)
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0 = Qhe + d(A2
eQhe + QheA2

e
T) + yAeQheAT

e + Vhe (44)

0 = AT
ePe + PeAe + W (45)

0 = / + Phe + d(A2
e
TPhe + PheA2

e) + 7^/V4 e (46)

and positive-definite matrices Phr, Pr, Qr, and Qhr 6 (RWX/I

satisfying

(47)

(48)0 =

r + #r (49)

rv4?) + yAT
rPhrAr (50)

where, under the assumption that Ue and nr defined next are
nonsingular matrices,

0 = A^Pr

0 = 7 + Phr +

1 vec Or -

4 6 [[ /nx/ + [(CQhePhe) <8> C7]

= RnQr + d(BTATPhrQhr + BTPhrQhrAT)

nr 4 Qr ®R2 + d[(B ®BTPhrQhr)Umxn

+ (QhrPhrB ®BT)Umxn]+ jQhr ®BTPhrB

such that the compensator is given by

Ac = A - BCC + BCC

Bc = -vec"1!!"1 vec tte

Cc = -vec^n^vecG,.

(51)

(52)

(53)

Finally, we briefly discuss regional pole placement within
the horizontal strip region. To guarantee stability, we are only
interested in the region that is in the open left half-plane. The
left portion of the horizontal strip region can be characterized
as

3C5(w) 4 [X € C : ReX<0, (ImX)2<oj2]

where oj is the upper bound on the damped natural frequency.
Lemma 10: The set JC5(co) is equivalent to

where

1
2co2

By comparing 3C(#,&) with 3C5(o>), we immediately notice
that the constraint inequalities are similar. The differences
only arise at the coefficients of the inequalities. Thus, the
major results derived so far for the hyperbolic constraint re-
gion can be carried over to be the results for the horizontal
strip region with only slight modifications of the coefficients.

Conclusion
In this Note we established an upper bound for the cost that

can be minimized subject to a pair of matrix root-clustering
equations. These equations were used to constrain the poles of
the closed-loop system to lie in a hyperbolic or horizontal strip
region contained in the left half-plane. The left hyperbolic
region was chosen because of its ability to set desired bounds
on the damping ratio and settling time. Because of the similar-
ity between root-clustering equations of hyperbolic and hori-
zontal strip regions, the results obtained for the left hyperbolic
region can be applied to the left horizontal strip region with
minor coefficient changes. Future research will focus on nu-
merical techniques for solving the matrix algebraic equations.
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