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Phugoid Motion for Grazing-Entry Trajectories
at Near-Circular Speeds

Nguyen X. Vinh,* Vincent T. Coppola,1^ and L. de-Olive Ferreira*
University of Michigan, Ann Arbor, Michigan 48109-2118

We analyze the trajectory perturbations that result in phugoid oscillations during the grazing planetary entry
of space vehicles starting with near-circular speed, in ballistic and equilibrium glide modes. The equations for
planar entry are transformed into a dimensionless system appropriate for an analytical integration that provides
accurate results in comparison with those obtained from a numerical integration of the original system. For
ballistic entry, the small perturbation in the flight-path angle is a lightly damped oscillation with long period, while
the perturbation in the density (altitude) increases as the speed decreases. Nevertheless, the relative change in
the density is decreasing, and the phugoid in ballistic entry is termed stable in both the flight-path angle and the
altitude. For glide entry, in the reference solution where there is equilibrium of forces along the normal to the
flight path, both the flight-path angle and the altitude have a steady decrease along the flight path. With a slight
perturbatipn in either the initial speed or the initial flight-path angle, or both, the trajectory variables undergo
a damped oscillation about the reference trajectory. Both the damping and the frequency are obtained explicitly,
and they correctly predict the phugoid motion as seen in the numerical solution.

Nomenclature
A = coefficient function in Boole's method; constant of

integration in the analysis of gliding entry
f l m » & m = series coefficients in Boole's method
B = coefficient function in Boole's method
C = constant of integration in the analysis of ballistic

entry
CD> CL = coefficients of drag and lift, respectively
c = dimensionless flight-path angle variable at entry
D = aerodynamic drag
/i» gi = series used in the analysis of ballistic entry (altitude)
/2, g2 = series used in the analysis of ballistic entry

(flight-path angle)
g = magnitude of the acceleration due to gravity
H = altitude from the reference level
h = dimensionless altitude from the reference level
k = auxiliary parameter in the analysis of ballistic entry
L = aerodynamic lift
m = vehicle's mass
N = number of oscillations in gliding entry
r - radial distance from planet's center
S - vehicle's characteristic area
s = dimensionless arc length along trajectory
t = time
u = dimensionless speed in terms of the kinetic energy
V = speed along the trajectory
x = alternate form of the dimensionless speed (negative

natural logarithm of w)
Y = Chapman's altitude variable
y - transformed perturbation in Y in ballistic entry
z = transformed flight-path angle variable in the analysis

of gliding entry
ft = inverse scale height
y - flight-path angle
0 = independent variable in Boole's method
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X = central range angle
jit = transformed speed variable in the analysis of gliding

entry
p = atmospheric density
0 = dimensionless flight-path angle
a) - augmented lift-to-drag ratio; Eq. (52)
a) = averaged frequency of gliding phugoid mode

Subscripts
c = circular condition; complementary function
/ = final condition
0 = reference trajectory; condition at entry; point where

the solutions for the phugoid are connected

Introduction

IN a recently revised and extended treatise on planetary entry dy-
namics, Regan and Anandakrishnan1 review the most significant

results in the field, from the seminal works of Chapman2 and Alien
and Eggers3'4 to the recent studies on aeroassist technology by a
new generation of researchers.5 The general problem is currently
being extended to cover the whole range of entry speeds, from sub-
orbital flight of ballistic missiles to hyperbolic entry of spacecraft
into planetary atmospheres, with control techniques implemented
to optimize the various physical performance parameters. However,
for the most part, the published literature addresses only specific
formulations, usually based upon restrictive assumptions on the en-
try speed, entry angle, and range of lift-to-drag ratio for the vehicle.
As examples, solutions are readily obtained for the case of ballistic
entry at suborbital speed with a medium or steep angle as well as
for grazing entry at supercircular speed, in which the vehicle will
skip out after a shallow dip into the upper atmosphere. On the other
hand, a very sensitive case has, so far, been left largely unexplored,
except when considered as the final phase of the problem of orbit
decay: the problem of entry at near-circular speed and a very small
flight-path angle. Yet this case often happens (e.g., in the entry from
low circular orbits or abort during ascent into orbit). In particular,
no major effort has been made to produce stability analysis results
for such case.

One of the main difficulties associated with the construction of
an analytic theory for stability analysis of re-entry vehicles is the
determination of the reference trajectory, since entry dynamics is a
strongly unsteady, nonlinear phenomenon. Singularities in the for-
mulation, as well as sensitivity and accuracy issues, compound the
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hardship. The first significant attempt at circumventing the problem
was put forth in Loh's comprehensive work.6 Unfortunately, his
construction of the solution is flawed by the introduction of an em-
pirical step that cannot be mathematically justified. A year later,
Yaroshevskir introduced the first mathematical solution to the prob-
lem. But this solution is still not satisfactory for ballistic grazing
entry at small angles.

In this paper, the singularity inherent in the formulation for entry
at near-circular speed and nearly zero flight-path angle, for both the
ballistic mode and the glide mode, is removed by a normalizing
transformation of the time and altitude (density) variables. Then, by
introducing a small initial perturbation, the behavior of the varia-
tions in the relevant elements is analyzed and the convergence of
each mode is studied. In particular, the paper introduces a new, more
accurate solution for the reference trajectory than Yaroshevskii's so-
lution. Finally, a new set of analytic solutions for the perturbed ele-
ments of the trajectory is obtained and shown to display correctly the
phugoid behavior found in the numerical solutions in both the bal-
listic case and the glide case. Stability is assessed from the analytic
solutions and confirmed by simulation of the nonlinear equations.

Dimensionless Equations of Motion
Consider Fig. 1, depicting a planetocentric inertial reference

frame. With respect to this frame, the equations of motion of a non-
thrusting aerospace vehicle, considered as a point mass, in planar
entry into a spherical, nonrotating planetary atmosphere are

dr T/ .
.— - = V sinyat

-
r — = Vcosy

dV
"dT =

D
m

dy L ( V2\
V— = — - I g-— Jcosy

dt m \ r J

(la)

db)

dc)

(Id)

In the classical theory of low-speed, low-altitude flight, longi-
tudinal dynamics is found to be characterized by two fundamen-
tal oscillation modes, namely, a long-period oscillation, called the
phugoid, and a short-period oscillation, called the angle-of-attack
mode. The phugoid consists of a trajectory mode in which the an-
gle of attack remains nearly constant while the center of mass of
the vehicle oscillates about a reference flight path, continually ex-
changing potential and kinetic energies. The angle-of-attack mode,
on the other hand, is a pitching oscillation about the vehicle's center
of mass. As a first approximation, the two modes are taken to be
uncoupled, especially with respect to the phugoid mode. We intro-
duce such a decoupling to study the phugoid in the case of grazing
atmospheric entry. Accurate analytic solutions are sought for the
re-entry trajectory at constant angle of attack, for both the ballistic
mode (CL = 0) and the glide mode (Ci/CD ^ 0). In each case,
this trajectory will be used as the reference trajectory in the stability
analysis to follow.

The problem of longitudinal dynamics for re-entry from a low-
altitude circular orbit is formulated as follows. At entry,

r = r0,
(2)

y = 70
We shall consider a strictly exponential atmosphere with constant
value for the inverse scale height, ft. Thus, in differential form,

dp = -ppdr (3)

Also, the standard expressions for drag and lift will be used:

D = \pSV2CD, L = \pSV2CL (4)

Dimensionless variables are now introduced. The speed is nondi-
mensionalized in terms of the kinetic energy:

u = V2/g0rQ (5)

The altitude is represented by Chapman's altitude variable, which
is the Dimensionless atmospheric density

(6)

and the flight-path angle is analyzed in the form of the dimensionless
variable

(7)= -VP rosmy

All computations will be performed for the Earth, where /Jr0 = 900.
The motion will be parametrized using the dimensionless arc length

(8)s = J— I Vdt

rather than the time t.
With these definitions, we have the following dimensionless equa-

tions of motion:

ds

du— = -uY
ds

CD

(9a)

(9b)

\ u

Let H be the altitude measured from the reference level, which
here is the entry altitude, and h be its normalized value, that is,

= r- r0, h = #/r0

Then,

and, for a central Newtonian gravitational attraction,

(10)

(11)

(12)

Since the altitude is now represented by the dimensionless density
Y, which varies widely, and since, in the relevant terms, h is of the
order of 10~2, during re-entry we take r/r0 ^ 1 and g/g0 ^ 1. In
addition, we consider cases for which y is small, so that cos y & 1.
Using these approximations, the equations of motion become

du

d<t>
Fig. 1 Trajectory variables.

(13a)

(13b)

(13c)
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Although simple, this system of equations of motion provides ac-
curate predictions of the altitude, speed, and flight-path angle in
comparison with the values obtained from the numerical integra-
tion of the original system of Eqs. (la-Id). Moreover, the equations
are valid for any re-entry vehicle and any planetary atmosphere. It is
only necessary to specify the atmosphere by choosing the value for
/fro and stipulate the lift-to-drag ratio CL/CD for the flight control.
For computational purposes, we shall take CL/CD as a constant
depending on the case under study (ballistic or gliding). As a nu-
merical comparison, we have plotted in Figs. 2 and 3 the altitude
vs the speed for two ballistic entry trajectories and one gliding en-
try trajectory, using the results of the numerical integration of the
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Fig. 2 Variation of the altitude as a function of the speed during bal-
listic entry at near-circular speed; numerical solution.
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Fig. 3 Variation of the altitude as a function of the speed during gliding
entry at near-circular speed; numerical solution; —0.5 deg: - - - -, exact
and • • • •/simplified.

system of Eqs. (9a-9c), which is the normalized form of the origi-
nal system, and the simplified system of Eqs. (13a-13c). The initial
altitude is such that, at entry, 7(0) = 70 = l-O""3. The normalized
deceleration resulting from drag is (dV/dO/go = —^/(ftro)Yu/2.
At entry with circular speed and the above value for 70, this de-
celeration is 1.5 x 10~2g0» sufficient to initiate atmospheric entry.
In Fig. 2 we present the plots of the dimensionless altitude vs the
speed ratio V/ Vcfor two typical cases of ballistic entry at y0 = — 2
and —4 deg. The entry speed is such that V0/VC = 1. The results
from the two sets of equations are in nearly perfect agreement. At
a final speed ratio as low as Vf/Vc = 0.05, which corresponds to a
Mach number of 1.15, the difference in the altitude, for the case of
yo = -2 deg, is Ah = 2.985 x 10~5, or about 193 m for an entry
altitude of 100 km. In the case of yo = —4 deg, the difference is only
7 m in 100 km. In Fig, 3 we have the same type of plots for a glide
trajectory with CL/CD = 1, VQ/VC = 0.98, and y0 = -0.5 deg.
From the same entry altitude, at a final speed of Vf/ Vc = 0.05, the
difference in altitude is 149 m.

One reason for the accuracy in using the simplified system of
Eqs. (13) is that the approximation g « go and r « r0 is fully justi-
fied. In Loh's treatise,6 equations written with these simplifications
are referred to as the exact equations. For all practical purposes,
our approximation affects only the equation for $., Eq. (13c), as we
neglect the term equivalent to — (d</)/ds)y2/2 on the right-hand side
of this equation. Since, for both cases of ballistic entry and near-
equilibrium glide entry, the rate of change of the flight-path angle is
small, the term neglected is also small and the results, are valid even
for large flight-path angle.

We therefore consider the system of Eqs. (13) as the appropri-
ate system for analyzing planar entry trajectories. The subsequent
analytic solutions are compared with the numerical solutions of this
system.

Phugoid Motion in Ballistic Entry
As previously mentioned* in the classical analysis of the perturbed

motion in longitudinal flight of an airplane, one clearly distinguishes
the phugoid motion, in which the center of mass undergoes a lightly
damped oscillation about steady flight, and the angle-of-attack per-
turbation, which is a heavily damped oscillatory motion. Extension
to orbital cruise of hypervelocity vehicles was carried out first by
Etkin8 and then by Vinh and Dobrzelecki.9 This analysis was done
for the case of a steady reference trajectory (initial cruise at constant
altitude with constant speed). The case for a re-entry trajectory is
more difficult to analyze because an accurate analytic solution for
the unsteady reference trajectory has not been available. Further-
more, even by using the existing first-order solution for the refer-
ence flight, the linearized equation for the perturbation is usually a
second-order linear differential equation with varying coefficients.
In general, its solution requires some preliminary transformation of
both the independent and the dependent variables, and such a trans-
formation is not always apparent. Standard power-series solutions
compare poorly with the results obtained by numerical integration.
The present analysis is geared toward overcoming these difficulties.

For ballistic entry, CL/Cr> = 0. In addition, during entry, the
tangential component — g sin y of the gravitational acceleration is
small and negligible in comparison with the deceleration due to
aerodynamic drag. In other words, in Eq. (13b), the term (2//3r0)0
is small compared to —uY\ therefore, we neglect it in the analytic
integration. For ballistic entry at circular speed, Eqs. (13) [neglecting
(2//?r0)0] are integrated with the initial condition, Eq. (2), rewritten
in terms of the dimensionless variables as

7(0) = 0, w(0) = = c (14)

The variation of the flight-path angle as a function of the speed ratio
V/ V(goro) is plotted in Fig. 4 for entry at various initial angles
y0. In the plot, the solid lines represent the numerical solutions of
Eqs. (13). The analytical solution for these trajectories, plotted in
dashed lines, is obtained as follows.

Define the new dimensionless speed variable x as

(15)



VINH, COPPOLA, AND DE-OLIVE FERREIRA 209

18

16

14

10

.2 .3 .4 .5 .6

V/Ve

.7 .8 .9

Fig. 4 Variation of the flight-path angle during ballistic entry at near-
circular speed. From bottom to top are trajectories with —70 = 0,1,2,3,
and 4 deg. Numerical solution (——) and analytical solution (----) are
nearly coincident.

Typically, for entry at circular speed, as u decreases from unity to
nearly zero, x increases from the initial value x = 0 to a final value
of about xf = 4.9 atMach2. Ignoring (2/^r0)0 and using Eq. (15),
Eq. (13b) can be rewritten in terms of x (instead of u) as

(16)

This equation is then used to change the independent variable from
s to x in the other equations:

-d*
ex -I

d*

(17a)

(17b)

Equations (17) are the modified Yaroshevskii's equations for ballis-
tic entry. Elimination of 0 yields a second-order, nonlinear equation
forF:

i odjc2 (18)

Formal power-series solutions for Y and 0 can now be constructed
satisfying the initial conditions at x = 0:

Through O(x3), these are found to be10

Y = ex + (l/2c)x2 + (l/12c)[l - (l/c2)]jc3 + •

and

0 = c + (l/c)x + (l/4c)[l - (l/c2)]jc2

+ (l/18c)[l - (2/c2) + (2/c4)]*3 + . - -

(19)

(20)

(21)

These power- series solutions are only valid for large and moderate
initial entry angles since, when y0 is small, c is small and the radii
of convergence of the series become very small. Thus, the solutions
are limited to the initial portion of the ballistic entry. As proposed

by Yaroshevskii,7 we remove the singularity at c = 0 in the power
series above by considering the first term in the series solution for Y
to be proportional to xm . This gives the formal solutions to Eqs. (17)
satisfying the initial condition F(0) = 0, 0(0) = 0:

(22)

(23)

Substituting into Eqs. (17a) and (17b), we obtain

dAF

dA0

= A0

(ex - 1) AF

Here, the subscript zero denotes the reference trajectory, that is,
the grazing ballistic entry from circular speed with y0 = 0. These
solutions are in good agreement with the numerically computed
solutions, and in Fig. 4 the plot of Eq. (23) is indistinguishable from
the numerical solution.

We now consider the perturbations from this grazing ballistic
entry. If A Y and A0 are the perturbations in Y and 0, then,

(24)

(25a)

(25b)

(26)

(27)

Using three terms of the solution (22) for YQ(X) and linearizing in
AF/F0,wehave

28)

It can be shown that, by a proper transformation of variables, this
equation becomes a confluent hypergeometric equation. On the other
hand, by neglecting the term jc2/4 in the coefficient of y, we have a
Bessel's equation of imaginary order. The handling of its solutions is
rather cumbersome. Power-series solutions yield poor results when
the entire range of interest of x is considered. This is because, for
small jc, Eq. (28) is reduced to an Euler's equation with general
solution:

dx F0(F0 + AF)

Eliminating A0 between these two equations and putting

we obtain the nonlinear equation

d2v 1 dv y (ex — l)ys . ' . = o

where

and

y = A cos nQ + B sin nO

0= &v*

= V2/2

(29)

(30)

(31)

This solution clearly exhibits the oscillatory character of the per-
turbed motion. Therefore, we shall use a technique of construction
of the complete solution of Eq. (28), as suggested by Boole.11

With the variable 0 used as independent variable to replace jc, the
full equation becomes

y" + n2y + \eey + ~^e2ey = 0 (32)

where the prime denotes differentiation with respect to 0. If we
consider only the first two terms of Eq. (32), we have the solution
(29) for Euler's equation. For the full equation, by considering A and
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B as functions of 0, upon substituting into Eq. (32) and equating the
coefficients of cos nO and sin nO to zero, we have the equations

(33a)

(33b)

We seek solutions for A and B in the form

Pm9K (34)
/n=0 w = 0

This results in the following recurrence formulas for the coefficients

1 / 1 \
4(2 + m2) V m l 4 m 2)

^ (*»-i +^,-2) (35a)

1

4w(2 +

4m(2 + /

(35b)

With a0 and b$ arbitrary, the complete solution for y, written in
terms of the original variable x, is

y = flo{/iMcos[(V2/2)

where

fl(x) = 1 - x-

+ gi(;t)cos[(V2/2) tn,x]} (36)

12 96 12672 1824768

, ' V2•' ( 3 2 1 3p (r\ — _____ r I 1 _ ———r z 4- —————r^ -I- . . .5iw — 10 I a<o aom/;12 V Jj2 JoUlO

(37a)

(37b)

Returning to the perturbation A 7 = y */x, its general solution takes
the form

(38)

where now C and ;c0 are the arbitrary constants of integration. Sub-
sequently, from Eq. (25a), we have for the perturbation in the flight-
path angle

(39)

where

- T2- - s'

(40b)

The solutions (38) and (39) for A Y and A0 represent the per-
turbations in altitude and in flight-path angle from grazing entry at
circular speed as given by the reference solutions (22) and (23) for
YQ and </>o • But these perturbed solutions have a singularity at the
initial point, where x == 0. Hence, to evaluate the constants of inte-
gration C and jc0, we take x — XQ as the point where these solutions
become valid. Before that point, we use the Eqs. (20) and (21) for

Y and 0, assumed to be valid in the interval x € [0, JCG]. Therefore,
we use the definition (24) to write the condition at the point JCG:

y(jc0, c) = + (41a)

(41b)

These equations can be solved for the unknown constants C and *o.
Explicitly, by eliminating C, we have the equation for XQ:

(42)

When the entry is slightly perturbed, c is small and we can obtain
an approximate solution for XQ by putting

= (V3/4)*c (43)

where k is the new unknown to be found. Upon substituting into
Eq. (42), we have the equation for A: to the order of c4:

64

(44)

which can be solved through O(c2) as

k = 1.671328785 + 0.113444530015c2 + • • • (45)

With these solutions, we have shown in Fig. 5 the perturbation Ay in
the flight-path angle variable in terms of the speed ratio V/A/(g0'"o)
for several small deflections in the entry angle. By referring to Fig. 4,
it is now clear that when we add these perturbations to the reference
solutions for grazing entry, accurate solutions for entry at small
angles from circular speed are obtained.

In Fig. 6, we have plotted the solution Y = Y0(x) + A7, now ex-
pressed in the dimensionless altitude h, vs the speed ratio V/^(gQro)
for several ballistic entries at small angles. Although the analytic so-
lutions are obtained from the truncated system (17), the numerical
results are obtained by integrating the complete equations (13). The
analytic solutions are seen to be in excellent agreement with the
numerical results.
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Fig. 5 Perturbation in the flight-path angle during ballistic entry at
near-circular speed: ——, —1 deg; - - - -, —2 deg; and • • • •, —3 deg.



-.03

-.032

-,034

-.036

-.038

-.04

-.042

-.044

VINH, COPPOLA, AND DE-OLIVE FERREIRA

2

211

.1 .2 .3 .4 .5 .6
VIVe

.7 .8 .9

Fig. 6 Variation of the altitude during ballistic entry at near-circular
speed. From top to bottom are trajectories with —70 = 0> 1> 2, 3, and
4 deg. Numerical solution (- - - -) and analytical solution ( • • • • ) are nearly
coincident.

It is seen in Figs. 4 and 6 that, with respect to the reference
trajectory for grazing entry y0 = 0, in the perturbations for y0 7^ 0,
i.e., in the phugoid mode, the oscillations exhibit two crossover
points where A 7 = 0 and A0 = 0, respectively. From Eq. (38), at
the point ;c where A Y = 0, we have

tan MX) (46)

The solution for x is a function of jc0 and therefore of the perturbed
initial flight-path angle.

Although, for large values of x (low speeds), A Y becomes large
and negative [as can be seen from Eq. (38)], the ratio AY/ F0 always
decreases in magnitude, tending to zero at low speed. For this reason,
we consider the perturbation in altitude to be stable.

Similarly, from Eq. (39) we compute the speed when A0 — 0.
This occurs when

MX) (47)

Again, the critical speed depends on jc0, that is, on the perturbed
initial flight-path angle. From the functional form of the analytic
solution for A0, Eq. (39), the perturbed flight path is a damped
oscillation, although the period is rather long. As the speed decreases
from the entry circular speed to nearly zero, A0 passes through zero
only once, at the critical speed found via Eq. (47). This speed is
high when yo is small. For large values of ;c (low speed), A0 tends
to zero. Thus we consider the perturbation in the flight-path angle
to be stable.

Phugoid Motion in Equilibrium Glide
The standard glide mode for the long-range, hypervelocity vehicle

is the equilibrium glide, in which the acceleration normal to the
flight path is zero. This leads to a very small and nearly constant
flight-path angle during the descent. Hence, we consider Eq. (13c)
with d0/d5 = 0. We then obtain the reference altitude (reference
density) as a function of the speed as

Y = 2(1 - ii)
(48)
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Fig. 7 Variation of the flight-path angle during gliding entry at near-
circular speed: - - - -, equilibrium glide and • • • •, perturbed.

Hence, in equilibrium glide the altitude decreases continuously as
the speed decreases along the glide trajectory. To evaluate the flight-
path angle, we combine Eqs. (13a) and (13b) to obtain

(49)

Using the solution (48) for Y to evaluate dY/du, we have, upon
substituting into Eq. (49) and solving for 0,

0 = (50)

Equations (48) and (50) constitute the solutions for the reference
equilibrium glide. For Y = 0, 0 = 0, the solutions lead to u = 1
and we have the condition of circular orbital flight in the vacuum.
To validate the use of these solutions, a very small, yet nonvanishing
starting density 7(0) is required. In addition, w(0) and 0(0) must
be such that the equations (48) and (50) are satisfied identically at
the initial point.

Figure 7 presents the plot of the flight-path angle as a func-
tion of the speed ratio, V/A/0>oro), for equilibrium glide with
CL/CD = 1.5 (shown dashed). The numerical solution and the an-
alytic solution from Eq. (50) are nearly identical down to a very low
speed. Although it is possible to obtain higher-order solutions for
equilibrium glide, the purpose of this work is the stability analysis of
entry trajectories, so we use the first-order solution as the reference.
Furthermore, in the denominator of Eq. (50), the term /?r0w(l — u)
is the dominant term. Hence, the variation of the flight-path angle
as a function of the speed can be approximated by

0 = 2/cou

where, by definition,

(51)

(52)

The simplified solution (51) for a slow increase in the flight-
path angle during the equilibrium glide is valid down to about a
Mach 2 speed. TThis solution can be obtained directly by applying
the equilibrium glide condition to the system (13) with the small
gravity component neglected in Eq. (13b). Therefore, we use this
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truncated equation to write the system with u as the independent
variable replacing s:

O) l-u

(53a)

(53b)du 2u u2Y

Taking the derivative of Eq. (53b) and using Eq. (53a), we obtain

d2</> a> 2-u I -u
2u2 u*Y2 (54)

By solving Eq. (53b) for F, we have, upon substituting into Eq. (54),
a nonlinear, second-order differential equation for 0:

d2d> d6 co2 a) d<bu(\-u)-^-u^- + —4>= — -(2-a>u4>)-^-du2 du 4 2u du

(55)

We have integrated this equation numerically, and the results du-
plicate the data from the integration of the original system (13). If
the initial conditions are such that they verify the conditions (48)
and (51), we have the equilibrium glide path. Any small initial
deviations, either in the speed or in the flight-path angle or both,
would result in a phugoid oscillation as shown by the dotted lines
in Figs. 7 and 8. Note that since we have near-grazing entry dur-
ing the initial portion of the trajectory, the perturbation, say in the
flight-path angle, may be much larger than the reference angle. This
explains the subtlety in the linearizing process applied to the non-
linear equation (55). In this equation, if the reference solution (51)
is used to evaluate the last two terms, considered as part of the forc-
ing function to a linear equation with varying coefficients, we shall
obtain -8/o>3w3. Therefore, one can neglect these terms to obtain
the equation for the flight-path angle in the form

du
co2

-T4
a)

(56)

This is a hypergeometric equation with a forcing function. Its general
solution is

= fa + (2/cou) (57)

where fa is the complimentary function, the general solution of
the homogeneous equation, and the additional term is a particular
solution, which we have taken approximately as the equilibrium so-
lution, since it has been shown that it is the solution to the system
when d(/)/du & 0. Instead of using the exact solution via hyper-
geometric functions, it is more enlightening to use an approximate
integration to show the behavior of the phugoid in glide mode as a
damped oscillation, which is evident in Figs. 7 and 8.

We introduce a new independent variable \JL such that

U — COS jL6 (58)

As u varies from 1 to 0, \JL increases from 0 to n/2. In addition, the
dependent variable is changed so that

0 = zA

to put the equation in the normal form

(59)

d2z
+

l-4sin2jii
—2 ——4 sin

Denote the varying term in the coefficient of z as

l -4sin2 /x _ 4u-3 =

4sin2 /z cos2 /z 4u(l - u) ~ (61)

When u varies within its range of interest, from 0.95 to 0.05, f(u)
decreases monotonically from 4.2105 to -14.7368. On the other
hand, a)2 is much larger. So we replace f ( u ) by its mean value on
the interval 0.05 = u\ < u < u2 = 0.95:

1 T2 1= ———— / fMdu = -— M9 = -l.u2-ui J 1.8 .6358 (62)

(63)

The coefficient of i in Eq. (60) can be approximated by

a)2 = prQ(CL/CD)2- 1.6358

Then an approximate solution for z is obtained as

z = A cos[w(/x - /i0)] (64)
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Fig. 8 Variation of the altitude during gliding entry at near-circular
speed: - - - -, equilibrium glide and • • • •, perturbed.
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Fig. 9 Damping function in equilibrium glide; ue = 0.995025.
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where A and ju,o are arbitrary constants of integration. From the
definition (59), the complementary function is approximated by

(65)

In terms of the speed variable u, we now have the complete solu-
tion in the form

——
0)U

(66)

It is clear that along the reference equilibrium glide A = 0 and
the flight-path angle decreases continuously. When a perturbation
occurs, 0 undergoes an oscillation with frequency a> and damping
provided by the function

As u decreases from 0.95 to 0.05, the damping function monotoni-
cally decreases from 2.0878 to its inverse value, 0.47897. This func-
tion, rescaled so that the initial value is unity, is plotted vs the speed
ratio V/V(goro) in Fig. 9. As compared to the variation in Fig. 7, it
appears that the solution (67) correctly predicts the damping in the
equilibrium glide mode.

As previously mentioned, /z varies from 0 to n/2. Thus, over
the complete range of the speed the number of oscillations with
frequency a) is computed by

N = (68)

As a numerical example, we take CL/CD = 1.5 and evaluate cb to
obtain N = 11.25. For glide entry perturbed from the equilibrium
glide, the phugoid mode is a lightly damped oscillatory motion with
a period much shorter than the orbital period.

Finally, the perturbation in the altitude is readily obtained from
Eq. (53b) as

•l_
Y 2(1 -u) co(l-u) 4(1 _ M ) 3

- M) sin [a>(n - (69)

On the right-hand side of this solution, the first term gives the equi-
librium glide solution, Eq. (48). The second term is very small,

and,the last term provides the damped oscillatory perturbation. It
disappears at very low speed.

Conclusions
The phugoid motion in the critical case of grazing entry of hy-

pervelocity vehicles into the Earth's atmosphere at circular speed
has been investigated for the cases of ballistic entry and equilibrium
glide. In both instances, the phugoid mode is a damped, oscilla-
tory motion with long period. Unsteady effects arising from the
strong variations of the density and the speed during entry have
been retained in the analysis. The new analytic solutions match the
numerical solutions very well.
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