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Abstract

Product platforms or product families are collections
of artifacts related by shared components. Use of prod-
uct platforms allows rapid deployment of product vari-
ants in the marketplace, resulting in reduced design
cycle time and cost, and better-timed product launches.
A method has been proposed that uses a multiobjective
Pareto problem formulation to capture performance
trade-offs realized when sharing components. The
present study explores the use of the method for design-
ing an automotive powertrain family. Initial results are
presented along with a discussion of techniques that
may lead to better solutions, such as the use of hierarchi-
cal decomposition and derivative-free global optimiza-
tion methods to aid in accurate Pareto set generation. In
addition, response surface models can be used to
decrease numerical cost.

1. Introduction

In product platform design a family of artifacts that
share common components is designed together as
opposed to designing each artifact individually. A mul-
tiobjective optimization formulation was previously cre-
ated to quantify the trade-offs involved in designing
entire product platformsJ11^ The approach is demon-
strated on a family of automotive powertrains, specifi-
cally, a product family consisting of a mid-size parallel
configuration hybrid electric vehicle (HEV), a small
electric vehicle (EV), and a conventional vehicle with a

continuously variable transmission (CVT). The chal-
lenge becomes one of developing methods that over-
come increasingly large and computationally
demanding models. Derivative-free global optimization
algorithms, decomposition methods, coordination strate-
gies, and surrogate models are explored.

1.1 Product Platform Formulation

The formulation in this study was first introduced by
Nelson et al. and uses a multiobjective problem formu-
lation to quantify the relationships between individual
performance and overall efficiency in a product fam-
ily, f11^ The generated Pareto sets give the designer a
quantitative tool for deciding the feasibility of sharing
components and for choosing designs. The general
method is the following. Select a group of products that
will share one or more components. Each of these prod-
ucts should have an optimization problem formulation
associated with it. For example, two products A and B
are designed individually with the models:

Product A

subject to

Product B
min/B

subject to

hfi =
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where/is a scalar objective and h, g are vector equality
and inequality constraints, respectively. These two dis-
tinct problems can lead to a multiobjective optimization
formulation that includes an equality (or commonality)
constraint stating which components should be shared:
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subject to

L {commonality constraint}

where WA, WB are the usual weights in the scalar substi-
tute function, and xj is a subvector of the design vari-
ables that correspond to the shared components. Other
scalar substitute functions can be used, but this is not the
emphasis here. The next step is the computation of the
null platform and Utopia point, as in Figure 1.

Pareto set resides within this region

£ ,fg ) Utopia point

X
'^B^ nul1 Platform

• Improved Objective A

Figure 1: Utopia and Null Platform Points

The null platform point corresponds to the optimal
design of each product if there is no component sharing.
Likewise, the Utopia point is found from optimizing the
multiobjective problem formulation, and finding the
bounds on the Pareto set by setting the weights to {0,1}
and {1,0}. The Utopia point is a global bound on what
can be achieved when sharing components. By observ-
ing the location of the null platform and Utopia point, an
immediate decision can be made if this amount of per-
formance loss is acceptable. If it is, one can then gener-
ate the Pareto set to quantify the trade-off more
completely, Figure 2.

X
'fj) ' nul1 Platform

~^4———————— Improved Objective A
Figure 2: Pareto Set Generation

With this curve and similar ones corresponding to
other parts-sharing schemes the designer has a quantita-
tive tool to evaluate alternative design scenarios.

1.2 Derivative-Free Optimization

An important requirement when solving the product
platform formulation is the generation of global solu-
tions. Without such solutions the Pareto trade-off curve
becomes less effective.

Gradient-based optimization algorithms such as
Sequential Quadratic Programming (SQP) find local
minima and present additional difficulties with regard to
simulation-based models that contain noisy functions.
There are several derivative-free optimization algo-
rithms now available that allow for some form of global
optimization. Common methods include simulated
annealing (SA) and the genetic algorithm (GA). The
amount of fine-tuning per optimization that is required
by these stochastic algorithms does not make them
desirable for this application. Methods based on the
Nelder-Mead technique have supplied good results for
some types of problems but are prone to cycling and fur-
ther development is needed J1'2^

Two methods better suited to the problem at hand are
Divided Rectangles (DIRECT) and Efficient Global
Optimization (EGO). DIRECT works by dividing the
design space and using Lipshitz theory to pick rectan-
gles that further subdivide the space.'4'6^ EGO opti-
mizes a function by fitting a Kriging model and using an
expected improvement function to determine where to
sample additional points that improve the approxima-
tion and find a better design J5^ Here we will employ
DIRECT because its constrained version is currently at
a further stage of development. However, the method is
effective only for problems of small size.
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2. Two-Member Product Formulation

In the first part of this study a two-member family of
automotive powertrains is explored. A future product
mix of an automotive manufacturer includes a hybrid
electric vehicle (HEV) and a conventional vehicle with
a continuously variable transmission (CVT). To explore
platform feasibility an attempt is made to share (1) the
final drive, and (2) the 1C engine. This component shar-
ing scheme can be seen in Figure 3.

Conventional Powertrain

Engine

Hybrid Electric Powertrain

Figure 3: Two-Member Automotive Product Platform
[figures courtesy of NREL]

The Advanced Vehicle Simulator (ADVISOR)
developed by the National Renewable Energy Labora-
tory (NREL), is employed for this study[14]. ADVISOR
is a MATLAB-based feed-backward simulation for
modeling advanced powertrains, and has been used for
earlier powertrain studies.^ The engine to be shared
between the HEV and CVT powertrain is based on
empirical data from a 67 kW Volkswagen 1.9L turbo-
diesel (TDI) engine. The motor data used in the HEV
powertrain are obtained from a Westinghouse 75 kW
AC induction motor. The battery used is comprised of
Ovonic NiMH power modules.

The problem formulation for the HEV uses fuel
economy and performance goals put forth by the Part-
nership for a New Generation of Vehicle (PNGV) for a
midsize passenger car:

maximize...
/HEV&HEv) = mPS (combinedfuel economy)
with respect to...
XHEV = {engine size, motor size, battery size, final drive ratio}

subject to...
0 - 60mph time < 12s

40-60 mph (passing time) < 5.3s
0 - 85mph time < 23.4s

max acceleration > 0.5g
max speed > 85mph

5s distance > 140ft
55mph cruise grade > 6.5 %

max grade at launch >30%
Delta SOCfor FUDS < 0.5 %
Delta SOCfor FHDS < 0.5 %

The goal is to maximize the fuel economy subject to
performance constraints. The final two constraints are
the maximum change on the state of charge (SOC) of
the battery from start to end of the fuel economy run.
They are imposed in order to properly calculate the
energy usage. The fuel economy calculation is based on
a combination of the U.S. Federal Urban Driving Sched-
ule (FUDS) and Federal Highway Driving Schedule
(FHDS). The design variables are engine and motor
sizes, number of battery modules, and final drive ratio.

For the CVT powertrain a small car (similar in size
to the EV) is assumed. The model is the following.

minimize...
fcvr(xcvT> = 0-60mphtime
with respect to...
XCVT = {engine size, final drive ratio, CVTlo, CVThi ratio}

subject to...

mpg (combinedfuel economy) > 40mpg
40-60 mph (passing time) < 5s

0-85mph time < 24s
max acceleration > 0.5g

max speed > lOOmph
5s distance > 140ft

55mph cruise grade > 6.5 %
max grade at launch >30%

The premise is that this vehicle could be marketed as a
small sports hatchback in the European market. For this
reason the performance constraints are made somewhat
more stringent, and the objective is to minimize the 0 to
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60 mph acceleration time of the car. The design vari-
ables are size of the engine, final drive ratio, and upper
and lower limits on the CVT.

For each component we must define upper and
lower bounds. For the final drive ratio, we allow the
range to vary from 3.0 to 5.0. For the lower and upper
CVT ratios, the bounds are 0.1 to 1.0 and 1.5 to 4.0,
respectively. For the engine size we set a range at 50 to
84 kW. Likewise, for the motor we set the bounds at 56
to 94 kW. Finally, the batteries are allowed to vary from
10 to 40 modules.

The bounds selected for the transmission ratios and
battery modules can be fairly large and are based on
engineering intuition. However, to change the engine or
motor size the data must be linearly scaled up or down.
For such empirical data one should limit scaling to
within 25%, hence the numbers chosen above. Optimi-
zation may result in optima that are simply bounded.
This is not ideal, but the choice of tighter bounds was
made to stay within the numerical accuracy of the
empirical models.

The multiobjective model for the product platform
can be formulated as follows.

minimize...

f = (-)Wj -fHEv(xHEv) + W2 '

subject to...

8l-10-HEV

SI-S-CVT
commonality constraints...
hj = (engine size)HEV = (engine size)CVT

h~ = (final drive) HEV = (final drive) CVT

The objectives have been combined with minus signs
added where necessary to keep a consistent minimiza-
tion problem. The formulation is subject to the 18 con-
straints collected from all the models and includes the
two commonality constraints. These define component
sharing and can be included or excluded depending on
what component sharing one would like to study. We
can reduce the size of the problem by removing all the
commonality constraints and just giving one label to the
shared components: engine size and final drive.

Employing the DIRECT algorithm with an all-at-
once (AAO) approach we are able to obtain the results
shown in Figure 4.

>; 41 -
I 43 -
1 ,

I 47 J

49
8.0 8.5 9.0 9.5 10.0

CVT 0-60 mph Acceleration Time (s)

-Com mon Engine • -Common Final Drive

Figure 4: Trade-Off Between HEV & CVT Powertrains

The results quantify the trade-offs for a shared final
drive and then a shared engine. It is established that one
could share the final drive without too much sacrifice in
overall performance. This is true if we select a design
near the middle of the respective Pareto curve. Making
the decision whether or not to share the engine would
require more thought from the designer into what
amount of performance could be lost from either config-
uration. The next level of decision would be a trade-off
curve when sharing both components simultaneously.

These initial results seem useful to designers of
complex systems working at the conceptual design
phase of implementing a product family. Computation-
ally, DIRECT was able to converge to a reasonable solu-
tion 75% of the time. Runs which did not arrive at a
constraint bound solution were excluded in the graph of
Figure 4.

3. Three-Member Product Formulation

In the second part of this study we attempt to expand the
product family to include an electric vehicle (EV) meant
for city use. This component sharing scheme can be
seen in Figure 5. In this formulation an attempt is made
to share (1) the final drive between all three vehicles, (2)
the AC motor between the EV and HEV powertrains,
and (3) the 1C engine between the conventional and
HEV powertrains.

The problem formulation for the EV vehicle is also
based on the PNGV requirements. The car modeled is
similar in size to the General Motors EV1. The optimi-
zation model follows below.
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Electric Powertrain Conventional Powertrain

Hybrid Electric Powertrain

Figure 5: Three-Member Automotive Product Platform [figure courtesy of NREL]

maximize.,.
fEV(xEV) = range (on HWFET cycle)

with respect to...
XEV = {motor size, battery size, final drive ratio}

subject to...

0 - 60mph time < 12s
40—60 mph (passing time) < 5.3s

0 - 85mph time < 23.4s
max acceleration > 0.5g

max speed > 85mph
5s distance > 140ft

55mph cruise grade >6.5%
max grade at launch > 30 %

We are seeking to maximize the highway range of
the vehicle using the Highway Fuel Economy Test
(HWFET) cycle. The design variables are motor size,
number of battery modules, and final drive ratio.

The multiobjective model for the new product plat-
form becomes the following.

minimize...

v) +f = (-)Wy -fHEv(xHEV> + ^W2 '/

subject to...

Si -10 -HEV

SI-S-EV
SI-S-CVT
commonality constraints . . .
hj = (engine size) HEV = (engine size) CVT

ft, = (motor size) aEV = (motor size) Ev

h, = (final drive) f{EV = (final drive) EV = (final drive) CVT

The new formulation is subject to the 26 constraints and
includes the three commonality equalities.

The first attempt is to solve a segment of this formu-
lation that just includes component sharing between the
HEV and EV powertrains. Once again DIRECT is
employed in an AAO approach. The results in Figure 6
were computed.

38
*~* *xa
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§43
1^44
£45

147
48
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EV Range (miles)
140 120 100

OomrDn Motor -•- ODmmon Final Qi\e -A- ODrmnon Ntotor and Rnal Drive

Figure 6: Trade-Off Between HEV & EV Powertrains

Some interesting observations can be made regard-
ing these results. We obtain Utopia points for all three
cases (common motor, common final drive, and com-
mon motor and final drive) that are essentially the same
as the null platform. Points along the Pareto set com-
puted between the outer extremes move directly towards
this Utopia point (notice the concentration of points for
all three plots). Thus it appears that either we have no
competing objective in this formulation or the strict
bounds we have imposed on the design variables are
consistently active. A non-competitive trade-off seems
likely because both the fuel economy of the HEV and
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the range of the EV are efficiency objectives and then
may not conflict. Recall that in the case of the HEV and
CVT in section 2 we have a very distinct conflict
between efficiency and performance (acceleration time
of the CVT). The results from the second study suggest
to the designer that sharing components between the
HEV and EV powertrains would cause no performance
loss between the products. This can not be readily con-
cluded by simply reviewing the problem formulations.

It becomes interesting at this stage to solve the com-
plete product platform problem and gain an understand-
ing of how the relationships found in Figure 6 might
effect the entire three-product family. DIRECT is once
again implemented in an AAO approach for the full
model, but now it is not possible to solve the problem
along the entire Pareto surface successfully. For certain
combinations of weights, DIRECT is able to find good
solutions that are constraint bound. For other combina-
tions DIRECT cannot reach a solution even when a
large number of iterations is allowed. The size of the
problem seems to have exceeded the capability of the
method.

4. Product Platform Decomposition Strategy

This section describes a solution strategy for dealing
with the product platform design problem that is cur-
rently under study.

4.1 Problem Decomposition

The simulation-based platform design model is suf-
ficiently large to defy an AAO approach. An alternative
is to break down the problem into more manageable
portions. Decomposition methods can be employed to
accomplish this. The techniques were thoroughly
reviewed by Wagner.'-13^ There are various types of
decomposition such as aspect-based, object-based, and
model-based. The first type of decomposition is preva-
lent in the field of MDO. In this study we apply a
model-based technique for a hierarchical formulation as
shown in Figure 7. As discussed further below, using a
decomposition strategy requires a careful examination
of the problem partitioning and coordination.

———— ̂ >

t
subproblem 1

findx,
min fixj.y)
s.t. g(x,,y)<=0

h(x1?y) = 0
1

master problen
Indy
min f(x,y)
s.t. g(x,y) <= 0

h(x,y) = 0

i

tsubproblem 2
find x2

min f(x2,y)
s.t. g(x2,y)<=0

h(x2,y) = 0
1

Figure 7: Hierarchical Problem Formulation

4.2 Functional Dependence Table (FDT)

The functional dependence table (FDT) is a boolean
matrix that represents the dependence of the design vari-
ables on the functions of an optimization model. The
FDT can be used to identify structure in the problem
formulation. This structure can allow for a model-based
decomposition. Previous work has been reported on
applying these techniques to powertrain models based
on analytical equations.'- '• '

To create the product platform FDT we can reduce
the size of the problem (as in the examples) by remov-
ing all the commonality constraints and just giving one
label to the shared components: engine size, motor size,
and final drive. This reduces the eleven variables to
seven. Next, for each product we aggregate the con-
straints into a compact form in order to create the FDT.
The derivation of the FDT for the case study can be seen
in Figure 8.

minimize...

fPRODUCT PLATFORM

subject to...

Sl-10-HEV

Sl-S-EV

%1-8-CVT

SHEV
fEV
fcVT
SHEV
SEV
Scvr

EV Final CVT CVT HEV
Motor Battery Drive Engine lower upper Battery

Figure 8: FDT for Product Platform
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The final step is to determine a proper partition from
the FDT's structure. With smaller scale problems it is
often possible to determine this structure by inspection.
However, more rigorous techniques are available with
the use of partitioning algorithms, as discussed next.

4.3 Partitioning of the FDT

The partitioning procedures developed in the litera-
ture use a graph-based representation of functional
dependence. For a specified number of subproblems,
partitions reduce dependence between subproblems and
balance the sizes of the subproblems.f7'8'9'10^ Figure 9
illustrates the idea.

SP-3
SP-1

X}, Xi, xj are linking variables

Figure 9: Partitioned Hypergraph

For this problem the integer programming-based
method is used^7'8-'. Taking the original FDT, and apply-
ing the partitioning algorithm, the decomposition in Fig-
ure 10 is computed.

fHEV
fEV
fcVT
SHEV
SEV
SCVT

fHEV
SHEV
fEV
gEV

/CVT
SCVT

EV Final CVT CVT HEV
Motor Battery Drive Engine lower upper Battery

•ii

Final HEV EV CVT CVT
Drive Engine Motor Battery Battery lower upper

The three bordered rectangles to the right represent
independent subproblems coupled by the linking vari-
ables. The linking variables and master problem are
located in the large rectangle to the left. None of the
individual problems have more than three variables, and
the subproblems have only one or two. Figure 11 shows
a visual representation of the hierarchical problem for-
mulation derived from the partitioned FDT.

Ill

Figure 11: Decomposed Product Platform

The schematic shows all the separate problems and
the variables that are optimized in each problem. Note
that in the master problem we are posing the entire mul-
tiobjective problem formulation, where at the subprob-
lem level we are posing the individual product variant
formulation. In general this will be the structure of the
product platform problem, and the makeup of the for-
mulation itself makes intuitive sense.

Because the top level problem is the product plat-
form formulation with just the shared variables, we call
it the shared component level. Likewise, because the
subproblems become representations of each of the indi-
vidual artifacts, with respect to their local variables, we
call this the product artifact level.

4.4 Global Coordination

An effective coordination strategy must be identified
next. The difficulty with existing coordination strate-
gies is that they have been developed for use with gradi-
ent-based local optimizers and are not intended for
global optimization. A possible approach that retains
the hierarchical formulation and allows for global opti-
mization when using global optimizers at all problem
levels, is illustrated in Figure 12.

Figure 10: Partitioned Product Platform FDT
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Evaluate Objective Function
and Constraints ,«\

Return Objective Function
and Constraints

Local
Variables
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Return Objective Function(s)

r —

Variables L ——A—— —— ——i—— —— ——i—— J

optimizer) (optimizer) (optimizer

Optimize Objective Function/.. \
with respect to Constraints ' '

Figure 12: Non-Convex Coordination

This strategy assigns individual optimizers to each
of the subproblems. Each subproblem is solved with
respect to the local variables with the current values of
the linking variables fixed. The next step is to pass the
optimized local variables back to the top level problem,
along with the linking variables, to evaluate (not opti-
mize) the objective function and constraints (which
would usually have been optimized in the master prob-
lem). The constraint and objective functions from the
top level problem, along with the objective functions
from the subproblems are then passed to the central
optimizer. The central optimizer takes this information
and uses it to pick a new set of linking variables to pass
along to the top and subproblem levels. The strategy in
effect is partially minimizing the objective function for
every iteration of the linking variables.

The coordination strategy was implemented in
MATLAB and initial tests were conducted on solving
analytical global optimization problems. Results are
encouraging, however, the overall expense of this coor-
dination strategy tends to be quite high. This expense is
also present in optimization runs performed in conjunc-
tion with the product platform problem. While the
results obtained are better than those from the AAO
approach, more development is necessary to increase
the efficiency and robustness of this type of technique.

5. Conclusion

The product platform design process was applied to
the conceptual design of a family of automotive power-
trains. The study provided interesting results with
regard to quantifying the trade-offs encountered when
attempting to share components among the powertrains.
Besides showing the potential of the approach, the study

exposed the computational difficulties involved, espe-
cially when using simulation-based models.

Model-based decomposition along with a hierarchi-
cal coordination strategy is suggested as a promising
way to deal with these computational difficulties.
Smaller-sized problems would allow algorithms like
DIRECT (or EGO) to work. But coordination strategies
and derivative-free methods will generally lead to
increased computational expense. Since the structure
for performing distributed computation is readily avail-
able within a decomposed framework, this is one possi-
ble remedy of dealing with this expense. High-fidelity
surrogate models of the simulations could further
decrease the computational cost greatly Full-factorial
designs along with smooth splines could effectively and
efficiently approximate our three and four variable sim-
ulations, reducing them to very quick function calls.
Since generation of Pareto points require extensive
model reuse, surrogate models appear as a viable alter-
native. For a study of Kriging approximations in the
context of optimization, refer to work by Sasena et al
(included in these proceedings). '

The global coordination idea is still in an ad hoc
rudimentary form. Developing a rigorous global coordi-
nation strategy is an important challenge.

The powertrain family problem itself is a promising
area for further work. If the mathematical challenges
outlined above can be met, the insights that can be pro-
vided to vehicle design and managers in problems with
increased complexity are very attractive.
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