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A b s t r a c t  fluid dynamics (CFD) problems. A part of the reason 

A characteristic-based. windward numerical prc- 
cerlure for solving three-dimensional Maxwell equations 
iii  the time domain has been successfully ported to the 
Ititpi Touchstone Delta ninlticoniputer. The riumerical 
results by concurrent computation duplicated the ear- 
lier simulations of an oscillating electric dipole on a vec- 
tor processor and compared w~11  with the exact solu- 
tioti. 'I'lie parallelized rode is scalable up to 51% nodes 
and incurs only a 2.91% performance degradation. The 
sustained data processing rate is clocked at  5.704 Gi- 
gaops. However, the data 110 process is unscalable on 
tlie shared memory system. 

Noineiiclat ure 
E Electric field intensity 
N Magnetic field intensity 

.I Electric current vector 
1. One-dimensional difference operator 
n Index of time level 
1 Time 
I \ .  One-dimensional characteristic 
. r .  !/, I  artesian coordinates 
1 . .  h i .  u Spherical coordinates 

Electric permittivity 
I' Magnetic permeability 
,\ Eigenvalue 

v i .  j. k Indices of discretized grids 

1 Introduction 

The improvement of numerical efficiency is one 
of the urgent needs of computational electromagnet- 
ics (CEM) in aircraft signature technology. In this 
area of applications, the CEM simulations are gener- 
ally more computationally intensive than computational 
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is that for signature processing. the numerical accuracy 
requirement is more stringent. A desirable predictive 
dynamic range can be as high as 60 db over broad view- 
ing ranges 111. Unlike CFD simulations, no dynamic 
similarity laws exist for the CEM to reduce the scal- 
ing length of computations. As a consequence, wave 
scattering, refracting, and diffracting phenomena must 
be solved on the unreduced physical dimension of the 
scatterer. For propagating waves, the numerical resolu- 
tion of wave motions at a given frequency is dictated by 
the minimal wavelength of the media. From previous 
studies [1,2], each wavelength should be supported at  
least by an order of ten grid points or more to achieve a 
suitable numerical resolution. For media with large re- 
fraction indices, this more than ten grid point per wave- 
length requirement translates into an astronomical data 
processing rate and memory size of the supporting com- 
puter systems. 

The heavy demand on computhr memory and 
speed for CEM simulation can be illustrated by a 
straightforward estimate. At a single incident angle, 
the numerically generated signature of a modern fighter 
configuration from a gigahertz (IO'H-) transmitter re- 
quires a total of about twenty million grid points. Since. 
a t  minimum, three coordinates, nine direction cosines or 
metrics of a general curvilinear frame of reference, and 
six components of electromagnetic field intensities are 
included in the formulation [2.3,4,5], a total of nearly 
a half trillion memory addresses must be allocated. A 
typical CEM code operating on a 100 Megaops ( IO6) sin- 
gle vector processor can process data a t  approximately 
a rate of three-tenths of a microsecond per grid point 
per time step. At this rate, either a monostatic or a 
bistatic calculation will result in more than thirty hours 
of computing on a sixth generation supercomputer just 
t o  advance the solution to a new time level. In order to 
complete a signature simulation, usually multiple look 
angles and hundreds of time steps are required. As a 
result, the large computer memory requirement and SD- 
lution time has rendered the use of conventional data 
processors for solving CEM problems impractical. 
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Sumerical efficiency improvement of romputa- 
tional physics for electromagnetics or fluid dynamics can 
be realized through novel numerical algorithm develop- 
ments and concurrent computing technology. I n  the re- 
cent year, significant progress h a s  been made in the area 
of algorithm development [6,7,8]. Numerical algorithms 
for solving hyperbolic equations from the CFD disci- 
pline liave been adopted for solving three-dimensional 
\laxwell equations in the time domain [2.3.4.5,6,i]. 
Among these, the characteristic-based algorithms are 
found to he most efficient and appropriate to dupli- 
cate the wave motions that are governed by the time- 
dependent Maxwell equations [1,2,3]. This numerical 
scheme, when applied to the hyperbolic partial differ- 
eiitial equation system, has  not only greatly enhanced 
rlie stability of numerical procedure, but also yielded 
accnrate solutions by alleviating spurious wave reflec- 
tions from the truncated numerical domain [3:1.5]. Al- 
though these new numerical procedures have the poten- 
tial to reduce the required computingresources hy allow- 
ing larger time steps and fewer discretized mesh points 
i n  CEM simulations, substantial progress in C E M  for 
practical applications can finally be achieved only by 
incorporating a massively parallel computing technique 
to deliver the needed computing capabilities. 

Concurrent computation was adopted for CFD re- 
srarch in the seventies. During that period, the per- 
formance of the massively parallel computers was lim- 
ited. Consequently, i n  a short period of a few years, 
t,lie concurrent computational CFD research reached a 
point of diminishing returns and was abandoned. Re- 
cently, t,hrough remarkable progress in microchip and 
interconnect data link technology, a host of single ad- 
dress. shared memory, and multiple address message- 
passing parallel computers becomes available for data  
processing. These scalable multi-processors or niulti- 
computers. i n  theory, are capable of providing essen- 
tially unlimited mmputing resources for scientific sim- 
nlations. However, the effective w e  of massively paral- 
lel computers still rests squarely on balancing the work 
load and keeping the communication between comput- 
ing nodes to an absolute minimum [10,11]. These re- 
quirements are intrinsically related to the numerical al- 
gorithms and hardware architecture. In the present re- 
search effort, attempts are made to map a characteristic- 
based algorithm onto a message-passing parallel com- 
puter for computational electromagnetics. 

2 Analysis 

The time-dependent Maxwell equations for elec- 
tromagnetic fields in free space can be written in the 
following form [12,13]: 

V ' B  = 0; B = p H  (3)  -,' 
v . D  = 0: D = < E  ( 4 )  

'The above system of partial differential equations is 
hyperbolic. and constitutes an initial value problem. 
'I'lie characteristic-based fractional-step algorithms have 
been demonstrated to be very efficient in solving 
three-dimensional Maxwell equations in the time d* 
main [3,4,5]. The basic idea of the characteristic-based 
methods for solving the hyperbolic system of equations 
is derived from the eigenvalue and the eigenvector anal- 
yses. In numerical simulation, the well-posedness re- 
quirement for initial or boundary conditions and the 
stability of a solving scheme are ultimately linked to 
the eigenvalues of the governing equations. Therefore, 
the characteristic-based schemes showed a drastic im- 
provement in numerical stability and accuracy by using 
a windward difference formulation according to the signs 
of the eigenvalues [3,4,5,6]. However. the characteristic- 
based algorithm also has an inherent limitation in that 
the coefficient matrices of the governing equations, when 
Pxpressed in vector form, can be diagonalized in only .le 
dimension at  a time [6,7]. Therefore, all multiple dinien- 
sional equations are split into multiple one-dimensional 
formulations and solved by the fractional-step or the 
time-splitting methods [14,15] summarized in the fol- 
lowing formulas: 4 

W"+2 = L,  L ,  L ,  L ,  I', L ,  w" (5) 

aw,,; - - 0  i = l , 2  , . . . ,  6 ( 6 )  L ,  : - +xi- 
at ax 

owu,,; aw,., - 
at a Y  

L,  : - +xi- - 0  i = 1 . 2  , . . . .  F ( i )  

Since these one-dimensional characteristics of the 
Maxwell equations are completely uncoupled from each 
other and appear in scalar form, the system of equa- 
tions is exactly the Riemann problem [5,6]. The most 
important feature of the present numerical procedure is 
that when the windward approximations are adopted, 
the costly matrix inversion for an implicit scheme be- 
comes unnecessary [3,5]. 

In the earlier efforts [3,4,5], an implicit and an 
explicit fractional-step method were developed for solv- 
ing the time-dependent Maxwell equations. The charac- 
teristic formulation using the windward finite difference 
discretization led to a nearly identical computational ef- 
fort between implicit and explicit procedures. From th, 
sign of the eigenvalues, the stencil of the second-order- 



accurate windward difference approximation can be eas- 
ily constructed to form the one-dimensional and diago- 
nal difference operator. Both formulations require only 
asingle forward or backward substitution to advance the 
solution to the next time level. The windward difference 
approximation is give by 

V 

where * takes the values n + I and n respectively for 
implicit and explicit procedures. 

The da ta  flow associated with timesplitting algo- 
ritlinis is one directional. The strategy to map these 
algorithms to a massively parallel computer is therefore 
identical. The load balancing of concurrent computation 
can he achieved easily by counting and adjusting arith- 
metic operations for each directional numerical sweep. 
The partition of data structure for minimum informa- 
tion flow are investigated by both the task partition and 
t.he domain decomposition technique. 

3 Partitions of Data Structure 

The partition of data structure plays a key role in 
achieving high parallel efficiency. On a message pass- 
ing or distributed memory multicomputer system, the 
performance of concurrent computing is closely tied to 
memory bandwidth and memory latency. These system 
peculiarities always exist, regardless of whether the sys- 
tem h a s  a cache or a direct path to memory unit that  
bypasses the cache. The basic criterion of the most ef- 
ficient data  structure of any numerical procedure is to 
restrict the data movement to an absolute minimum. 

The  Touchstone Delta multicomputer consists of 
a total of 576 heterogeneous nodes [lG]. They are des- 
ignated as numerical, service, gateway, and disk nodes 
to perform the computation, frame buffer, network link, 
and disk string functions respectively. Each of the nu- 
merical node has  a peak rate of 80 single-precision and 
60 double-precision Mflops, and is interconnected by a 
tww dimensional mesh network. On this ensemble nodal 
architecture, the data  flow and data management lead 
to four different approaches for the controlling of data  
movements between nodes. The most elementary ap- 
proach to data  partition is the one-dimensional paral- 
lelization in which the outermost do loops of each nu- 
merical sweep are assigned to individual processors. The  
other data  partition schemes include the page struc- 
ture by partitioning three dimensional space into cross- 
sectional planes, the pencil grouping, and finally, the 
three-dimensional block parallelization. 
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,A graphic depiction of these data partition 
schemes is given in Figure 1. Each scheme has  its 
unique features according to the dimensions and se- 
quence of data  string assigned to the distributed mi- 
croprocessors. Within each numerical node, calcula- 
tions is performed before the need to acces  data from 
other numerical nodes for computations to continue. On 
a specific hardware architecture. coding options of nu- 
merical algorithms will have some degree of control for 
data movement and data  management. The  guideline 
for high parallel efficiency is simply to keep the data 
transfer between nodes at  the absolute minimum, and 
take full  advantage of the message-passing priority of 
the immediately adjacent nodes. In order to sustain 
the maximum concurrent computations of a particular 
numerical algorithm, the load balancing and data parti- 
tioning are closely interwoven. The  following discussion 
will focus on these issues. 

In the present effort, only the one-dimensional 
parallelization and the pencil grouping are investi- 
gated. The former scheme is the most straightforward 
and probably the most suitable data  partition for the 
fractional-step, windward procedure [5 ] .  In this scheme, 
all data are organized along one of the numerical sweep 
directions which can he viewed as a form of task par- 
titioning. Since the number of mesh points along the 
chosen coordinate equals the number of nodes used, all 
arithmetic operations which need to be performed in  
each numerical node are identical. The load balancing 
is achieved automatically. The pencil grouping scheme 
was originally designed Cor t.he AD1 algorithms [3,9], in 
which crossderivatives of all directions are simultane- 
ously calculated. The pencil data structure provides 
connectivity between computational boundaries in the 
direction of numerical sweep to enforce the boundary 
values. The minimum size of the pencil is dictated by 
the stencil of cross-derivative approximations. For ex- 
ample, the minimal of a pentadiagonal data  structure 
is required for the windward finite difference scheme. 
More importantly, the pencil data structure may not 
need reorganization for each individual numerical sweep, 
thus will not incur more data  movement than the one- 
dimensional partition (111. However, the load balancing 
can still easily he achieved among all numerical nodes. 

The computational domain consists of I L ,  J L ,  
and K L  number of discretized mesh points in the three- 
dimensional space. Therefore, the total number of ele- 
ments in the data array is given by the product of the 
three one-dimensional discretized vector lengths, ( I L  x 
J L  x K L ) .  At each time level, both one-dimensional and 
pencil partition approaches must perform at  least 492 
mixed integer and real number arithmetic operations for 
every discretized point. For the onedimensional par- 



tition. eight message passings are performed per grid 
point. In all. the total number of message pnssing is 
given by the value of 2 x (4  x (number of nodes - 6). 
For the base-line case (48 x 48 x 48) studied, each in- 
dividual message has  a length of 9.216 bytes. For the 
pencil grouping scheme, the number of message passings 
depends on the size of each pencil partition. 

I n  mapping a serial code onto the Delta wing the 
one-dimensional parallelization scheme, tlie computa- 
tional domain is divided into I L  grid planes. Each of the 
grid plane contains J L  x ICL mesh points. The compu- 
tation associated with the J L  x ICL mesh points ofeach 
grid plane is assigned to a numerical node. The number 
of nodes used, I L ,  equals the product of the numbers of 
rows and columns of the twedimensional matrix ( m .  n )  
partition of the Delta. With tlie grid plane index. ' [ ' ,  

ranging from '1' to ' I L '  and the logic node number, 
.mynode', ranging from '0' to 'inn - l ' ,  an easy way of 
assigning the grid planes to t,he nodes is to use tlie logi- 
cal sequence of the nodes within the Delta partition. In 
other words. the grid plane index .I '  is equal to 'myn- 
ode + 1'. [Jnfortunately, this natural sequence assign- 
ment may result in a long and unnecessary delay because 
the second-order windward scheme requires data trans- 
fer between tivegridplanes ( 1 - ' 2 , 1 - 1 , 1 ~ 1 + 1 . 1 + 2 ) .  
Particularly, the message passing in Delta is row biased. 
I f  a grid plane is located at  or next to a boundary of 
t,he Delta partition, the messages of this grid plane will 
liavc to be routed through ' n '  or 'n  - I '  nodes before 
reaching its destination grid plane located in  a different 
row of the Delta partion. 

One way to avoid this delay is to use the Serpen- 
tine sequence in assigning the grid planes to numeri- 
cal nodes. such that any message need not travel more 
than  two nodes to reach its destination grid plane. The 
Sr-rpentine arrangement can be easily achieved by the 
following program instruction: 

mynode + 1 
(2  f x + 1)  

x = even number 
x = odd number I = {  

R - mynode 

where the row number x = 0,1 ,2 ,  ..... m -  1. For ex- 
ample, a (4,5) Delta partition with its logic node num- 
ber, natural sequence number, and Serpentine sequence 
number is shown in table 1. 

The data 1/0 of the one-dimensional paralleliza- 
tion requires 78 arithmetic operations, and 28 system 
calls. Most calls are either synchronous or asynchronous 
message passing instructions to generate a formatted 
output data  and three unformatted graphic files. The 
computation time of program initiation of the present 
code is negligible in comparison with program execution 
and data  1/0 time, therefore it will not be recorded here. 

For the pencil grouping scheme, the data How is 

reduced compared with the one-dimensional partition 
liecause only the data  near the surface of the penc;' 
must be transferred to adjacent pencils. Thus, a large-; 
pencil size will reduce the overall data How and en- 
hance the concurrent performance. In  addition, pencil 
grouping scheme also provides greater flexibility than  
the one-dimensional scheme in  assigning grid points to 
the numerical nodes. For example. it is possible to as- 
sign all 512 processors to a relatively small grid system 
(e.g, 96 x 96 x 96) using the pencil grouping scheme: 
whereas in the onedimensional scheme. one of the grid 
dimensions would have to be 512. 111 essence, the one- 
dimensional parallelization is a subset of the higher di- 
mensional data partition. Currently, research is ongoing 
to further develop the higher dimensional scheme. Thus, 
the results will be reported at a later date. 

4 Scope of numerical experiments 

The mapping of the fractional-step explicit and 
implicit codes for solving the three-dimensional Maxwell 
equations in the time domain onto a multi-computer 
was originally planned. As mentioned previously, the 
diagonalization of the governing equations in each of 
the three time-space planes leads to t,liree uncoupled 
characteristic formulations. When solving them by the 
windward differencing approximation [3,5], the message 
passing requirement is identical for both the explicit and 
the implicit schemes. Only the boundary values of th 
computational domain are specified at a different tem- 
poral level to reflect their intrinsic difference. In fact, 
the implicit code actually outperforms its explicit coun- 
terpart on a shared memory workstation, IRIS 4D/440 
VGX. The implicit and the explicit time-splitting codes. 
on a (46 x 46 x 46) mesh, yielded a consistent data 
processing rate of 2.71 x and 2.93 x sec per 
mesh point for each time step respectively. Although the 
implicit procedure has an unconditionally stable prop- 
erty in contrast to the explicit scheme for solving the 
Maxwell equation, the former will neither honor the 
physical requirement of domain of dependence for a CFL 
value greater than unity;nor will it generate a perfect 
shift condition under a special circumstance [3,5]. For 
signature analyses, these features are highly desirable. 
Thus, the explicit procedure may be preferred. For this 
reason, present efforts were devoted only to map the 
explicit code to the Intel Delta system. However, the 
identical parallelization technique is equally applicable 
to the implicit procedure for the present formulation. 

All numerical solutions were processed on the 
Delta system. The numerical simulations were focused 
on a three-dimensional oscillating electric dipole. The 
calculated results were validated by comparing with pre- 
vious numerical results from a single vector processor [' 
and the exact closed formsolution [12,13]. The exact SOLJ 
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5 6 7 8  7 6  

(a) 0)) (c) 

Table 1: (a )  Mynode (11) Yatural sequence (c) Serpentine sequence 

lution contains a singular behavior at the center of the 
(lipole. The leading term singularity of field intensities 
q p e a r s  as the inverse cubic power of radial distance 
from the dipole [13]. Therefore. i t  offers a serious chal- 
lenge to the accuracy of the numerical simulation and 
the robustness of the solving procedure. 

111 order to put the geometrically simple h u t  nu- 
merically demanding simulation in the appropriate per- 
spective. the entire electromagnetic field is presented in 
the form of traces of the magnetic and electric intensi- 
ties. 111 Figure 2 ,  the magnetic field is presented at the 
instance when the crest of the second wave was miting 
the computational domain. The traces of magnetic lines 
form a series of planar concentric circles perpendicular 
to tlic dipole. The azimuthal component of the magnetic 
field is known to contain a singularity proportional to 
the inverse square radial distance from the dipole. The 
singular behavior a t  the dipole however is not apparent 
at the chosen time instance. 

The same instantaneous time exposure of the elec- 
tric field is depicted in Figure 3. The orderly loops origi- 
nating from the dipole and streaks around them indicate 
a composite field of two predominant radial and circum- 
ferential components. The  asymptotic behavior of both 
dectric field components approaches the pole as the in- 
wrsc cubic power of the radial distance. These rapidly 
varying functions near the dipole pose a considerable 
clmiaiid 011 the accuracy and algorithmic robustness of 
any numerical simulation. 

The scalability of the present time-splitting pro- 
cpdure on the Delta system was evaluated by fixing the 
message passing length a t  9.216 bytes each. The tim- 
ing iuformation was collected for the performances from 
a single node up to the full complement of nodes of 
the Delta. The greatly increased mesh point density 
and message length at 36,864 bytes (96 x 96 x 96) and 
147,456 bytes (192 x 192 x 192) were planned for the 
grid resolution study. Since the startup expenditure of 
the present procedure is negligible (57 mixed integer and 
real number arithmetic operations, as well as two sys- 
tem calls to get information), only the execution and 
data 1/0 timing data  were collected. From these data 
bases, the issues of scalability and parallel efficiency will 
be delineated. 
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T h e  distributed memory (16 Mbyte/per node, 
8,192 Mbyte total) of the Delta system also provides a 
unique opportunity for mesh spacing refinement studies. 
Nunierical resolution studies of a three-dimensional sim- 
ulation by doubling the number of mesh points in each 
coordinate will result in an eight-time memory space in- 
crement. Therefore, it is rare that the numerical accu- 
racy assessment of a three-dimensional calculation had 
been carried out on several levels of mesh spacing en- 
richment in all coordinates simultaneously. A multiple 
level grid spacing refinement study was conducted to de- 
termine the suitable mesh points distribution to capture 
the singular behavior of the dipole. 

5 Performance Evaluat ions 

The  numerical results generated on the Delta sys- 
tem either by the one-dimensional parallelization or pen- 
cil grouping on a (48 x 48 x 48) mesh system are identi- 
cal to the earlier efforts [5]. The difference between the 
numerical result and the analytic solution is confined 
within the known truncation error of the second-order 
accurate scheme. On the prescribed baseline mesh 
spacing, the numerical error is bounded within less than 
a fraction of one percent. Detailed and specific compar- 
isons with the theory will be given later as part of the 
mesh refinement investigation 

Since the Delta system h a s  no profile software 
to measure the performance of basic library functions 
(trigonometry and square) and the message passing la- 
tency, data  processing rates were evaluated by the time 
elapsed during program execution and da ta  1/0 phases. 
Timing results were collected for 480 time steps calcu- 
lations on the base-line mesh system (48 x 48 x 48). All 
calculations on each node were completed within 45.61 
to 52.90 seconds regardless of whether the computations 
were conducted on 4 or 512 numerical nodes. The da ta  
I/O, on the other hand, varied widely from 0.24 to 32.20 
seconds for the Serpentine sequence, and from 0.28 to 
162.80 seconds for the Natural sequence. The  duration 
of timing sampling was selected for all calculations to 
perform 480 steps in time, which permitted the wave t o  
traverse twenty times the distance across the entire com- 
putational domain. The period of sampling is deemed 
sufficient to yield meaningful information, and the col- 
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lrcted data  are repeatable. Finally, the data srattering 
Imnd is limited only to 2.7 percent. 

The data  processing rate is computed by the t e  
tal number of arithmetic operations performed during 
tlie 480 t,irne steps divided by the maximum and the 
minimum time elapsed of all nodes in use. These two 
values bracket the range of performance among nodes. 
riming information was recorded from a 4-nodes to 512- 
nodes simulation at  an interval of doubling the number 
of nodes. The  Flops rate is calculated by the product of 
tiumbers of iterations, arithmetic operations, total grid 
points, and numerical nodes, then dividing by the exe- 
cuting time, (480 x 492 x (48 x 48 x 48)x No. of nodes) / 
rxecution time. The  calculated data rate is a conserva- 
tive estimate, because 47 basic library function calls and 
nine system calls for data movement a t  every t,irne level 
were not taken into consideration. These 22,560 func- 
tion calls (mostly were trigonometry and square root 
ralculations). 4.320 message passing calls per node. and 
32.160 integer calculations for message description can 
consume a significant amount of time. 

The parallel efficiency or scalability of the code is 
defined by the time elapsed for each array of nodes used 
t l ien normalized by the execution time required for four 
nodes. The timing basis for scaling at four nodes has  
yielded consistent cpu time required, and the variation 
among these four nodes is negligible. 

The measurement of data I/O performance is 
straightforward. The longest and the shortest time 
periods required to process a formatted data file and 
three unformatted graphic files for the entire simulated 
field were recorded for each group of nodes used. The  
data 1/0 process consisted of a combination of 38 syn- 
chronous and asynchronous message passing calls. as 
mell as 78 integer arithmetic operations at each time 
stel). The timing information was collected from calcu- 
lations from 4-node to ,512- node arrays. The format- 
ted file contained a total of 3.98 Mbytes of data ,  three 
graphic files were about a third the size of the formatted 
data file. The data  1/0 timing results from 4-node up 
to 512-node simulations were again normalized by the 
4-node result to demonstrate the possible performance 
degradation of data  management. 

6 Discussion of Results 

The comparison of the data processing rate be- 
tween the serpentine and the natural sequence data  
passing paths is given in Table 2. The timing data  is 
tabulated in terms of Gigaops versus the number of nu- 
merical nodes used. In the table, the Maximum and the 
Minimum data  processing rates are included to reveal 
the performance difference among nodes. 

The  performance difference between the natural 

sequence and the serpentine message path arrangements 
begins to appear for the number of nodes beyond 128 
'This difference in performance may be attributable tc 
the memory path bandwidth and memory latency of 
the Delta system. In the present text. the memory la- 
tency is defined as the time delay between the instance 
when an instruction was issued and the moment when 
memory units were ready to accept tlie request. Un- 
fortunately, the needed knowledge base for a detailed 
analysis was unavailable, therefore only the observations 
were reported. Since the Serpentine arrangement took 
advantage of the nearest neighbor priority in message 
passing hierarchy, the performance degradation is less 
than that of the Natural sequence. In fact, the slowest 
node of a 512-node computation using the serpentine 
procedure required only 3.1 percent more execution time 
to complete the task than the fastest node. The fastest 
node operating on the Serpentine arrangement attained 
a data  processing rate of 5.966 Gigaops on 512 numerical 
nodes. In the natural sequence arrangement, the slow- 
est node of a 512-node computation suffers a 10.4 per- 
cent degradatiuwcompared with the fastest node. The 
fastest node only delivers a data  processing rate of 5.412 
Gigaops in this case. 

Similar concurrent performance of computations 
on (96 x 96 x 96) and (96 x 192 x 192) grid systems 
were also observed. The data processing rate per node 
was maintained in the range of 12.89 to 11.65 M e g a o p a d  
These data  processing rates are far below the nominal 
performance level of the 8 6 0  microprocessor [16]. Addi- 
tional performance improvement of thetpresent numeri- 
cal procedure using the Delta system is still possible. 

The comparative timing results between the natu- 
ral and the serpentine sequence are depicted in  Figure 4. 
The improvement of the latter to the data  processing 
rate of the former is clearly demonstrated. The perfor- 
mance degradation by the natural sequence, which did 
not honor the data passing priority of the nearest neigh- 
bor hierarchy, became pronounced when more than 128 
numerical nodes were used. The serpentine procedure 
appears to be more effective for the distributed memory 
system. In all, an increasing disparity of the data pro- 
cessing rate among nodes was also noted as the number 
of nodes increased beyond about 64. Sustained concur- 
rent performance of computations on a (96 x 96 x 96) 
grid system was also observed, the data  processing rate 
per node was maintained in the range of 11.65 to 11.1 
Megaops. 

The scalability of the present multicomputer pro- 
gram based on the one-dimensional parallelization is 
given in Figure 5. All data processing rates are nor- 
malized by the value of the 4-node simulation. A data 
rate anomaly was observed for the 8-node simulation fc 
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Serpentine Logic Sequence 
Number of nodes Maximum Minimum Maximum Minimum 

4 0.046 0.046 0.046 0.046 
8 0.092 0.092 0.092 0.092 
IG 0.184 0.184 0.184 0.169 
3 2 0.368 0.3G8 0.369 0.369 
A .4 O.iR8 0 ,138 0.736 0.707 
128 1.472 1.4i2 1.445 1.430 
246 2.96i 2.952 2.829 2.798 
384 4.490 4.413 4.105 4.028 
512 5.966 5.704 5.412 5.274 

Table 2: This table needs a capt ion  

reasons unknown. but  waa iticluded for the sake of com- 
pleteness. Tlie superior scalable property of the serpen- 
tine sequence over that of the natural sequence is obvi- 
ous. The scalability of the present code up to 512 nodes 
is perceived within a performance degradation of less 
rlian 3.1 percent. In fact, tlie significant degradation 
only appeared when the full complement of numerical 
nodes Was employed. 

The data 110 time in seronds for recording out- 
p u t  is presented i n  Figure G .  The shortest waiting time 
over the entire range of nodes used was less than 0.24 
seconds. However, the aggregated time required of the 
slowest node in computation and da ta  I f 0  actually de- 
termines the completion of a numerical simulation. The 
data 110 time increased almost linearly with the num- 
ber of nodes in use. For the 512-node calculations, the 
serpentine sequence used 32.2 seconds while the natu- 
ral sequence needed 124.4 seconds to output the same 
amount of (lata. The drastic reduction in  I/O time at 
R factor of 3.8ti further demonstrates the superiority of 
the serpentine sequence over the natural  sequence. 

Figure i depicts the widely varying 1/0 perfor- 
mance between nodes for the entire range of available 
nodes. Again the 110 performance degraded rapidly as 
the number of nodes in use increased. The  natural se- 
quence yielded the maximum 110 performance discrep- 
ancy among nodes. The ratio between the most and 
least efficient nodes was aa high as 580.4. The serpen- 
tine sequence reduced the disparity to a value about 
134.2. I t  demonstrated that the 1/0 performance of the 
Delta is not scalable. If this behavior is a common trend 
for all distributed memory computer systems, this defi- 
ciency shall be a pacing item for research in concurrent 
computing. 

Owing to some uncertain peculiarities of the Delta 
compiler, only a limited amount of preliminary tim- 
ing data  from the pencil partition is obtained a t  the 
present. In short, the serpentine ordering did improve 
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the performance over that  of the natural sequence. A 
general performance improvement was also noted when 
tlie partition size ( J L  x I i L )  is nearly equal in J L  and 
I i L .  The performance degraded as one of the pencil 
dimensions approached unity, a clear indication that 
the twedimensional partition had degenerated into the 
one-dimensional parallelization. The preliminary tim- 
ing data of the pencil partition has revealed a parallel 
efficiency gain of 37% over that  of the one-dimensional 
partition. Continuing research will be devoted to fur- 
ther demonstrate the potential of the higher dimensional 
partition scheme. 

The mesh refinement investigation was forced to 
reduce the scope due to the presently unknown com- 
piler peculiarities. The orginally planrfed mesh refine- 
ment included a finest mesh system of (192 x 192 x 192). 
However, as the number of processors increased beyond 
96, the disparity in execution times among processors 
grew to a factor of 11.6 For 108 nodes. and 14.43 for 144 
nodes. The large performance discrepancy among the 
numerical nodes appeared only after a few numerical 
sweeps. In other words, the observed scalable perfor- 
mance of the present. computer program for the cases of 
(48 x 48 x 48) and (96 x 96 x 96) was not sustainable for 
the mesh system of (192 x 192 x 192). The timing ratio 
between the best and the worst performing nodes of the 
pencil partition was a modest value of 2.06, but the data 
was collected only after two temporal iterations. 

Three meshsystems of(96x96x96) ,  ( 4 8 x 4 8 ~ 4 8 ) ,  
and (24 x 24 x 24) were used for the numerical resolu- 
tion study instead. For this reduced scope of numerical 
experiment, the coarse mesh system has only 24 grid 
points in each coordinate. The mesh point density is 
sufficient to resolve the wave motion [l,2], hut it may 
he deficient in simulating the singular behavior of the 
dipole [12,13]. Since the grid spacing was reduced by 
a factor of two in every coordinate from the coarsest 
grid to the finest grid, the initial value of the dipole 



for each grid system must he specified at  different grid 
point which corresponds to the same physical location 
for all three grid systems. Due t o  the fact that the true 
field is a function of time, distance from the dipole, and 
the wave speed [12,13], the time step must be ;icljusted 
accordingly to account for the different time strp incre- 
inient of each grid system. 

The mesh refinement results for the radial coni- 
ponent of the electric field are presented i t i  Figure 8. 
The initial condition of the coarse mesh spacing calcu- 
lation ( 2 4  x 24 x 24) was specified at  the farthest dis- 
tance from the dipole, where the gradients of depen- 
dent variables were diminishing rapidly. In  spite of the 
large spacing between grid points, the local truncation 
errors w r e  relatively low. The  dynamic instahility in- 
duced by the numerical error is actually less than the 
other calculations. The inherent numerical dissipation 
from the windward scheme [3.5] actually overwhelmed 
t lie nunierical result in  the immediately adjacent zone of 
t h e  dipole. ‘The subsequent mesh refinements exhibited 
ii steady improvement, but still were insufficient to over- 
come the stringent demand for accurate simulation near 
the dipole. Nevertheless, the present numerical proce- 
dure h a s  demonstrated the robustness in treating the 
problem containing a singular behavior. 

Figure 9 depicts the numerical results of the cir- 
cumferential component of electric intensity on the three 
mesh systems. This electric field component h a s  the 
highest order of singular behavior of all results consid- 
ered. The numerical result obtained on the finest mesh 
spacing (96 x 96 x 96) attained an excellent agreement 
with the analytic result. The  maximum deviation from 
the theoretical results is merely two-tenths of one per- 
cent. The calculation by the (48 x 48 x 48) mesh system 
revealed significant numerical oscillations in an  attempt 
to overcome the large truncation error near the dipole. 
111 spite of the locally induced dynamic instability, the 
calculation was sustained for a substantial period far 
beyond the reported time frame. Another desired fea- 
ture of the characteristic-based formulation also stood 
out. At a non- dimensionalized radial distance of 0.14 
and beyond, all three solutions agreed well with the the- 
ory and showed no wave reflection from the truncated 
numerical boundary. 

The comparison of magnetic azimuthal component 
of the three mehsys tem is given in Figure 10. Although 
the leading term singularity has a lower order asymptote 
than that of the electric field, the numerical hehavior 
of solutions generated on the three mesh systems was 
similar. The numerical resolution produced by the finest 
mesh system ( 9 6 x 9 6 ~ 9 6 ) ,  however, was able to suppress 
the numerical oscillation near the dipole. Finally, the 
reflected wave from the truncated numerical boundary 

(vas completely absent. 

7 Conclusions i/ 
A fractional-step, upwind numerical procedure for 

solving the three-dimensional, time-domain Maxwell 
equations h a s  been ported to the Intel Delta niulticom- 
puter. The concurrent computations duplicated the re- 
sults from earlier numerical results and compared well 
with theory. For the mesh system of (48 x 48 x 48), 
the numerical procedure is scalable up to 512 numerical 
nodes with only a 2.91 percent performance degrada- 
tion. The  fastest data  processing rate is 5.966 Gigaops 
and the sustained overall performance is clocked a t  5.704 
Gigaops. Further increased data processing rate is still 
possible. 

The  scalability of concurrent coniputing is sus- 
tained up to a simulation eight times the size of the 
haseline case. For reason uncertain. the scalable per- 
formance failed a t  the next level of grid point enrich- 
inent (192 x 192 x 192). Although the architecture of 
the Touchstone Delta multicomputer and its usefulness 
are impressive, consistent performance in scaling up for 
massive data  bases remains as a necessary research em- 
phasis. 

The  scalable data  IjO is also identified as a pacing 
item for intense research for attaining high performance 
computation. 

The  one-dimension parallelization has  been 
shown as a suitable data partition procedure for a 
characteristic-based, windward difTerellce algorithm in 
solving the time dependent, three dimensional Maxwell 
equations. Further parallel efficiency improvement by 
pencil structure shows developable potential. 
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r i p r e  2 :  Magnetic field of a dipole 
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Figure 6: Data 1/0 time on the Delta 
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Figure 3: Electric field of a dipole 
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