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The optimal control of a linear system is studied relative to a periodic unstable trajectory using continuous control.

Gaussian state uncertainties induce a statistical cost of controlling the state over a long period of time. The length of

time between control-law updates directly impacts this cost, and in a hyperbolically unstable system, the time

between control updates can take an optimal value. If the amount of uncertainty is fixed, there is an optimal

distribution between position and velocity uncertainty.We apply these ideas to study the statistical cost of controlling

a spacecraft in the vicinity of a relative equilibrium point and a Halo orbit in the Hill three-body problem.

Nomenclature

A�t� = linear system dynamics matrix
a = acceleration component
B = linear system control matrix
E��� = expectation operator
G = universal gravitational constant, 6:673 � 10�11 m3 �

kg�1 � s�2
J = cost function
J� = optimal cost function
l = reference length scale for nondimensionalizing
M = mass of secondary body in the Hill three-body

problem
m = mean vector
P = covariance matrix
r = distance from origin in the Hill three-body problem
r = position vector
T = halo orbit period
Tu = control horizon
T�u = optimal control horizon
tf = control-law planning horizon
u = control vector
v = velocity vector
var��� = variance operator
x = state vector
x, y, z = positions of spacecraft in the rotating frame relative

to the secondary body in the Hill three-body
problem

� = Lyapunov characteristic exponent
� = costate vector
�2 = variance/covariance value
�r, � = nondimensional uncertainty parameters
� = reference time scale for nondimensionalizing

��t1; t0� = state transition matrix mapping linearized state from
time t0 to time t1

! = angular rotation rate of the secondary body about
the primary in the Hill three-body problem

I. Introduction

I N THIS paper, we describe a method to analyze the average (or
ensemble) cost of optimal control near a periodic unstable

trajectory. Specifically, we focus on control of the time-varying
linear system resulting from linearizing the full dynamics about a
nominal periodic trajectory. We consider a specific control strategy
to take into account the finite horizon of the continuous control and
uncertainty in the estimate of the state. This analysis is of direct
application to the determination of mission operations for halo
orbiters and for the budgeting of statistical fuel costs, especially for
spacecraft in the highly unstable Earth–moon system.

Previously, Renault and Scheeres [1] conducted a similar study of
optimal statistical control that considered the placement of impulsive
control maneuvers near an unstable equilibrium point. The results of
this paper serve to reinforce key results by Renault and Scheeres,
such as the correlation between optimal control maneuver timing and
the characteristic time of the instability of a system. Also, trends
derived in Scheeres’s previous work [2] concerning the qualitative
impact of the update time on control cost using impulsive maneuvers
are developed here for the continuous-control case and are shown to
be similar.

The control force and system dynamics are assumed to be deter-
ministic, and the state estimates are assumed to have a Gaussian
probability distribution. TheGaussian assumption is justified for this
analysis, because spacecraft uncertainties are almost always reported
according to Gaussian statistics; more detailed information is not
typically available. Additionally, this allows for the availability of
analytical control laws for linear systems with state uncertainty.
Further analysis could be performed under non-Gaussian statistics;
however, this would stray from the realm of practicality. All system
uncertainty is assumed to be adequately described by uncertainties
in the estimation of the state. In addition, note that we almost
exclusively focus on optimally updating control laws in the presence
of uncertainty, not optimal control per se.

The motivation for these control-law updates is as follows:
1) At some time t1, we have an estimate of the state with a certain

uncertainty level. The uncertainties at this point can be viewed as the
steady-state uncertainties of an estimation process.

2) Based on the estimate of the state at t1, we choose and
implement a controller that would nominally cause the state to
converge to the target state at time t2 (in the absence of uncertainty).
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3) At time t2, error exists again due to uncertainties at time t1.
This process repeats and therefore there is a statistical cost

associated with the steady-state control. It is also similar to the actual
process used in spacecraft trajectory control [2]. To estimate this
statistical cost, we evaluate the expected cost of the control from time
interval ti to ti	1 due to propagated uncertainties from interval ti�1
to ti. During each interval, the control force is continuous; however,
at the boundary between each interval, a discontinuity results from
the choice of a new optimal control for the next control period.

To minimize the cost of regulating the system, we seek to mini-
mize the average cost over time. To achieve this, one must find the
time between updates that minimizes the expected cost per segment
divided by the time between updates: E�J�=Tu, where J is the cost
incurred andTu is the time between updates. That is, the optimal time
between updates, T�u , is given by

T�u 
 arg min
Tu

E�J�
Tu

(1)

The time between updates is assumed to be a constant parameter over
the analysis period of interest for this study. This choice fits with our
desire to develop a steady-state control and is particularly appropriate
considering our analysis of control in the vicinity of a periodic
system, which naturally lends itself to a repeating control strategy.
A topic of future investigation could be to formulate the problem in
a slightly more general way: for example, finding the best way to
distribute n control-law updates over m periods.

We split the control problem into two pieces:
1) Determine the optimal control to target back to a nominal

trajectory/state in a finite time.
2) Determine the effect of state uncertainty on the nominal control

and how we can decrease the overall cost in the presence of
uncertainty.

In problem 1, the control time Tu is a free parameter, and in the
absence of noise, cost is reduced by taking Tu !1, even for
unstable systems.

For problem 2, in which we do not know the precise initial state,
we find that the error can have a catastrophic penalty if our dynamical
system is unstable. Hence, this injects a specific structure or natural
time scale into our control problem. This optimal update time is
nominally related to the characteristic time scale of the instability.
Although the control update time cannot be solved in closed form,
even for simple linear systems, the natural dynamics still provide
more insight than numerical optimization. The simple control law
elucidates the practical relevance of the unstable characteristic time
when estimating the optimal update time, as will be discussed.

This combined control and measurement strategy is a periodic
update procedure in which the optimal control problem is solved
using a finite-horizon time span equal to the time between control
updates. This can be viewed as an extreme case of receding hori-
zon control (RHC) or model predictive control (MPC), in which
the execution horizon is equal to the planning horizon. In RHC, the
execution horizon is typically much shorter than the planning
horizon [3,4]; however, spacecraft state estimates are made using
data from ground-based radar tracking stations, which perform
measurements infrequently compared with typical RHC applica-
tions. This necessitates a relatively long execution horizon.
Extending the planning horizon does allow for a lower expected cost;
however, this also increases the steady-state uncertainty, as shown
later. For simplicity, we will assume that the control update time
equals the planning horizon. One could relax this assumption by
modifying the cost function to be a weighted combination of fuel-
based cost as well as some uncertainty cost, then solving for optimal
values of both the update time and the horizon time. To further
clarify, the typical application of RHC is to approximate a feedback
control law, which is not the goal here. Instead, we are interested in
optimizing the time between control-law updates, which is the key
parameter to our overall optimization process.

This paper is split into twomain sections. The first section reviews
optimal design of statistical correction maneuvers and the second

applies these results to the optimal statistical control of a libration
point orbiter.

II. Optimal Control-Law Update Timing

A. Deterministic Optimal Control Law

The system resulting from the linearization near a desired
trajectory is a linear time-varying system, written as

_x
A�t�x	Bu

Our control objective is to minimize the energy expended over a
finite horizon,

J��t0; tf� 
min
u

1

2

Z
tf

t0

u � udt (2)

subject to the boundary conditions of a given initial state and a hard
terminal constraint:

x �t0� 
 x0; given x�tf� 
 0

Our method of choice to integrate this system numerically was
the sweep method [5], which is an efficient and robust method for
linear systems with terminal constraints. The sweep method for this
optimization problem involves the numerical integration of two
linear matrix differential equations:

_R�t; t0; tf� 
 �ATR�t; t0; tf�
_Q�t; t0; tf� 
RT�t; t0; tf�BBTR�t; t0; tf�

subject to the terminal constraints

R �tf; t0; tf� 
 I Q�tf; t0; tf� 
 0

Once these equations are integrated backward in time, the costate
vector as a function of the initial state is given by

� �t; t0; tf� 
 �R�t; t0; tf�Q�1�t0; t0; tf�RT�t0; t0; tf�x�t0�

From this, the control is defined as

u �t; t0; tf� 
 �BT��t; t0; tf�

 �BTR�t; t0; tf�Q�1�t0; t0; tf�RT�t0; t0; tf�x�t0�

If we define the matrix L as

L �t; t0; tf� 
 �BTR�t; t0; tf�Q�1�t0; t0; tf�RT�t0; t0; tf�

and G as

G �t0; tf� 

Z
tf

t0

LT��; t0; tf�L��; t0; tf�d�

then the form of the optimal control and the optimal cost function are

u ��t; t0; tf� 
L�t; t0; tf�x�t0� (3)

J��t0; tf� 
 1
2
xT0G�t0; tf�x0 
 1

2
tr�G�t0; tf�x0x

T
0 � (4)

This form of J� provides for straightforward computation of the
expected value of the cost function, because the statistics of x0 are
assumed to be given. This linear method can also be extended
to a nonlinear method by using the generating function approach for
optimal control [6].

B. Control-Law Updates

We start by studying three simple linear systems to demonstrate
the control and measurement strategy as well as the derivation of
the expected cost and optimal time between measurements. In our
analysis of the timing of the control-law updates, the state is assumed
to be a Gaussian random vector, with the mean and covariance taken
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as outputs of an estimation process. The multivariate Gaussian
probability distribution function for a vector x 2 Rn with mean
m 2 Rn and covariance matrix P 2 Rn�n is defined as [7]

p�x� 
 1�����������������������
�2��n detP

p exp

�
� 1

2
�x �m�TP�1�x �m�

�

The expected value of a function is

E�f�x�� 

Z
1
f���p���d�

and the meanm and covariance P of a random variable are then

m 
 E�x� 

Z
1
�p���d� P
 E�xxT � �mmT

The concepts involved in this analysis will be explained in the
context of three illustrative systems. The choice of the three simple
systems is motivated by previous results [2] for impulsive control.
Consider the following 2-dimensional system with one scalar input:

_x
Ax	 Bu

The three different cases result from three different A matrices.
Oscillatory case:

A 
 0 1

��2 0

� �

Double-integrator case:

A 
 0 1

0 0

� �

Hyperbolically unstable case:

A 
 0 1

	�2 0

� �

For all three systems,B
 � 0 1 �T . The cost function for the optimal
control is

J
 1

2

Z
tf

t0

u�t�2dt

and the optimization problem to be solved is to find u�t� such that
u�t� minimizes E�J� subject to given initial and final states.

When the linear-Gaussian assumptions are followed, we can
conclude that if optimal control is applied from time t0 to time t1, with
the following initial conditions,

E�x0� 
 0 (5)

var �x0� 
 P0 (6)

the expectation and covariance describing the state at time t1 are
given by

E�x1� 
 0 (7)

var �x1� 
 P1 
��t1 � t0�P0�
T�t1 � t0� (8)

For the preceding three systems, the state transition matrices and
covariance matrices are as follows.

Oscillatory case:

� �t; 0� 
 cos��t� 1
�
sin��t�

�� sin��t� cos��t�

� �

P11�t�


 �
2�1	 cos�2�t��P11	 2� sin�2�t�P12	 �1� cos�2�t��P22

2�2

P12�t� 
P21�t�


��
2 sin�2�t�P11	 2� cos�2�t�P12	 sin�2�t�P22

2�

P22�t�


��
2�1	 cos�2�t��P11	 2� sin�2�t�P12	 �1� cos�2�t��P22

2

Double-integrator case:

� �t; 0� 
 1 t
0 1

� �

P11�t� 
 P11 	 2P12t	 P22t
2 P12�t� 
 P21�t� 
 P12 	 P22t

P22�t� 
 P22

Hyperbolically unstable case:

� �t; 0� 
 cosh��t� 1
�
sinh��t�

� sinh��t� cosh��t�

� �

P11�t�


�
2�1	 cosh�2�t��P11	2�sinh�2�t�P12	�cosh�2�t�� 1�P22

2�2

P12�t�
P21�t�


��
2 sinh�2�t�P11	2�cosh�2�t�P12	 sinh�2�t�P22

2�

P22�t�


�
2�cosh�2�t�� 1�P11	2�sinh�2�t�P12	�1	 cosh�2�t��P22

2

C. Statistical Cost

Let the state to be the random vectorX�t�. At time t (t0 < t < tf),
the state is given by

X �t� 
��t; t0�X�t0� 	 F�t; t0; tf�X�t0�

where

F �t; t0; tf� 

Z
t

t0

��t; ��BL��; t0; tf�d�

Suppose that after a long period of time, we are at the end of
an update period just before we take a measurement. Our random
state vector should have some steady-state distribution with zero
mean and some covariance Pss:

P ss 
 E�X�Tu�XT�Tu��

We can simulate taking a newmeasurement by adding a vector taken
from this steady-state distribution with a vector that is due to
measurement error having covariance Pm. So at the beginning of the
next control period, we have

X �t0	� 
M	 V

where M�N �0;Pss�, V �N �0;Pm�, M and V are independent,
and the 	 subscript on t0 indicates an instant just after a
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measurement. At the update time,

X�Tu� 
��Tu; t0�X�t0	� 	 F�Tu; t0; tf�M

 ���Tu; t0� 	 F�Tu; t0; tf��M	��Tu; t0�V

For convenience, let �
��Tu; t0� and F
 F�Tu; t0; tf�. The
covariance is

E�X�Tu�XT�Tu�� 
 ��	 F�E�MMT ���	 F�T

	�E�VVT ��TPss 
 ��	 F�Pss��	 F�T 	�Pm�
T

A straightforward solution for Pss maybe be written with the
vectorization (or stacking) operator and the Kronecker product:

vec �Pss� 
 vec���	 F�Pss��	 F�T� 	 vec��Pm�
T�


 ���	 F� � ��	 F��vec�Pss� 	 vec��Pm�
T�

vec�Pss� 
 �I � ��	 F� � ��	 F���1vec��Pm�
T�

Pss is obtained by unstacking vec�Pss�. If Tu 
 tf, then F
�� and
the preceding equation simplifies to

P ss 
�Pm�
T

The relevant covariance matrix for calculating the expected cost is
the covariance just after taking a measurement P	:

P	 
 E�X�t0	�XT�t0	�� 
 Pss 	 Pm

Continuing with these examples, we may partition the initial state
for convenience. Let r0 be the initial position and v0 be the initial
velocity. Thenx0 
 � r0 v0 �T . Similarly, partitionG fromEq. (4) as

G 
 2J�
Jr Jrv
Jrv Jv

� �

where the factor J� is pulled out for convenience. This yields the
following expression for the deterministic cost:

J
 J��Jrr20 	 2Jrvr0v0 	 Jvv20� (9)

where J�, Jr, Jrv, and Jv are functions of the linear dynamics and
the update time, given in Table 1.

Once the deterministic cost is known, the expected value and
variance of the cost can be computed. Taking the expectation E���
of Eq. (4) yields

E�J� 
 1
2
trfG�P	 	 E�x0�E�xT0 ��g (10)

or, in the form of Equation (9),

E�J� 
 J��JrE�r20� 	 2JrvE�r0v0� 	 JvE�v20�� (11)

E�J� 
 J��Jr��2r �t0� 	 E�r0�2� 	 2Jrv��2rv�t0� 	 E�r0�TE�v0��
	 Jv��2v�t0� 	 E�v0�2�� (12)

where � denotes the (co)variance of the given quantity at the
beginning of the update interval, just after a measurement.

Because the control law was chosen so that the expected value of
the state is the zero vector �E�r0� 
 E�v0� 
 0�, Eqs. (10) and (12)
simplify to

E�J� 
 1
2
trfGP	g (13)

E�J� 
 J��Jr�2r �t0� 	 2Jrv�
2
rv�t0� 	 Jv�2v�t0�� (14)

Note that this expected cost is only a function of the time between
updates, Tu, and the initial covariances Pm, because for a given
system, G is determined completely by Tu and P	 is determined by
Pm.

The variance of J, var�J�, is given by

var �J� 
 E�J2� � �E�J��2 (15)

Computing E�J2� using the Gaussian joint characteristic function
yields

E�J2� 
 1
2
trf�GP	�2g 	 1

4
tr2�GP	� (16)

E�J2� 
 J2�f3J2r ��2r �2 	 4J2rv�2��2rv�2 	 �2r �2v� 	 3J2v��2v�2

	 8JrJrv�
2
r �

2
rv 	 2JrJv��2r �2v 	 2��2rv�2� 	 12JrvJv�

2
rv�

2
vg (17)

Substituting Eq. (14) and (17) into Eq. (15) yields the variance of J:

var �J� 
 1
2
trf�GP	�2g (18)

var �J� 
 2J2�fJ2r ��2r �2 	 2J2rv���2rv�2 	 �2v�2v� 	 J2v��2v�2

	 4JrJrv�
2
r �

2
rv 	 2JrJv��2rv�2 	 4JrvJv�

2
rv�

2
vg (19)

Aswith the expected value of J, the variance of J is only a function of
Tu and Pm.

D. Steady-State Minimum Expected Cost

Because of the complicated form of the expression for E�J�=Tu,
even for simple time-invariant systems, Eq. (1) cannot typically
be solved for T�u in closed form. Some statements can be made,
however, about the behavior of T�u , depending on the dynamics of
the linear systems under study. For any double-integrator and
oscillatory-type dynamics, it can be shown that E�J�=Tu achieves its
minimum by letting Tu !1 and that the actual value of E�J�=Tu
approaches zero. This is analogous to the impulsive control result
previously obtained [2] and implies that maneuver execution errors
dominate the uncertainty. The behavior is different for a hyper-
bolically unstable system. As Tu increases, the hyperbolic instability
of the system causes E�J� to grow exponentially and drives E�J�=Tu
toward 1. For all three cases, E�J�=Tu goes toward 1 as Tu

Table 1 Summary of coefficients

Double-integrator Oscillatory Hyperbolically Unstable

J� 1=T �2

cos�2�T�	2�2T2�1
�2

cosh�2�T��2�2T2�1
Jrr 6=T2 � sin�2�T� 	 2�2T � sinh�2�T� 	 2�2T
Jrv 3=T 1 � cos�2�T� cosh�2�T� � 1
Jvv 2 2T � 1

�
sin�2�T� 1

�
sinh�2�T� � 2T

Table 2 Summary of results for control about theH3BP equilibriumpoint for various systems

E�J�=Tu, nondimensional �V=period, km=s=period Optimal update time, s

Sun–Earth 1:79 � 10�7 6:21 � 10�4 2:71 � 106

Earth–moon 2:88 � 10�5 4:22 � 10�3 2:01 � 105

Jupiter–Europa 5:72 � 10�4 3:22 � 10�2 2:61 � 104

Jupiter–Io 9:56 � 10�4 6:46 � 10�2 1:30 � 104

Saturn–Titan 3:90 � 10�5 7:19 � 10�3 1:17 � 105

Saturn–Enceladus 1:18 � 10�1 8:34 � 10�2 1:01 � 104
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approaches zero. Thus, for the oscillatory and double-integrator
cases, it is optimal to let the time between measurements go to
infinity; however, for hyperbolically unstable dynamics, there exists
an optimal time between measurements.

This can be shown more formally with the limits of E�J�=Tu as
Tu ! 0 and as Tu !1. For all three example systems,
limTu!0E�J�=Tu is undefined; that is, E�J�=Tu grows without bound
as Tu approaches zero. For the oscillatory and double-integrator
dynamics,

lim
Tu!1

E�J�
Tu

 0

but for the hyperbolically unstable case, limTu!1E�J�=Tu is
undefined (E�J�=Tu also grows without bound as Tu tends toward
infinity in this case). BecauseE�J�=Tu is stillfinite for anyfinite value
of Tu, this implies the existence of a minimum by continuity.
Numerical studies of a wide range of systems show that the value
of T�u is closely tied to the characteristic time of the unstable mode
(1=�), although it also depends on the initial values of the covariance
matrix. This is also analogous to previously obtained results for
impulsive control [1]. For an ideal 1-degree-of-freedom unstable
system, it can be shown that the optimal update time for impulsive
control equals the characteristic time [2]. For our continuous-control
time-varying systems, the relationship is not exact, but numerical
simulations support the extension as a rule of thumb. This
relationship breaks down when applied to periodic trajectories
that are too far from their initial origin, as shown in the example
implementation. An example of the cost as a function of Tu for the
three linear cases described previously is shown in Fig. 1. For all
three cases, P011


 P022

 1 and P012


 0. For the hyperbolically
unstable and oscillatory cases, �
 0:1.

The overall trends of the cost are very predictable as � changes.
Figure 2 shows the expected cost per unit time in the unstable system
with three different values of �, normalized on each axis so that
the update time is scaled by �, and the cost is scaled such that the
minimum value equals unity. Although � varies by 2 orders of
magnitude, the normalized optimal values of Tu only change by
about 10%.BecauseE�J� scales linearlywithPm, scalingPm does not
change the location of the optimal update time.

The effect of tf on E�J�=Tu in the unstable example is shown in
Fig. 3. As the horizon is extended, a cost reduction can be obtained.
However, as a practical matter, the reduction in cost must beweighed
against the growth in kPssk, as shown in Fig. 4. For the examples in
this paper, we will assume Tu 
 tf , as this is common for spacecraft
control, due to the limited ability for communication of new control
laws.
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E. Estimates for Control Costs

In spacecraft control, one is often concernedwithminimizing�V:
the total velocity change required by the propulsion system to follow
a given trajectory. For our continuous-control case, the�V between
two time periods, t0 and t0 	 Tu, is given by

�V 

Z
t0	Tu

t0

ku�t�kdt (20)

�V 

Z
t0	Tu

t0

���������������������
u�t� � u�t�

p
dt (21)

The analysis methods in this paper use an energy cost function as
in Eq. (2), although we may obtain an upper bound on the�V spent
per unit time from our energy cost per unit time. A statement of
the Cauchy–Schwarz inequality for two real functions, f and g, is as
follows [8]:�Z

b

a

f�t�g�t�dt
�
2



Z
b

a

�f�t��2dt
Z
b

a

�g�t��2dt (22)

If we let f�t� 

���������������������
u�t� � u�t�

p
, g�t� 
 1, a
 t0, and b
 t0 	 Tu,

then we obtain

Z
t0	Tu

t0

���������������������
u�t� � u�t�

p
dt 


������������������������������������������������������������������������Z
t0	Tu

t0

�
���������������������
u�t� � u�t�

p
�2dt �

Z
t0	Tu

t0

dt

s

(23)

Z
t0	Tu

t0

���������������������
u�t� � u�t�

p
dt 


�������������������������������������������������Z
t0	Tu

t0

u�t� � u�t�dt � Tu

s
(24)

Therefore, a bound on the �V used in each control segment is

�V 

��������
2Tu

p ���
J
p

(25)

Taking the expectation of this yields

E��V� 

��������
2Tu

p
E�

���
J
p
� (26)

E��V� 

��������
2Tu

p ���������
E�J�

p
(27)

where the last inequality again comes from the Cauchy–Schwarz
inequality. The expected�V spent per unit time is then bounded by

E��V�
Tu




������������
2
E�J�
Tu

s
(28)

III. Example Implementation

In this section, we will study two cases of spacecraft control in the
Hill three-body problem (H3BP) using continuous thrust. In the first
case, we limit ourselves to the planar motion of a spacecraft in
the vicinity of one of the relative equilibrium points, and in the
second, we study a spacecraft perturbed from a nominal halo orbit.
A previous study of the equilibrium-point control problem [1]
considered control using impulsive maneuvers. In addition, we show
that the results obtained for the linear time-invariant case can be
extended to linear time-varying systems.

The equations of motion for a spacecraft’s position in the H3BP
are [1]

�x � 2! _y
� �
r3
x	 3!2x	 ax (29)

�y	 2! _x
� �
r3
y	 ay (30)

�z
� �
r3
y � !2z	 az (31)

where x, y, and z are the positions of the spacecraft in the rotating
frame relative to the secondary body; ax, ay, and az are the space-
craft control accelerations; ! is the angular velocity of the
secondary body about the primary; �
GM (M is the mass of

the secondary body); and r is the radius (r

��������������������������
x2 	 y2 	 z2

p
).

These equations may be nondimensionalized using the length scale
l
 ��=!2�1=3 and time scale � 
 1=!. For the Earth–sun system,
�
 3:986 � 105 km3=s2, !
 1:991 � 10�7 rad=s, l
 2:158�
106 km, and � 
 5:023 � 106 s.

The dimensional covariance matrix associated with the state
estimates is assumed to be a 6 � 6 diagonal matrix (typical of
spacecraft state estimation) with entries Pr and Pv:

P d 

Pr � I3 03�3
03�3 Pv � I3

� �

This covariance matrix may be nondimensionalized to obtain

P 
 Pr=l
2 � I3 03�3

03�3 Pv=�!l�2 � I3

� �

 Pr
l2

I3 03�3
03�3 Pv=�Pr!2� � I3

� �

This may be parameterized to yield further insight into how
the uncertainties affect the optimal update time and cost using the

parameters �r 

������
Pr
p

=l and �
 !
�������������
Pr=Pv

p
. This nondimensional-

ization and parameterization yield the following form for Pm:

P m 
 �2r
I3 03�3
03�3 1=�2 � I3

� �
(32)

Typical values ofPr 
 �10 km�2 andPv 
 �10�6 km=s�2 relating to
usual spacecraft uncertainties are used for the simulations, resulting
in the nondimensional parameters �r 
 4:633 � 10�6 and �
 1:991
in the sun–Earth system and �r 
 1:13 � 10�4 and �
 26:6 in the
Earth–moon system.

Given a nondimensional expected cost per unit time, E�J�=Tu, the
dimensional cost per unit time is given as�

E�J�
Tu

�
l2

�4

To convert nondimensional �V=Tu values to their dimensional
values, scale by l=�2 instead of l2=�4. The results may also be
reported as a cost per period of the secondary body, 2�=!. The
dimensional cost per secondary-body period is �E�J�=Tu�2�l2=�3
and the dimensional �V per secondary-body period is �E��V�=
Tu�2�l=�.

For reference, a nondimensional expected value of J=Tu equal to
1 � 10�7 corresponds to an upper bound on the dimensional�V per
period of 1:21 � 10�3 km=�s � period� in the sun–Earth system or
6:62 � 10�4 km=�s � period� in the Earth–moon system.

A. Planar Equilibrium-Point Control

When the system is nondimensionalized by setting �
 !
 1 in
Eqs. (29) and (30), the system has two equilibrium points using no
control at x
�3�1=3 and y
 0. Linearizing about either of these
points and defining the perturbed state �x
 � �x �y � _x � _y �T
yields the linear system

� _x


0 0 1 0

0 0 0 1

9 0 0 2

0 �3 �2 0

2
664

3
775�x	

0 0

0 0

1 0

0 1

2
664

3
775 ax

ay

� �

This system has an unstable mode, a stable mode, and an oscillatory

mode, associated with the eigenvalues 	
�������������������
1	 2

���
7
pp
� 2:5,
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�
�������������������
1	 2

���
7
pp
��2:5, and �j

�������������������
2

���
7
p
� 1

p
��2:1j, respectively.

The unstablemode’s characteristic time is then 1=
�������������������
1	 2

���
7
pp
� 0:4,

leading us to expect the optimal update time to be approximately 0.4
time units.

In this example, the cost function , J, beingminimized during each
update interval, is the energy used:

J
 1

2

Z
t0	Tu

t0

�a2x 	 a2y�dt

The optimal control law, and hence the trajectories themselves,
depend on the final time and are plotted in Fig. 5 for three different
final times and various initial conditions. We will show that using an
update time of 0.5 time units, corresponding to Fig. 5b, is optimal.
Note this optimal update time of 0.5 is near the characteristic time
of the unstable mode (0.4).

A plot of the expected cost as a function of update time is shown in
Fig. 6, using the uncertainty parameters given previously. Because of
the hyperbolically unstable dynamics, an optimal value of Tu clearly
exists, which minimizes the expected cost.

These cost values may also be compared with similar studies.
For the impulsive control strategy by Renault and Scheeres [1], the

estimate for �V per period is 4:70 � 10�4 km=�s � period� in the
sun–Earth system, although that assumes slightly larger uncertainties
than those used in this study. When using their uncertainties, we
obtain a �V per period of 6:21 � 10�4 km=�s � period� with our
continuous-thrust method. The method has a wide variety of
applications in the solar system, some of which are listed in Table 2
along with the corresponding optimal update times and estimated
control costs.

Figure 7 shows the effect of the nondimensional parameter � on
the optimal update time for the H3BP using the parameters described
previously. The variation in the optimal update time over the range of
� shown is about 1.75 days for the Earth–sun system. Note that the
optimal update time does not depend on �r itself, only the ratio �. For
reference, a nondimensional time value of 0.5 corresponds to about
29 days in the Earth–sun H3BP and 2.2 days in the Earth–moon
HR3BP. Interestingly, even though the formulations for the previous
impulsive studies [1] are quite different from this continuous-control
derivation, the results are consistent in that the �V computed from
the continuous-thrust method is reasonably close to the impulsive
�V and that the optimal update times for eachmethod are close to the
characteristic time of the unstable mode.

Figures 8 and 9 show the effect of � on the value of the cost
incurred over an update interval divided by the optimal update time:
that is,

min
u;Tu

E�J�u; Tu��=Tu
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As can be seen in Fig. 8, if �r is fixed, it is optimal to let � go to
infinity, which is equivalent to letting Pv approach zero (i.e., low
uncertainty in the velocity components). However, if jPj is held
constant as � varies (note the presence of an optimal value of � in
Fig. 9, �� 0:34), indicating that given a certain amount of
uncertainty (measured by a constant jPj), there is an optimal way to
distribute the position and velocity uncertainties. For the Earth–sun
system, �
 0:34 corresponds to a ratio between 1-� uncertainties�������������
Pr=Pv

p
� 1:7 � 106, which is close to our assumed ratio between

these measurement uncertainties. For the Earth–moon system, the
optimal ratio of uncertainties is approximately 1:3 � 105. For a
position uncertainty of 1 km, the optimal velocity uncertainty is
about 0:75 cm=s. This aspect of the problem will be investigated in
the future.

The curve in Fig. 9 scales with jPj, so that the value of � yielding
the minimum value does not change with jPj. From Eq. (13), the
expected value of the cost divided by the optimal update time scales
linearly as the entries in P are scaled. because jcPj scales in
proportion to cnjPj, where c is a scalar and P 2 Rn�n, we have that

�
min
u;Tu

E�J�u; Tu��=Tu
�
� jPj1=n

In this planar case, n
 4, and so the cost scales with jPj0:25.

B. Halo Orbit Control

From the two oscillatorymodesmentioned in the previous section,
we see that near the equilibrium point, the linearized system is
capable of producing planar periodic orbits. These orbits can also be
found in the full nonlinear dynamics by examining the monodromy
matrix ��T; 0�. The monodromy matrix locally captures the non-
linear periodic dynamics in a discrete-time, linear, time-invariant
mapping and thus allows the system to be analyzed by eigenvalue
methods. As the amplitude of these periodic orbits is increased,
the eigenvalues of themonodromymatrix bifurcate and a new family
of periodic orbits is produced. This new family is called the family of
halo orbits, which are no longer in the plane and cannot be predicted
using the equilibrium-point linearization. The halo orbits used in this
paper, denoted as orbits A though E in Fig. 10, may be parameterized
by their initial x coordinate, x0. The values of x0 for orbits A through
E are 0.769, 0.7, 0.6, 0.5, and 0.45, respectively. The other initial
conditions for the halo orbits were obtained using a method
developed by Howell [9] that takes advantage of symmetry in the
system. We developed software to numerical integrate the equations
of motion using an eighth-order arbitrary-precision symplectic
Runge–Kutta method [10] with 256 bits of precision [11].

In the previous time-invariant example, each segment of control
had the same statistical cost. Therefore, we only needed to consider
the cost of one segment of control to draw conclusions about the
long-term average cost. However, in this time-varying case, each
segment will generally have a different cost. We may still determine
the long-term average cost by considering only afinite length of time,
due to the periodic nature of our system.We simply need to consider
a period of time long enough such that the costs associated with all
segments of the nominal trajectory are included. A natural choice for
this is to choose two positive integers, n andm, such that the update
time is approximated by Tu � �n=m�T, where T is the period of the
system.We then only need to include the cost of segments up to time
nT, because any segments after that will have already been included
in the average long-term cost. An additional complication is that for
each update time, the average cost per unit time will vary with the
starting point of the algorithm along the orbit. Therefore, to obtain
a statistical result that is independent of an arbitrary starting time,
an average is performed with respect to the starting time. The
unaveraged expected cost per update time for a halo orbit that is
highly sensitive to the starting time is shown in Fig. 11, along with
the average value for comparison. Another view of the same data is
show in Fig. 12, which displays the data in a similar manner to Fig. 6.

Significant computational effort can be savedwhen computing the
cost associated with multiple update times by choosing n and m
wisely. By setting m to be the number of starting times we wish to
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average over, the expected cost of control for each segment can be
stored for each starting time and each n of interest. An illustration of
this is shown in Fig. 13 form
 6with n
 1 and 2. In this analysis,
we usedm
 100with n ranging from 5 to 95 for orbits A through D
andm
 200with n ranging from 10 to 190 for orbit E. This gives a
worst-case resolution of Tu equal to 0.031 nondimensional time
units, corresponding to orbit A. Once the expected cost for each
segment has been calculated, an arithmetic average is taken with
respect to each starting time.

To determine whether a given periodic orbit is stable or not, we
define the Lyapunov characteristic exponent using the associated
monodromy matrix, similar to the definition in [2]:

�

ln max

i
j�ij

T

where �i are the eigenvalues of��T; 0�. The characteristic exponent
gives an idea of how quickly the state of the systemwill grow in time
(on the order of e�t). If � > 0, the system is unstable. The
characteristic time is then 1=�, which gives a time scale onwhich the
exponential effects develop. For linear time-invariant systems, this
simplifies to the usual condition on the eigenvalues of the dynamics
matrix; that is, the system is unstable if any of the eigenvalues have a
real part greater than zero. For Hamiltonian systems, the existence of
a stable manifold implies the existence of an unstable manifold.

The primary result of this analysis is that an optimal control-law
update time exists for unstable time-varying systems, just as in the
time-invariant case, as shown in Fig. 14. For halo orbit A using the
same levels of uncertainty, the characteristic time of the instability
was 0.42 time units, with the actual value occurring at about 0.61
time units (about 35 days for the Earth–sun system and about
2.7 days for the Earth–moon system). The cost associated with using
the characteristic time as the update time is only 10% higher than the
trueminimumcost for this orbit, supporting a correlation between the
characteristic time of the instability and the actual optimal update
time. Note that the minimum cost per unit of time occurs very near to
Tu 
 1=� for orbits A, B, and C.

As seen in Fig. 14, the structure of the cost for orbits D and E
bifurcates into a double-minimum case. This is due to the interesting
dynamics of the halo orbits; as the orbits move farther out of plane,
they make a closer approach to the secondary body, resulting in
dynamics that are very strong compared with the rest of the orbit.
Combining Eqs. (29–31) into standard first-order form with state
x
 � x y z _x _y _z �T and linearizing about the periodic orbit,
we find � _x
A�t��x. The induced norm ofA�t� gives an indication
of how the eigenvalues of A�t� vary along the orbit, which in turn
make the trajectory sensitive to uncertainties. The larger the norm,
the stronger the sensitivity. Figure 15 shows a plot of log kA�t�k and
log k��t; 0�k for two halo orbits: one highly out-of-plane and the
other more in-plane. Note that for the highly-out-of-plane orbit, the
sensitivity varies by up to 1.5 orders of magnitude throughout the
orbit, whereas in the more in-plane orbit, it varies by less than 0.3.
Because of this variation, the cost of control along a halo orbit varies
depending on where measurements are taken. For example, consider
a control segment in which kAk is large initially then decreases
quickly. In this, the unstable effect on the probability distribution
is greatly enhanced, resulting in a higher control cost for the next
segment. For a given update time, if the segments are structured such
that kAk is large when measurements are made, the cost is much
higher than if kAk were only large between measurements. This
behavior is strong enough to hold even through the orbit average
and is clearly visible in Fig. 14, particularly in orbits D and E. Each
local maxima occurs just before the halfway point of the cor-
responding orbit, where kAk is large, as in Fig. 15. In practice, orbit

Fig. 13 An example halo orbit and control segments divided intom� 6

equal-time segments, with n� 1 on the left and n� 2 on the right.
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determination may be more accurate near periapsis, which could
potentially be weighed against the higher statistical control cost.

The optimal update time for this time-varying system has a
dependence on � that is very similar to the equilibrium-point
example. Figure 16 shows the effect of � on the optimal update time
for orbit A, using the same parameters as in the equilibrium-point
analysis. The variation in the optimal update time over the range of �
shown is about 3.74 days for the Earth–sun system.

We find a strong correlation between the characteristic time of an
unstable trajectory and the optimal update time for the control of this
trajectory. For strongly varying trajectories, we also find additional
structure in the optimal time update, due to interactions between
the trajectory and the gravitating bodies. These interactions raise
interesting questions about how the interplay of measurement
uncertainty, instability, and statistical costs are interrelated. We plan
to further study these issues in the future and to consider the effect
of stochastic accelerations on the system.

The actual nondimensional minimum expected value of J=Tu for
orbit A in the sun–Earth system is 4:55 � 10�8, corresponding with
Tu 
 0:55 nondimensional time units. Therefore, the upper bound on
the expected �V per period from Eq. (28) is 8:15 � 10�4, whereas
the actual value is 5:97 � 10�4, or 73.2% of the upper bound. As a
dimensional value, this equates to

E��V�=period
 5:97 � 10�4 km=�s � period�

The expected value of �V was calculated by a Monte Carlo
simulation with 10,000 trials for each of the 100 starting points along
the orbit. Confidence interval analysis shows that E��V�=Tu is
within 1.7% of the reported value, with 99% confidence. More
accurate performance estimates could be performed with more
information about detailed spacecraft specifications such as engine
efficiencies.

Hill et al. [12] conducted a study of a lunar L2 orbiter with
measurement uncertainties of Pr 
 1 km2 and Pv 
 0 km2=s2 and
obtained a�V estimate of approximately 16 cm=s per year, although
they budget 1 m=s per year. Using a similar halo orbit and those
uncertainties, we obtain an upper bound of 12:3 cm=s per year, an
actual value of 11:2 cm=s per year, and an optimal update time of
3.00 days. If we instead use a velocity uncertainty of
Pv 
 �10�5�2 km2=s2, we obtain an upper bound of 20:5 cm=s per
year, an actual value of 19:7 cm=s per year, and an optimal update
time of 3.13 days. It should be noted that the dynamics of the Earth–
moon system are not well represented by the H3BP; however, the
approximation is adequate for relative cost comparison [1].

IV. Conclusions

This paper describes a method to analyze the average cost of
controlling a linear system near an unstable trajectory. Such analyses
are needed for mission planning purposes and for budgeting fuel
needs due to statistical control. In particular, we show that for
unstable systems, there is an optimal control-law update time, which
is related to the system characteristic time. Additionally, if the total
level of uncertainty is fixed, there is an optimal way to distribute
uncertainty between the position and velocity states. These concepts
are applied to spacecraft control in the vicinity of a halo orbit in the
Hill three-body problem (H3BP) as well as one of the relative
equilibrium points.
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