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Unsteady Flow in a Supercritical Supersonic Diffuser

R. T. Biedron* and T. C. Adamson Jr.f
University of Michigan, Ann Arbor, Michigan

Unsteady flow through a two-dimensional supersonic diffuser with a normal shock wave is analyzed using asymp-
totic methods. Two time regimes are considered, the first corresponding to fundamentally unsteady flow, the second
to quasisteady flow; a unified solution containing both time regimes is also presented. An ordinary differential
equation describing the shock-wave motion is found. Examples show the motion of a shock wave resulting from
impressed back pressure oscillations and from changes in flow area due to a separated flow region. For cases involving
separated flows, additional numerical solutions are required to obtain typical wall shapes as functions of time.
Unstarts and self-sustained oscillations are considered.

I. Introduction

THE performance of supersonic airbreathing jet engines is
strongly influenced by the performance of the diffuser.

Analysis of inlet-diffuser flows is complicated by the fact that
mixed subsonic-supersonic flows occur, with shock-wave
boundary layer interactions that may or may not cause separa-
tion, and by flow fluctuations that arise from a variety of
causes. The unsteadiness in the flow can result in large-ampli-
tude motion of shock waves within or outside the diffuser,
which may become self-excited. In extreme cases, a shock wave
within the diffuser may be disgorged or may oscillate in and out
(buzz). In either of these cases, large degradation in engine
performance occurs.

A comprehensive program of detailed experimental work on
unsteady diffuser flows in the transonic range has been carried
out by Sajben et al.1"6 Flow oscillations caused by impressed
variations in exit pressure and those that are self-sustaining are
considered, with key features of the fiowfield summarized for
each case. Analyses of unsteady quasi-one-dimensional in viscid
diffuser flows have been presented by Culick and Rogers7 and
by Yang and Culick,8 the latter work involving numerical solu-
tions for cases where large-amplitude shock-wave motion oc-
curs. Liou and Sajben9 used a combination of asymptotic (for
the coreflow) and integral (for the turbulent boundary layer)
methods to study unsteady transonic flows in a two-dimen-
sional channel. A completely numerical computation of un-
steady transonic flows in diffusers using the Reynolds-averaged
Navier-Stokes equations has been carried out by Liou and
Goakley;10 in that paper, both forced and self-sustained oscilla-
tions are simulated. In another series of numerical computa-
tions involving a Navier-Stokes code, Hsieh et al.11 have
investigated unsteady diffuser flowfields with various exit pres-
sure oscillations; in subsequent papers (e.g., Ref. 12), Hsieh has
considered cases where self-sustained oscillations occur.
Bogar13 has recently reported on experiments detailing the
structure of self-excited small-amplitude oscillations in tran-
sonic diffuser flows; measurements reported previously were
also incorporated to give a relatively Complete description of
the unsteady flowfield.
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From the preceding information, it is apparent that quite
detailed computational and experimental descriptions of the
flow structures associated with unsteady flow in transonic and
supersonic diffuser inlets are available. However, there is still
much to be learned about the important mechanisms involved
in both forced and self-sustained oscillations; it is to this aspect
of the problem that this paper is directed. In the analysis to be
presented, both asymptotic and numerical methods are em-
ployed. In previous work on unsteady flow in channels (e.g.,
Refs. 14 and 15) in which asymptotic methods have been em-
ployed, it has been shown that solutions very helpful in under-
standing the interplay of various mechanisms can be found
relatively easily; e.g., a first-order nonlinear differential equa-
tion for the instantaneous position of the shock wave illustrates
the relative effects of forced oscillations of back pressure and
oscillations of the channel walls. However, because viscous
separated flowfields are too difficult to handle with these meth-
ods, the solutions are constrained to inviscid flowfields and
hence are not of much use in the unsteady diffuser flows, where
it" is known that separated flows can play an important part in
self-sustained shock-wave motion, for example. On the other
hand, while numerical methods can certainly be used to find
the detailed structure of the flowfield, it is most difficult to
isolate or emphasize various mechanisms, and quite time con-
suming and expensive to go through the variations of pa-
rameters needed to understand the important mechanisms
completely. It is for these reasons that it was decided to use an
asymptotic approach, with the unknown viscous effects, e.g.,
the displacement thicknesses and thus the effective wall shapes
for separated flow, being provided by numerical computations.

The general formulation of the solution follows the pattern
set in the analyses for unsteady transonic flow mentioned previ-
ously.14-15 However, there are several fundamental differences.
First, because the flow is supersonic, the jump in entropy
across the shock wave is no longer negligible, and the jump in
velocity is of order one. In this paper, the latter point is han-
dled by expanding flow properties about their values in the
incoming flow upstream of the shock wave and about exit flow
values downstream of it; jump conditions across the shock
wave relate the terms of the expansions. Long (in a mathemat-
ical sense) channels are considered such that to lowest order,
the flow is one-dimensional; as will be seen, this device allows
great mathematical simplifications and yet still allows physi-
cally realistic diffusers to be considered. A different but similar
simplification was employed by Lin and Shen16 in obtaining
their solutions for steady compressible flow; the formulation
used here is better suited for unsteady flow.

Another fundamental difference between this and previous
analyses is that in transonic flow signals moving in the flow
direction downstream of the shock wave move very much
faster than those traveling upstream, and in lowest order, the
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approximation is that communication in the downstream di-
rection is instantaneous; thus, only one family of characteris-
tics need be considered. In the case of supersonic flow, this is
not the case, and so both downstream and upstream traveling
waves and their reflections must be accounted for downstream
of the shock wave.

Two different unsteady flow problems are considered in this
papery thus, two different limit processes are involved. In the
first, /ch (overbars denote dimensional quantities), the charac-
teristic time associated with either forced or self-sustained os-
cillations is very large compared to ^es, the residence time of
the fluid in the diffuser. Physically, this corresponds to the case
where, to first approximation, signals from the exit plane reach
the shock wave instantaneously compared to the time taken for
one cycle of the impressed pressure oscillations or the self-
excited _ shock-wave motion. In the second problem,
'ch = 0(*res)>tne lag time, i.e., the time taken for a signal gener-
ated at the exit or at any other point in the channel to reach the
shock wave, is of prime importance and is taken into account.
The difference between these two problems is clear in an
asymptotic sense, but because it is always difficult to match
such solutions with an actual problem characterized by a set of
numerical constants, the two solutions are combined such that
both limit cases are included; this extends the useful range of
the. solutions to cover most cases of technical interest.

II. Problem Formulation
Compressible flow of a perfect gas with constant specific heat

through a two-dimensional diffuser inlet is considered. At
steady-state conditions, a shock wave occurs downstream of the
position of minimum cross-sectional area. A symmetric diffuser
is chosen for simplicity; asymmetric channels pose no funda-
mental problems in the analysis. A sketch of the diffuser and the
coordinate system and notation used is shown in_Fig. 1.

The x coordinate is made dimensionless, with L the diffuser
length and y with /Tthe half-height of the inlet lip; the inlet lip
is taken to have zero curvature. The velocity «, density p, and
pressure p are referred to as u^, p^, and/?^, respectively, their
values in the incoming flow, while the enthalpy H and entropy
$ are referred to as u2^ and the gas constant ̂ respectively. The
time / is made dimensionless with respect to Tch, the character-
istic time associated with the forced or self-sustained oscilla-
tions of frequency fr. The definitions of ^h, the residence time
fres, and t are

4=1/2*7,

4 = £/#«,

t = tltch

(la)

(Ib)

(Ic)

When the governing equations for unsteady inviscid flow are
made dimensionless, parameters T and £ appear, where

£ > / 2 = K I E
(2a)

(2b)

The limit process to be considered here is that for which £ -» 0,
In a mathematical sense, then, the diffuser is long compared to
its width; this leads to considerable simplification. In terms of
a numerical example, it is seen that for s =0.1, say, h/L is
roughly 0.3, so physically realizable cases are certainly covered.

Two cases for T are considered, as mentioned previously, they
being

1=0(1)

(3a)

(3b)

where for T > 1, the flow is quasisteady, and for t ==0(1), the
flow is unsteady.

Although jumps of order one occur across the shock wave,
variations in velocity upstream and downstream of the wave
are typically small compared to the incoming and exit veloc-
ities, respectively. The relative cross-sectional area changes are
small enough that they may be written in terms_of a small
parameter; e.g., the percentage area change AA/A•= O(d\
where d <^ 1. Then the problem to be considered is character-
ized by the relative orders of e, <5, and T. The effect of choosing
a "long" channel (e <^ 1) is to make lowest-order terms one
dimensional. If two-dimensional effects are to be accounted for
as early as possible in the expansion for the velocity (i.e., in
second order), then 6 = O(£) must be the case. Hence, this
ordering is chosen, and the wall shape is written as follows:

(4)

where/(jt) defines the stationary wall shape and g(x,l) repre-
sents temporal variations in wall shape. For the problems
considered here, g(x,t) will be associated with the unsteady
displacement thickness.

For the relative orders of parameters chosen here, the expan-
sions for the dependent variables can be written as follows:

u = ur (5)

where ur is a reference velocity. In the limit e -»0, the diffuser
geometry becomes a uniform channel, with preshock Mach
number M^ and gas speed uru == 1. The subscript u denotes a
value immediately upstream of the shock wave; the corre-
sponding value immediately downstream of the wave is de-
noted by the subscript d. The downstream reference velocity
urd, therefore, is given by the normal shock relation for
Mu = A/oo. Similar expansions may be written for P, p, T1, a, H,
and s\ reference values are given in Table 1. In order to satisfy
the boundary condition at the wall, the vertical velocity v must
have the form

s/2 v5/2(x,y,t)

The shock position xs has the expansion

xs = + exsl(t) + &2x52(y,t) -f -

(6)

(7)

Thus, the shock curvature is 0(e2), as determined using Eqs.
(5) and (6), and [M]/[[«]] =fl/2dxjdy, where the double
brackets indicate a jump in conditions across the shock. Be-
cause the local shock propagation is normal to the shock sur-
face, there are two components to the shock velocity, denoted
by us and vs, found by setting the Eulerian derivative of
x —-xs(y,t) equal to zero.17 Since the gas velocity must satisfy
a jump condition across the shock wave [see Eq. (24)], and
since the first unsteady term in the gas velocity is 0(fi), it fol-
lows that the shock velocity must be 0(e) as well. Then, since
the shock slope is 0(e2), one finds that vs = O(s5/2) and

[dxjdt + O(£3)] or, using Eq. (7),

(8)

Fig. 1 Diffuser geometry and coordinate system.

The governing equation for the flow velocity is the gas dy-
namic equation, written in nondimensional variables:

(9a)
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Table 1 Reference values

ur

Pr

Pr

ij
Hr
sr

1
1
1
1

I/Mi
2 4- (y - l)My[2(y - 1)M2J

" ^00

[2 + (/_i)A/2j/(y-+l)Ai
[2yM^ - (7 - l)]/(y + 1

(y + l)M^/[2 + (y - 1)M
; JV/pr

Same
V, 4- Ln([2yM2

00 - (y - l)/(y +
{[2 + (y-l)Mi]/(y-+l)A/^

rvr
ooJ

I)]./,—
|r/r-.)

where q2 — u2-\-v2 and the operators D/Df and V have the
modified forms

D
I — _|_ u—— i 0-1/2,,

dy

(9b)

(9c)

The dimensionless speed of sound is obtained from the defini-
tion of the stagnation enthalpy for a perfect gas with constant
specific heat

(10)

If the expansions for u, v, and H are substituted in Eqs. (9)
and (10), and terms of equal powers pf.'e are equated, one
obtains a sequence of differential equations. Because of the
complexity of the higher-order solutions, only the results for
terms of O(&) in u, H, P, etc., and the term of 0(e3/2) in i? are
presented here. Detailed solutions valid to O(s2) are presented
in Ref. 18 for the case where T .= O(s ~1). For the time regimes
to be considered here, the equation for u± is, where Mr = ur/dr,

(M2 - l)ulx -v3/2y- urHlx/a2

fO T .=
(11)

The unsteady energy equation may be written in the dimen-
sionless form

from which the governing equation for 7/j is found to be

^,-fo (13)

Apart from a jump that occurs across the shock wave, en-
tropy is constant along particle paths so that

D^
—- = 0, x < xs, x > xx

and thus, the governing equations for ̂  are

fO T = O(8-1)

(14)

(15)

The flow upstream of the shock wave is irrotational, but
because the upstream flow is nonuniform and the wave is
curved, vorticity is generated and convected downstream. One
can show that the resulting vorticity is O(£3/2), and so to the
order considered here, the flow is in fact irrotational. However,
subsequent terms in the expansion must account for the shock-
wave generated vorticity.18

To find the temperature, pressure, and density fields in terms
of the gas velocity, entropy, and total enthalpy, the dimension-

less thermodynamic relationships T = M^a2, p =e -AsTy^~ \
p =p/T, and Eq. (.10) are used, where As = s — s^. The results
are

T=Tr+z(y-l)M2
00(Hl-urul)+0(s2) (16)

P = Pr +BPMHl - «r«l)/«|- Si] +0(S2) (17)

u^/at-sJ+O^2) (18)

In order to complete the problem formulation, the appropri-
ate wall boundary condition and shock-wave jump conditions
are needed. For the general case of time-dependent wall shape,
the boundary condition that holds at both walls is

Dt
= 0 (19)

reflecting the fact that a fluid particle on the wall must follow
the wall. For the problems considered here, the walls down-
stream of the shock wave are allowed to have temporal varia-
tion, indicating, for instance, the effective wall shape associated
with an unsteady boundary layer behind the shock wave.
Upstream of the shock wave, the walls are assumed fixed,
although time-varying wall shapes in this region pose no fun-
damental difficulty. Substitution of Eqs. .(4-6) into Eq. (19),
and expansion of yw about y = ± 1 gives the conditions

-*1*:f+*>*+&->tl -o(V (20)

The flowfield is divided into two distinct regions. Upstream
of the shock wave, the flow is steady and supersonic, whereas
downstream of the shock, the flow is unsteady and subsonic;
solutions in these two regions are .linked by the jump condi-
tions across the shock. To calculate these jumps, it is conve-
nient to consider a coordinate system that moves with the
shock wave at speed us. Let variables measured with respect to
the shock wave be denoted by the superscript -f, so that
x+ — x — JCA ,y+ —y, t+ = t, u+ = u — us9 and v+ = v. Static
variables are unchanged by the coordinate transformation; dy-
namic variables such as the total enthalpy are, of course, differ-
ent in the two systems. Because the wave is taken to be
infinitesimally thin, the usual steady shock jump conditions
may be used in the shock fixed coordinate system.19 Thus, since
s+ = s, one can calculate the entropy immediately downstream
of the shock wave from the equation

(21)

where the subscript n denotes the component normal to the
wave. The unit normal to the shock wave may be found from
Eq. (7), and this result, together with the expansions for M, t?,
and a upstream of the shock wave, allow one to determine M+u.
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From Eq. (21), one then finds that imposed, one finds that

1339

srd + £7(1 - urd)2{[(y -

2usl}/2a2
d + 0(£2) (22)

where the subscript O denotes a quantity evaluate at x = x^.
Next, noting that the total enthalpy remains unchanged
across the shock wave in the shock fixed system and that
H+ = H -uu, -w2/2, one can show that for steady flow up-
stream of the shock (where H = H^)

Finally, the jump in gas velocity is found by considering a
shock polar,20 modified such that nonalignment of the velocity
vector with the x axis is allowed, written in shock fixed coordi-
nates. However, because [[0]] = 0(fi-3/2) whereas [M] = 0(1),'
the modified shock polar reduces to u+u% = (a*+)2 -h O(£3),
where (a*+) is the critical speed of sound in the shock fixed
system and (a*+)2 = 2(y — \)(H<Xi—-usuu + u2/2)/(y + 1).
Thus, the Prandtl relation for a normal shock holds through
terms of O(&2). Equating terms of O(£) in the Prandtl relation,
one finds the needed shock jump condition in the diffuser fixed
coordinate system to be

- 2(7 - (24)

Once the solutions for the gas velocity are known, Eq. (24) may
be integrated to give the shock position as a function of time.

III. Solutions for t = 0(1)
Since the shock velocity is O(s) and T =0(1) is considered

here, Eq. (8) indicates that for this case, x^ must be constant,
with xsl as the first time-dependent term. Thus, us = er-"1' dxsl/
dt, and one sees that small'[0(e)j amplitude pressure or area
changes, with frequencies such that ^h = 0(^es)> result in small
[0(e)] amplitude shock-wave motion.

Upstream of the shock wave, the flow is everywhere super-
sonic; hence, solutions in this region may be found first, inde-
pendently of the downstream flowfield. The walls are assumed
fixed upstream of the shock wave, so that g(x,t) = g(x,o) there.
Furthermore, the diffuser lip is taken to be cusped, so that u{
and u2 are zero at the lip. The solution for u} may be found
easily by integrating Eq. (11) over y and applying Eq. (20). The
resulting expression is integrated over x, and the constant of
integration is set to zero in order to give u{ — O at the diffuser
lip. Thus, one finds that upstream of the shock wave

(25)

Solutions downstream of the shock wave are found as fol-
lows. Integration of Eq. (16) and use of the jump condition
s\ = -SirfoW at x = XSQ gives s+fat) = sldo(t -i~\x- x^ju^}.
Since x^ is a constant in this case, say XM = je;^, where
the superscript s denotes a steady-state value; then Eq.
(22) indicates that sldo may be written as sldo(f) =•

— y(l — wrj)2w.vi(OA*r</- Also, to this order, the vorticity is
negligible, so that u^x.f) = (f)lx(x,t). Substitution into Eq. (14),
integration over x, and use of the jump condition given in Eq.
(23) yields

= urd(urd.~ I)w5i(0 - T-l[4lt(x,

-(I- urd)2usl[t - r-l(x-x^/urd]

*-1*J .(27a)

,0 - 0i(^i>,0 ~ urd(urd - V)xsl(f) (27b)

where hl has been introduced for convenience; note that
U} = hlx. It may be noted that Eq. (27a) may also be derived
from the unsteady forms of the one-dimensional gas flow equa-
tions, although such a derivation does not allow for a system-
atic inclusion of higher-order terms as does the derivation
presented here. Since Eq. (27a) is linear, h} may be written as
the sum of a steady-state solution and a time-varying solution,
say h^x.t) = h \(x) + hi(x9i). If the steady-state wall shape is
denoted byf(x) +g(x-9o), and g(x,f) = g(x,t) - g(x,o\ then the
steady-state solution and the governing equation for K^ are,
from Eqs. (27),

u\ =h\x = u

(M2
rd- \)Klxx -h T ~l2urdhlxtla2

rd -h

- M2
rd) + c\d (28a)

(28b)

If the back pressure is specified as./?ft =prd+£[p\b'+:pib(i)] +
e2[p-2b+P2h(t)]'+'", then, evaluating Eq. (17) at the exit
where x = 1, one finds the following boundary condition for h{:

= -a2
dplh(f)l(jprd) (29)

The other boundary condition on ^ comes from the shock
jump condition on u. First note that hlt = hu, and from the
definition of h^ hlt(xs^t) — —urd(urd— l'^"1^^). Using this
result to replace wvl in Eq. (24) and noting that the steady-state
solutions must satisfy the jump condition UidQ + urdus

lu0 = Q,
one finds

v-'llilt(x**,t)'-'u^^^ (30)

where the expression for urd has been used to simplify the
coefficient of nlx. Finally, from the definitions of ̂  and hl and
the requirement that uit(x$) = 0, the initial conditions for ̂
are found to be ^(%,0) = 0 and Ru(x,Q) = 0. With these initial
and boundary conditions, the solution to Eq. (28b) may be
obtained, e.g., by the method of Laplace transforms. In partic-
ular, the expression for hlx, needed to determine u{(x,t), is
found to be

Klx(x,t) = -—

-f
1 (** 1
2J,/0lT^

ti)+Pw(h)]

-^-^-0^2 J.v 1 - Me

\-M.

t<Q

O

(26)

G(x,t) =

a = [(Ml, + !)(!- Mrd) -Mrfl(Ml - I)]/

[Ml. + 1)( 1 + Mrd) + Mrd(Ml, - 1)]

(31a)

(31b)

(31c)

(31d)

If Eq. (26) is substituted into Eq. (11), the resulting equation is
integrated over y, and the boundary conditions of Eq. (20) are

and the shifted times tf reflect the time lags associated with both
upstream and downstream traveling waves caused by varia-
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lions in the back pressure and wall shape; the shifted times are
given by

tions as before now gives (M2
rd - \)ulx = —urd(f+g)x so that

= t-tn + t7(x)

(32a)

(32b)

(32c)

(32d)

(32e)

(320

±

<8 = <.+V(l)-*r«) (32h)

where

-1 (32i)

(32j)

From Eqs. (32a-j), it is seen that, to this order, the distur-
bances propagate with the linearized wave speeds ard — urdand
ard 4- urd. Since T = 0(1) in this case, the time lags can be a
significant fraction of the characteristic time of the forced oscil-
lation. For increasing T (e.g., for decreasing frequency), the
dimensionless time lag becomes smaller; a case with T > 1 is
considered in the next section. In Eq. (3la), an additional fac-
tor a appears every time a wave is reflected off of the shock.
The fact that a is rather small (for instance, a = .015 for
M^ = 1.5) indicates that waves are strongly attenuated by the
shock, as suggested in Refs. 7 and 8.

The shock speed may now be determined from Eq. (24) by
first noting that the steady-state shock jump condition
uid(xso) — ~urduiu(xso) sets .xJo, as discussed in the next sec-
tion. The shock position as a function of time is found by
integration of

dr urd - 2(y - 1)] (33)

The shock motion is governed by a linear equation, reflecting
the fact that small-amplitude shock wave motion occurs for
this case, as previously discussed. The result indicates that the
amplitude of the motion is proportional to T; for large T, non-
linear terms not present in Eq. (33) must be accounted for, as
will be seen in the next section.

With the solution for /T1? ' u± = u\ + Klx may be found; v3/2 can
then be found by integrating Eq. (11) with respect to y and by
using the wall boundary conditions to determine the function
of integration. The result is

> = -w^[/W (34)

The solutions for u^ and usl = T ~* dxsl/dt allow sl and Hl to be
calculated explicitly, and the results may be used in Eqs. (16-
18) to determine the temperature, pressure, and density to O(s).

IV. Solutions for r = O(s~l)
Again, exit pressure and wall shape changes of O(s) are con-

sidered so that us = O(&\ but now T ~ ] = O(z), and thus Eq. (9)
indicates that x^ is a function of time. That is, small amplitude
perturbations applied at low frequency can cause large [0(1)]
amplitude shock motion. In this case, one finds from Eq. (16a)
and the entropy jump condition that s{(x,t) =.sido(t). From
Eqs. (13) and (23), one finds H^x.t) = (urd— l)usl(t), where
now suxl =t~} dXtf/dt. Since Hlx = 0 in this case, integration
of Eq. (11) over y and application of the wall boundary condi-

cid(f) (35)

The form of the solution is the same as that for the steady-state
problem, except that the constant c\d of the steady-state solu-
tion is replaced by the function cld(t). Thus, the velocity field
behaves as a series of steady-state solutions. To determine
cld(t\ Eq. (35) is substituted into Eq. (17) and the result eval-
uated at the exit x = 1, where the pressure pl =pih(f) is spe-
cified. One then finds

ti) = -a2
rdplb(f)ljurdprd - urd[f(\) -

H- (urd - l)ujurd - (36)

However, cld(t) is not completely determined, since the
shock-wave velocity and position (implicit in sldo) are not yet
known. The equation for the shock-wave velocity is found by
using Eqs. (25), (35), and (36) in the O(B) Prandtl relation given
by Eq. (24). Then, by using Eq. (22) for sld0(t\ one finds the
governing equation for

dr
urd l-Ql

-l J

prd ~M2
rd

[/(I) (37)

where the expressions for urd and ard have been used to simplify
the coefficients. In deriving Eq. (37), it has been assumed that
the wall shape upstream of the shock wave is independent of
time and that the wall is continuous through the wave; that is,

.AxM(t\t] =sfoo(0,0]; Evaluating Eq. (37) at t =0 with dxj
dt = 0 results in an implicit equation for the position of the
shock wave at steady state. This result may be used to recast
Eq. (37) in the following form:

dx* ^]
l + - prd

(38)

where the same definitions of plb and g used earlier apply here.
The nonlinearity of Eq. (38) reflects the large-amplitude shock-
wave displacement associated with T> 1. The fact that this
time regime exhibits quasisteady behavior is reflected in several
features of Eq. (38). First, there are no time lags; e.g., a distur-
bance in the back pressure at time t0 is felt by the shock wave
at time ^0, indicating an infinite propagation rate of distur-
bances on a time scale measured with respect to ^h. Further-
more, only the local area (at the shock wave) and the exit area
influence the shock position, as for steady flow. Both of these
features are quite distinct from the case of T = 0(1), where the
time lags associated with finite acoustic propagation rates and
the detailed distribution of area were important. As before, the
amplitude of the shock-wave motion is proportional to T; i.e.,
higher excitation frequencies lead to smaller-amplitude shock-
wave motion. The nonlinear terms in Eq. (38) have a signifi-
cant effect on the shock-wave response. For example, when the
exit pressure and area are returned to their steady-state values
at some time t0 with x^t^) ^ xs

s0, Eq. (38) indicates that the
shock wave motion does not stop at time t0 but continues until
equilibrium is restored. Thus, us may be out of phase with the
variations in exit pressure or velocity, even though changes in
these quantities are felt instantaneously by the shock. Further-
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more, if a small perturbation from an initial state is considered,
one finds that the nonlinear terms in Eq. (38) tend to drive the
shock wave toward equilibrium if the local wall slope is nega-
tive and away from equilibrium if positive. Thus, the solution
recovers the well-known result that a stationary shock wave
may exist only in the diverging portion of the diffuser.

Since xs.Q(t) may be obtained by integration of Eq. (38), cld(f)
and hence u^Xyt) are determined; i>3/2 is found to have the same
form as for the case of T — 0(1), as given by Eq. (34). The O(s)
terms in the pressure, density, and temperature distributions
can be found from Eqs. (11-18).

Higher-order solutions that account for two-dimensional
effects may be found in a similar fashion. These solutions are
rather cumbersome and are not presented here. To obtain uni-
formly valid solutions to 0(s2), one finds that an inner region
of length <9(e1/2) is required downstream of the shock wave in
order to satisfy the shock jump conditions. In addition, an
inner region in time of duration O(i T) is needed near /• = 0 in'
order to account for the fact that the shock wave cannot move
until the first acoustic disturbance reaches the shock wave.
Composite solutions may then be found rendering the solu-
tions valid for all x and •/. Details are given in Ref. 18.

V. Unified Equation for Shock-Wave Position
Equations for the shock-wave position have been found for

two time regimes, the first corresponding to a case where the
period of the forced oscillation is comparable to the flow resi-
dence time, and the second corresponding to a case with the
period much longer than the flow residence time. Although the
two cases are distinct from an asymptotic viewpoint, the ques-
tion arises as to which of the solutions should be used for a
given numerical example. To resolve this problem, a unified
solution similar to that presented in Ref. 14 is constructed that
shows the proper behavior in both limits.

For the unified solution, let

s(xsl - (39)

Then a solution for us - i ~l dxf/dt containing both limits is

dt _ 1
+ _

- 1 2(M 4

l P __!
2 } X s l ~

~\ E «- f ] [T2* = 0 Jxs\_l
- — — (G(^

l-Mrd

(40)

where tf = tL(x = xs); the /,.(*) are given by Eqs. (32), with x^-
replaced by xs. In writing Eq. (40), the fact that /f = t* has
been used. The terms Plb and G are defined by Eqs. (31b) and
(31c). Furthermore, the definition of urd has been used to
rewrite the coefficient appearing in Eq. (33). Note that if
T = 0(1), then dxf/dt = O(t-); hence, changes in x* are O(e),
i.e., xs = XM -f O(E). Thus, for T = 0(1), Eq. (40) may be ex-
panded for xs -> JtJJo; by neglecting terms of 0(e2r), one recov-
ers Eq. (33). On the other hand, if , T = O(e ~ *), then
dxf/dt = 0(1), so that xs = x^(t) + O(E). Also, /? = f + 0(e),
so that plb(t f ) = pib(t) + 0(e) for / > 0, with similar results for
the other terms. The required integrations in Eq. (40) can then
be carried out, and the coefficients of plb and G simplified,
using Eq. (3 Id) and the binomial expansion for ( 1 — a) ~ 1

9 with
|a < 1. One finds that Eq. (37) is recovered.

A wide range of shock- wave response problems may be stud-

ied using the unified solution. Given the exit pressure and wall
shape variations as functions of time, xs(t) may be found from
Eqs. (39) and (40) by a simple numerical integration.

VI. Results
In order to verify the utility of the asymptotic solutions,

comparisons with two numerical solutions21 are made. For all
results involving the asymptotic solutions, the unified solution
for the shock-wave speed given by Eqs. (39) and (40) is used,
so that the calculated shock velocity is accurate to 0(e). Inte-
gration to find the shock-wave position is carried out using a
fourth-order accurate Runga-Kutta scheme.

Figure 2 shows the comparison with the centerline shock-
wave position found from a numerical solution21 of the Euler
equations, with sinusoidal variation in the back pressure. Con-
sidering that only first-order and hence one-dimensional
asymptotic solutions are used, agreement is quite good, partic-
ularly with regard to the phase of the shock-wave displace-
ment.

The next comparison is made with a numerical solution21 of
the mass-averaged, thin-layer Navier-Stokes equations. The
diffuser geometry is different from the inviscid case considered
earlier. In this case, only the back pressure is varied, but the
shock-wave Mach number is high enough to cause boundary-
layer separation. The displacement thickness of the unsteady,
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separated boundary layer changes the effective shape of the
diffuser wall. Since asymptotic methods alone are inadequate
for handling separated boundary layers, the displacement
thickness as a function of time obtained from the Navier-
Stokes code solution is used to give g(x,t) needed to determine
the shock-wave displacement from Eq. (40). The resulting
shock-wave displacements as functions of time are shown in
Fig. 3. Again, the numerical solution indicated is for the chan-
nel centerline. For the asymptotic solution, the steady-state
back pressure used is slightly larger than that in the numerical
solution, so that the initial shock position lies further up-
stream. This is necessitated by the fact that the Navier-Stokes
code solution indicates that the curvature of the shock wave
and the shock-wave/boundary-layer interaction causes the
effective wall shape to have positive slope at the value of x
corresponding to the centerline shock position. As indicated
previously, such a configuration does not permit a stable posi-
tion for the normal shock treated (to the order considered) by
the asymptotic analysis. Thus, the pressure has been chosen so
that the initial shock position corresponds to the last point
where the slope of the effective wall shape is negative. The
amplitude and frequency of the back pressure oscillation has
been taken to be the same for both the numerical and asymp-
totic solutions. Apart from the shift in origin, the asymptotic
solution follows the numerical solution quite well, particularly
considering the complexity of the separated flowfield. These
results verify the ability of the asymptotic solution to predict
the shock-wave response to changes in back pressure and effec-
tive wall shape due to an unsteady boundary layer.

Next, back pressure oscillations that might cause the shock
wave to be disgorged from the diffuser are investigated. In vis-
cid flow is considered, so that the diffuser walls are fixed. In all
cases, the back pressure oscillates sinusoidally, but with differ-
ent amplitudes and frequencies. Figure 4 shows the effect of the
amplitude of the back pressure oscillation on the shock-wave
response. For an amplitude of 5.5% of the total pressure p0 of
the entering flow, the shock wave exhibits a stable oscillation,
with a mean position upstream of the steady-state position.
However, if the amplitude is increased to 8.2% of/?0, then a
stable oscillation cannot be maintained. The overall tendency is
for the mean shock-wave position to be driven upstream, as for
the previous case. However, at some point, the shock wave
travels upstream of the throat, where the nonlinear terms in
Eq. (40) act to drive the shock wave away from its equilibrium
position. Initially, the decrease in back pressure over part of
the cycle is sufficient to overcome the adverse effects of the
nonlinear terms and drive the shock wave back downstream.
With each subsequent excursion upstream of the throat, how-
ever, the mean shock displacement is pushed further upstream.
Eventually, the pressure decrease is insufficient to pull the
shock wave downstream of the throat, and the shock is dis-
gorged. Figure 5 illustrates the effect of excitation frequency on
the shock-wave displacement; it is seen that low-frequency
back pressure fluctuations can be as detrimental to diffuser
performance as large amplitude fluctuations.

The last problem considered is that of self-sustained shock-
wave oscillations, i.e., shock-wave oscillations that continue
after an initial small perturbation to an otherwise constant
back pressure. Experimental evidence suggests that for diffuser
flows with shock waves strong enough to cause boundary-layer
separation, time-dependent boundary-layer fluctuations play a
fundamental role in driving the shock wave.5'13 Experimental
results by Meier22 indicate that conditions may be such that the
shock wave is only intermittantly strong enough to separate the
boundary layer; during part of the cycle, the foot of the shock
wave and the separation point coincide, while at other times,
the shock wave and separation point move apart. Such behav-
ior has not been observed in the experiments of Sajben et al.,2
suggesting that several modes of oscillation are possible when
boundary-layer separation is present.

As indicated previously, asymptotic methods alone are not
capable of describing shock-wave/boundary-layer interactions

that result in separation. Here, a simple model for the interac-
tion has been adopted, with input for the model coming from
the numerical solution of the forced oscillation case considered
earlier. The assumption made for this study is that downstream
of the shock wave, the displacement thickness distribution
6*(x,t) is a function only of the relative Mach number of the
flow entering the shock wave Ms. A simpler model has been
adopted in Ref. 7, where it is assumed that the effect of the
separated boundary layer is to eliminate any gradients in the
downstream flowfield.

If the shape function f(x) defines the actual diffuser wall,
then g(x,t) is simply er1^*. Considering the simpler case of
i 5> 1, Eq. (38) indicates that an increase in d* downstream of
the wave relative to the steady-state value causes the shock
wave to move upstream (dxjdt < 0); the opposite effect occurs
for a decrease in 6*. Similar conclusions hold for the unified
solution, but in that case, time lags complicate the situation.

With the assumption that d*(x,t) = d*(x,Ms), the proposed
mechanism giving rise to self-sustained shock-wave oscillations
is as follows. First, consider the case where the shock wave is
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Fig. 4 Effect of amplitude of back pressure oscillation on shock-wave
response (dashed line denotes diffuser throat); ^=lft, L= 12.65 ft,
x* = 0.062, w^ = 1400ft/s, M00 = 1.50, 8=0.00625, r=0.44, A/>J
/>0 = A sin2nfrt,fr = 40 Hz: a) A = -0.055; and b) A = -0.082.

0.150

0.075
"^Wwwwwwvwwwwwwww^

8 t/rc 16 20

Fig. 5 Effect of frequency of back pressure oscillation on shock-wave
response: a) Jr = 80 Hz, T - 0.22; and b) fr = 10 Hz, T = 1.76, Apbj
pQ = —0.03 sin2rc/^ all other parameters as in Fig. 4.
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always strong enough to cause boundary-layer separation.
Furthermore, consider the shock-wave motion after the initial
back pressure perturbation has died out, so that the back pres-
sure is constant. As the shock wave moves downstream away
from its equilibrium point, two mechanisms come into play.
First, for shock wave oscillations occurring downstream of the
throat, there is a mechanism (governed by nonlinear terms)
that tends to restore the wave to the equilibrium position asso-
ciated with the constant back pressure. Second, Ms tends to
increase because the increase in local Mach number due to the
increase in flow area outweighs the decrease due to the shock
wave velocity. This causes a larger separation bubble and thus
a larger (5*, which causes a decrease in the core flow area and
tends to move the shock wave upstream. These two mecha-
nisms cause the shock wave to slow, come to a halt, and begin
to accelerate upstream. Now Ms is even higher, causing an
additional increase in (5* and thus in the upstream acceleration,
allowing the shock wave to pass through the equilibrium posi-
tion. As the shock wave moves upstream of the equilibrium
position, the same two mechanisms come into play, but now
decelerate the shock wave and begin to accelerate it back
downstream. Hence, a cyclic motion may result. This type of
oscillation, in which shock-induced separation occurs at all
times during the oscillation cycle, will be referred to as mode 1.

On the other hand^ the shock Mach number may drop
below that required to cause shock-induced separation (Ms <
A^sis = 1-3) during part of the oscillation cycle. In this mode of
oscillation, which will be referred to as mode 2, the following
sequence of events appears to occur, based in part on the re-
sults of Refs. 21 and 22. Again, consider a condition such that
the initial back pressure pulse has died out and the shock wave
is moving downstream but is not yet strong enough to cause
separation. This configuration holds until the shock moves far
enough downstream that Mx = Msis. At that point, a separa-
tion bubble is formed beginning at the shock foot, and if a
separated region somewhat downstream of the shock wave
already exists, then the two regions of separated flow are
quickly joined, creating a large separation bubble with a corre-
spondingly large displacement thickness. Thus, the shock wave
is decelerated and its direction reversed, as explained earlier.
Again, as the shock wave moves upstream past the equilibrium
position, Ms tends to decrease due to the decrease in flow area
upstream of the wave; the displacement thickness is reduced
and the shock wave is slowed until Ms < Msis, so that shock-in-
duced separation no longer occurs. The separated flow region,
and thus the region of large displacement thickness, is then
convected downstream as the shock wave continues its up-
stream motion. Hence, the core flow area downstream of the
shock wave increases, and this effect, together with the restor-
ing mechanism, cause sufficient deceleration to reverse the mo-
tion of the shock wave and accelerate it downstream. The
process may then repeat itself, resulting in a cyclic motion.
Thus, the essential mechanism for both modes of oscillation is
the same in that flow area changes are caused by an unsteady,
separated boundary layer, but in a mode 2 type of oscillation,
changes in flow area may be larger and more rapid, and in
addition, a new lag time, depending upon the rate at which the
separated flow region is convected downstream, is introduced.
The basic features of both modes of oscillation are shown in
Fig. 6.

Detailed displacement thickness distributions as a function
of the shock-wave Mach number are required to carry out
calculations. The only reference with sufficiently detailed dis-
placement thickness information appears to be Ref. 21, for the
forced oscillation case illustrated in Fig. 3. These data were
used in the model for self-sustained oscillations proposed in
this paper as follows. The data of Ref. 21 give both shock
position and displacement thickness distributions as functions
of time, so that <5* = 6*(x,Ms) may be determined. It may be
noted that the <5 * distributions found for a given Ms are of the
same form and within 15% in magnitude whether the shock
wave is accelerating or decelerating. The displacement thick-

Ms < M| Steady State MS>

Ms< M . < M| Steady State Mg> M|> Mgi

a)

Fig. 6 Model for self-sustaining shock-wave oscillations: a) shock wave
always strong enough to cause separation; and b) shock wave intermit-
tently strong enough to cause separation.
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ness upstream of the shock is neglected, since it is much smaller
than that downstream of the shock wave, so that g(x9t) = 0 for
x <xs. Then, in order to insure that the effective wall shape is
continuous through the shock wave, the value of 6* immedi-
ately upstream of the shock wave must be subtracted from the
distribution downstream of the shock wave. Finally, only a
fraction of the resulting displacement thickness, denoted by
<5 forced* has been used to define g(xj\ This is done for several
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reasons. First, the displacement thickness data pertains to a
forced oscillation case, whereas the problem of interest here is
one with fixed exit pressure (after an initial transient). Second,
there is some uncertainty as to the definition of the displace-
ment thickness in an unsteady flow. Finally, the asymptotic
solutions are written for symmetric channels, and although the
numerical solution of Ref. 21 assumes a plane of symmetry,
symmetric separated flows are never found in practice; separa-
tion occurs only on one wall or the other. The results of a
sensitivity study, conducted to assess the effect of the magni-
tude of 6* on the self-sustained oscillations, are presented later.
A parabolic spline fit of the data is employed to provide the
wall shape functiong(x,t) = g[x^Ms(t)] used in the calculations.

For all of the cases considered here, the initial shock position
is set, resulting in a steady-state back pressure ps

b. On top of
this constant pressure, a sinusoidal pulse is imposed, lasting for
one half-cycle; the duration of the pulse is thus (2/ex) ~ l s. The
excitation frequency/ex has been taken to be 40 Hz, although
this parameter has also been varied to assess its effect on the
resulting natural frequency of the oscillation. The natural fre-
quencies were found to vary not more than 12% (depending
upon the mode) as the excitation frequency was varied in the
range 10Hz</ex< 100 Hz. In all cases, the amplitude of the
pulse is 0.3% of the total pressure. The minimum shock Mach
number required for shock-induced separation is taken to be
Msis = 1.3. The channel geometry used is the same as that used
earlier and given in Fig. 3. For mode 2 type oscillations, the
convection speed of the separated flow region w^p is assumed to
be constant at wsep = 0.44 urd. Values in the literature range
from QMurd (Ref. 22) to 0.5 urd (Ref. 13). Solutions for vari-
ous values of usep/urd indicate that the amplitude and frequency
of the shock motion are quite sensitive to it;18 a more precise
value is certainly needed.

Figure 7 indicates the effect the thickness of the boundary
layer has on the shock-wave motion; the thickness is indicated
by the percentage of &fotced used to determine g(x,t). Here,
<5 forced denotes the displacement thickness arising from the
Navier-Stokes code solutions for the forced oscillation case.
No oscillations are observed for the case with only 25% 5*orced,
but as the displacement thickness is increased, self-sustained
oscillations appear, with mode 1 oscillations occurring for
smaller <5* distributions and mode 2 oscillations occurring for
larger £* distributions. However, if the separated boundary
layer is too thick, as for the last case in Fig. 7, the resulting flow
area changes are too severe to be tolerated at the fixed-back
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pressure, and the shock wave is disgorged from the channel.
These results suggest that reduction of the boundary-layer
thickness via suction, for example, would tend to inhibit the
occurrence or severity of self-sustained shock-wave oscilla-
tions.

Figure 8 shows the effect of the initial position on the subse-
quent shock-wave oscillations. The magnitude of <5:* is arbitrar-
ily fixed at 55% 5forced. For a shock wave with an initial
position sufficiently far downstream, i.e., for a large enough
initial Mach number or low enough back pressure, no self-sus-
taining oscillations are found to occur. As the initial position is
moved upstream where the local Maeh number is lower but
still large enough to cause flow separation, mode 1 oscillations
occur. Further upstream, where the local Mach number is
closer to Msep, mode 2 oscillations occur, resulting in larger
shock-wave displacements.

VII. Conclusions
The combination of asymptotic and numerical results pre-

sented here allows calculation of shock-wave response to varia-
tions in back pressure and wall shape in two-dimensional
channels. The formulation of a unified solution permits a
broad range of time regimes to be considered in the analysis.
The governing differential equation for the inviscid core flow is
of a simple enough form that the effect of the various mecha-
nisms governing the motion are readily isolated, without re-
quiring extensive numerical computations. On the other hand,
many diffuser flows of technical interest, in particular the
phenomenon of self-sustaining shock-wave oscillations, are
inherently dependent on viscous effects. In such cases, the
asymptotic solutions may serve as the basis for simple models
of the problem, with the effective wall shapes needed for the
asymptotic solutions coming from numerical solutions of the
viscous equations or from experiments. While the model pre-
sented here may be somewhat crude, it appears that the funda-
mental mechanisms have been included. It should be noted that
the extension to asymmetric diffusers used in practice adds only
to the complexity of the solution and involves the necessity of
obtaining d*(x,i) for two walls; no fundamental changes are
necessary.
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