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Abstract 

We demonstrate an efficient algorithm 
for the optimum topology design of continuum 
structures using parallel computers. The 
homogenization method provides a rigorous 
method for determining the optimum topology of 
a structure subject to specified loads and boundary 
conditions. This paper describes our efforts to 
improve the computational efficiency of the 
method by developing parallel algorithms for the 
structural analysis and optimization procedures. 

Homogenization Method 

Structural optimizatios has been an 
active area of research since the early 1970s; see 
for example [ ~ o t k i n ~ ;  ~ l e u r ~ ~ ;  Bennet and 
~ o t k i n ~ ;  ~ i k u c h i ~ ;  ~ s ~ i n ~ ~ * ] .  The two basic 
optimization problems addressed in structural 
optimization have been sizing and shape 
optimization. In sizing optimization, variables 
define local geometric characteristics such as 
height, width, thickness, and radius of specific 
portions of the structure. A typical design task is 
to find the minimum weight shell structure to 
withstand applied thermo-mechanical loads. In 
shape optimization, the optimum shape of a 
structure is sought by varying the boundary 
shape defined by an appropriate spline function, 
with the design variables defined in a function 
form. 

In most design problems, the topology 
of a structure is not known a priori. Frequently. 
topology is related to the number of holes in a 
structure. If the topology is fixed, the 
configuration is defined easily by spline 
functions. Significant difficulties are encountered 
when the topology of a structure must be 
designed, since its representation with spline-type 
functions is unwieldy. As a result, design 
problems involving both shape and topology 
have not been solved satisfactorily. Several 
approaches to the topology optimization problem 
have been proposed: see, for example, 
~ o z v a n ~ l ~ ,  and the proceedings of a recent 
NATO AS1 (Bendsoe, 199213. The 
homogenization method, described by Bendsoe 
and Kikuchi (Bendsoe, 1988)~ is unique in that it 
yields the optimal shape and topology at a 
macro- and micro-level of description. 

The necessity of topological design in addition to 
size and shape design is widely recognized by 
structural engineers. If topological changes are 
not allowed, size and shape optimization 
procedures can improve a design by 
approximately 5-15%. Topological 
modifications can often yield 30-50% 
improvement. An example illustrates this. The 
beam in Figure 1 is subjected to a bending 
moment. A hollow beam is more effective than a 
solid beam. For the same amount of material, 
the beam design shown at the bottom of the 
Figure, which involves topological changes, is 
better than the one at the top, which can be 
derived by shape optimization. 
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Figure 1 : Shape Design and Topology Change 
of a Structure 

The homogenization method is based on 
the above observation. The topology and shape 
problem is formulated as a new optimization 
problem involving material distribution. Given 
a solid with a prescribed volume, we generate 
microscale voids in design domains where a solid 
structure is not required for supporting loads. 
Therefore, instead of designing the shape and 
physical dimensions of the cross section of a 
structure, we generate infinitely many microscale 
voids within the configuration wherever the 
stress is small. If a portion in the domain is 
highly stressed the homogenization method 
prevents the creation of microscale holes, and 
that portion remains solid. Furthermore, the 
orientation of a non-circular void has a 
significant effect on the overall material 
response. Therefore, in the new optimization 
problem, the design variables are the density of 
microscale voids and their orientation over a 
specified domain. By removing material 
completely from portions of the domain densely 
packed with voids, the optimum shape of the 
structure is identified, while its topology is 
determined by accounting for the number of 
"global" holes. 

This intuitive method of "shaping and 
drilling" a structure is based on the theory of 
homogenization -- a mathematically rigorous 
method developed in the mid- 1970s for the study 
of mechanics of composite materials. Most 
composite materials possess a fine scale 
microstructure composed of fibers, whiskers, 
inclusions, and matrices. Applied 
mathematicians in France, Italy, and the former 
Soviet Union burie and cherakevl1, ~ a r t a r l ~ ]  
developed the homogenization theory to derive 
the constitutive equation of a composite 
material, i.e., to evaluate the average stress-strain 

relation of the structure. Since we are interested 
in generating infinitely many microscale holes to 
form a possibly perforated structure, the stress 
analysis of such a structure requires the 
derivation of an equivalent effective average 
stress-strain relation. A homogenization 
approach enables the design of topology and 
shape without using spline functions. 
Difficulties in geometric modeling are avoided, 
and sIress analysis iterations are performed on a 
fixed finite element mesh. 

Mathematical Formulation 

We can formulate a generalized topology 
optimization problem by introducing 
microstructural perforations into the structure, 
and then minimizing the mean compliance 
subject to a constraint on the total volume of 
material used. Formally, 

subject to equilibrium equations, and 

Here, u is the vector of virtual 
displacements, f is the applied body force, t is the 
applied traction on the boundary r t ,  i is the 
number of finite elements used to discretize the 
structure, and Os is the total volume of solid 
material forming the porous structure. The 
microstructural model used in this method is 
shown in Figure 2, and possesses three design 
variables per element: the void dimensions a and 
b, and the void orientation angle 8. The design 
variables a and b are restricted to values between 
Oand 1. 

Figure 2: Element Microstructural Model 



The equilibrium equation and its 
associated loading and support conditions, i.e., 
the structural analysis problem. are solved using 
the finite element method. The domain for stress 
analysis is the initial design domain. This initial 
domain is then discretized into finite elements. 
with the design variables a, b, and 8 for each 
element evaluated at the centroid. The number of 
design variables for the present problem is quite 
large, and it is difficult to apply standard 
mathematical programming techniques. The 
optimization method used for this problem is a 
simple resizing scheme based on the optimality 
conditions. For details on the optimization 
method see ~endsoe~.  

We have extended this basic formulation 
to 2-D, 3-D and shell structures. Additionally, 
we have extended the formulation to allow 
topology optimization to create structures with 
desired natural frequency constraints. 

JI. Parallel Implementation 

Applications of parallel computing to 
structural analysis and optimization have been 
steadily increasing. Examples of some recent 
work include El-Sayed and ~su in@ and Xicheng 
and ~ u i x u l  5 .  In this study, we explore the 
parallelization of the 2-D homogenization 
algorithm described above. The parallel 
algorithm described here is implemented on a 
Kendall Square Research KSR1. The KSRl is a 
shared-memory parallel computer, and the 
particular machine used in this research has 64 
processors. 

The major change in the topolgy 
optimization algorithm was the implementation 
of a efficient method for the parallel solution of 
the large system of equations arising in the finite 
element model used for structural analysis. A 
considerable portion of the computation time is 
spent in evaluating the finite element model at 
every iteration. The algorithm used for the 
solution of this linear system is a Cholesky 
decomposition, modified for implementation on a 
parallel computer. The method implemented here 
is conceptually similar to one proposed by 
Zmijewski and ~ i l b e r t l ~ .  

For efficient parallel computing, all 
tasks that consume significant computation time 
must be divided between processors, and overhead 
between processors should be minimized. All 
procedures were inlined, and most vector 
operations were parallelized. 

We consider two classes of examples: 
timing examples, to demonstrate the efficacy of 
the parallel implementation, and design examples 
to demonstrate the utility of the homogenization 
method for structural layout design. 

Timing Studies 

A simple bracket design problem was 
used to test the parallel topology optimization 
algorithm described above. This problem was 
solved several times, with increasingly fine mesh 
density. Figure 3 shows the effect of increasing 
the number of processors used in the solution of 
a small (100 element) topology optimization 
problem. Clearly, for small problems, the 
overhead encountered in the allocation of 
processors and the sharing of data overwhelms 
any computational advantage that is realized 
through parallelization. 
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Figure 3: CPU time as a function of Allocated 
Processors -- small problem. 

For a larger problem (2000 elements) 
the effect of increased processor utilization 
becomes more profound. Figure 4 shows the 
observed performance of the parallelized 
homogenization algorithm on a fairly large 
topology optimization problem. As @e size of 
the problem increases, the speed advantages 
realized by parallelization become more 
pronounced. More efficient parallel assembly of 
the finite element stiffness matrix at every 
iteration and processor allocation to reduce 
communication overhead will increase the overall 
observed speed of the method as well as enhance 



the effects of parallelization. The observed 
speedup in processing time, while encouraging, 
is not as good as might be expected as the 
number of processors used increases. This seems 
to indicate that the inter-processor overhead in 
our implementation still consumes a significant 
portion of the computation time. 

Number of Prcceslors 

Figure 4: CPU time as a function of Allocated 
Processors -- large problem. 

Design Example 

We offer one example to demonstrate 
the utility of such a topology optimization tool. 
Consider the road sign support design problem 
outlined in Figure 5. The objective of this 
problem is to design a structure within the 
limitations of the design domain which possesses 
minimum compliance when subjected to the 
loading and boundary conditions shown. 

Design Domain 

P= 10 Kips 
Non-Design Domain 

Figure 5: Design Domain and Loading 
Conditions for Road Sign Support Problem 

Two cases are considered: designs which 
allow structure in the area designated as the non- 
design domain, and designs restricted to regions 

outside the non-design domain. The initial 
design domain is discretized with 1200 elements, 
and the topology optimization problem is solved 
twice: once with material distribution allowed 
everywhere in the initial design domain, and once 
with the material distribution restricted to be 
outside of the non-designable region shown 
above. Figures 6 and 7 show the results of the 
homogenization procedure. Dark areas on the 
Figures indicate regions of solid material, i.e., 
areas where the size of the microscale voids has 
been reduced to zero. White areas indicate 
regions where material is not required in the 
optimal structure. Areas of intermediate gray- 
scale shading indicate regions of composite 
structure where the structure possesses 
microstructure. In many cases, these areas can be 
considered to be regions which possess different 
directional stiffness characteristics. Depending 
on the problem application and the 
manufacturing technology available, these 
intermediate regions may either be interpreted as 
representing isotropic material or as representing 
composite structure. This layout design is then 
ready to be subjected to detail sizing and shape 
optimization, where additional constraints on 
local measures, such as stresses, are considered. 

Figure 6: Optimum Road Sign Support 

Figure 7: Optimum Topology for Road Sign 
Support with Non-Designable Region 

The effect of introducing the geometric 
design constraint is striking. The resultant 
structure bears a strong resemblance to overhead 
road sign structures currently in use. The only 
inputs from the designer are the loads, boundary 
conditions, and the specification of the design 
domain. 

Comparison of the solution time for this 
problem between serial and parallel 



implementations shows a modest improvement 
as the number of processors used is increased. 

A parallel algorithm for the optimal 
topology design of continuum structures has 
been described. Observed performance 
improvements are significant, but still modest 
for small problems. The computational speed 
improvements due to parallelization become 
more pronounced as the size of the problem 
increases. Clearly, use of efficient parallel 
algorithms will allow the consideration of larger 
classes of topology optimization problems. 
Development of efficient algorithms on parallel 
computers requires somewhat different 
programming techniques than those used to 
program on serial computers. 

Computational facilities for this work 
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