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CHAPTER 1

INTRODUCTION

Early studies of the dynamics of spherical shells were attempts
to construct a theory of bells. Lord Rayleigh<l)considered an inextensional
representation of the motion, i.e. he assumed that no stretching of the
midsurface occurs during deformation. Love(2) took exception with the
inextensional representation for two reasons: first, a closed shell can
not undergo deformation without midsurface stretching; second, the restric-
tion of inextensionality does not allow satisfaction of boundary condi-
tions for a freely vibrating open shell, namely a bell,

Love's formulation of the problem<5) constitutes the classical
bending theory of shells now known as Love's first approximetion. This
formulation includes both flexural and extensional effects. In actually
solving the problem, however, Love assumed the vibrating shell to have
negligible resistance to bending. He considered only extensional axi=-
symmetric motion. Lamb(u) also used an extensional formulation in his
study of the radial motion of closed spherical shells,

By the extensional approach Love found two sets of modes of
vibration. Both sets contain an infinite number of modes. For the first
set, called the upper set, the frequency spectrum is unbounded. All upper
mode frequencies are higher than those of the second set, called the lower
set, which has a bounded frequency spectrum. The boundedness of the lower
set spectrum means that intervals between natural frequencies must become

arbitrarily small, a physically untenable conclusion,

-1-
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An analytical study by Silbiger(5) and experimental work by
Baker(6) were based on the extensional analysis of Love. Naghdi and
Kalnins(7).applied classical bending theory to obtain a solution for tor-
sionless axisymmetric motion. Also included in this paper is & study of
asymmetric motion based on extensional theory.

Kalnias<8) , using classical bending theory, investigated the
flexural vs membrane strain energy content of axisymmetric modes of vibra-
tion. Two mode sets were found. For one set the deformations were pre=-
dominately extensional. For the other set, however, deformations were
neither predominately extensional nor predominately inextensional. In
the limiting case of infinitely large radius-to-thickness ratio this
latter mode set was shown to degenerate to the lower set found by an ex-
tensional analysis, The paradoxical boundedness of the lower set fre-
quency spectrum as predicted by an extensional analysis was thus shown to
be caused by the effects of bending.

In 1883 ILord Rayleigh(9) reported an experiment in which a stretched
string was attached to one prong of a tuning fork., The fork vibrated in the
direction of the string. ILateral vibrations of the string of frequency f
were produced by fork vibrations of frequency 2f. This phenomenonis termed
heteroparametric excitation (the prefix'hetero" being commonly omitted).
Parametric effects occur frequently in mechanics., Numerous examples are
presented by Minorsky(lo)a Bolotin's book on dynamic stability(ll)is

devoted entirely to heteroparametric excitation.
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Autoparametric excitation is a similar phenomenon. An example
of this behavior is a mass suspended on a spring as reported by Gorelik
and Witt (see(lo), P. 506). The system is allowed two degrees of freedom,
spring elongation and plane pendulum motion, For certain elongation mode-
pendulum mode frequency relations nonlinear coupling between the modes
alters the initially excited motion markedly. Energy originally imparted
to elongation motion is transferred to pendulum motion,

Both hetero-and auto-parametric excitation are generally
governed by differential equations with pericdic coefficients., Two dis-
tinetly different physical phenomena occur however. For heteroparametric
excitation an external energy source, such as Lord Rayleigh's tuning fork,
produces the parametric effect. For autoparametric behavior no outside
energy 1s supplied to the initially excited system, only an energy redis-
tribution occurs, The energy exchange is due to nonlinear coupling between
distinct modes of motion,

Autoparametric behavior has been reported for the cylindrical
shell by Goodier and Mclvor(lg)° Here the energy exchange is effected
by nonlinear coupling between extensional and inextensional mode sets.
Analogously, two mode sets exist for the closed spherical shell. However,
one mode set is not of a distinct extensional or inextensional character.
The possibility of autoparametric excitation is, therefore, of particular

interest and gave impetus to this investigation.



CHAPTER 2

A NONLINEAR FORMULATION

In this chapter alagrangian representation of spherical shell
deformation is presented. The formulation is restricted to torsionless
axisymmetric motion, Nonlinear equations of motion are derived for a

second order theory which is restricted to small deformation of thin shells.

2.1 Representation of Deformation

The undeformed configuration is the closed spherical shell of
radius a. A point P on the undeformed midsurface is located by angles
¢ and 1, Figure la. During deformation P goes to P¥* on the deformed mid-

surface and is located by spherical coordinates r,®, and ¢, Figure 1b,

% %

Figure 1., Undeformed and Deformed Configurations
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Motion of point P is described in the ILagrangian sense. The
deformed state coordinates are taken as functions of initial position
and time, i.e.

r=1r (&, 1, t) (2.1.1a)

e

g

2,2 Midsurface Quantities

@ (& n, t) (2.1.1b)

g (&, n, t) (2.1.1c)

In the Lagrangian representation of Section 2.1 unit vectors on

the midsurface are expressed as

- . .
ty = 1 [rSin@Cos@® - r@Sin@Sine
3 T sl
(2 4+ r2®2Sin2¢ + r2¢2]2

+ r{fCos@Cose] 1+ [151n@Sin® + r®Sin@Cose + rfCos@sine] 3

+ [1Cos@ -~ v Psing] ¥ (2.2.1a)

-3
by = 1 r'Sin@Cos® - r®'Sin@Sine
[r'2 + r2®'281n2¢+r2¢’2]

-

+ 70 'Cos@Cos®] T + [r'Sin@Sin® + re'SingCose + rd'Cos@gsine] 3

+ [r'Cosf - x@'Sing] K (2.2.1b)

where Ei 5: E)are unit vectors along x, y, & respectively, the dot denotes
d/% and the prime denotesdodm.

From differential geometry the normal strain ¢ and the curvature

ot
Kog of the midsurface along EZ are
.. L
Sop = 1 [r2 + r2@°sing + r2g2)3- 1 (2.2.2a)
a
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Kog = 1 Mfu@QSin2¢ + 4ih¢2
[¥2+ r°8PSin®g + r2¢2]3/2

+r [- 4r2F (6°8in®d + #°) + 4¥D ( & 65in®P + &3¢ SingCosd + ¥ a]
+ 2[R (6Ps1nd + 8'sind + 30"sin'd + For 20°F°

+ 46PFPsin®g + 4 & 6 PsingCosd - 26°FSingCosg + hE* )

2t ¥(6 6sin®g + 6°@sinfcosd + @ B) + T2(&25in2 + #2)]
+ P2[27 (656sinkd + eMFsinddcosd + 828 Fsin2d

é @ %2Sin2¢+é25381nécosé + %3% )

4

2 F(&sintd + 26%#2sin?g + §H)]

+ ru[é68inu¢ + éh(BQQSiH2¢ + bESin2¢Cosg¢ - é@Sin5¢Cos¢)

2@35 @Sin5¢Cos¢ + ég(a281n2¢ + 3 bh+ %hCosgﬁ

4

4 $ePsinfcos@) + EP2SincP

+2 88 §(2 Poingcoss - Psing) + °)) * (2.2.20)
Similarly, along E} the normel strain and curvature are

Con = 1 [r'® + r°@'2Sin®g + r°g'2] - 1 (2.2.2¢)
a Sin &

Kon * Fog with dots replaced by primes (2.2.2d)



The midsurface shear strain 7, is

Yo = Fr' o+ r°0 0'Sin°g + r°g ¢

- oL 1
[T2 + r2e25ine@ + r2@2)2 [r'2 + r2@'25in2¢ + r2p '2)2

(2.2.2¢e)

One of the difficulties encountered in even a small displacement

approximation of (2.2.2) is the non-orthogonality of the t-n curvilinear

coordinate system. Orthogonality results from the introduction of axisym-

metry, whereby

(2.2.3a)

(2.2.3b)

The latter requirement precludes circumferential or torsional displacements.

Imposing conditions (2.2.3) on (2.2.2) yields the following

midsurface strain and curvature expressions:

1
[72 + r2@°) 2 -1

€,, =1
og ~ =
eon =r Sin Q -1
a Sin ¢
g = 1 W2 L or 3P B - LERE 2]
[v2 + r2p2] 3/e
FrR[R2(F + 4P -2 v RBP4 T2FR
. . . i
+ Pler P -2 % ¢4] + rh¢6 2
Kon = 1
a Sin @
70 =0

(2.2.4a)

(2.2.4b)

(2.2.he)

(2.2.44)

(2.2.ke)
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2.3 Strain-Midsurface Quantities-Stress Relations

An element as viewed on a meridional cut before and after de-

formation is shown in Figure 2.

Polar Axis

Figure 2. View on a Meridional Cut

The angle between the surface normal vector @ and the radial ray

may be expressed as

B =tan™l r (2.3.1)

)
Normals to the undeformed midsurface are assumed to be unstretched

and to remain normal to the midsurface after deformation.

_)
Midsurface elemental lengths along tg before and after deformation

are respectively
dsop = adf (2.3.2a)
dsy = (1 + eo¢) adt (2.3.2b)

The normal strain along E; a distance z from the midsurface follows as
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& = (1 + €o§) (1 +2z mog) - (1 + %/a) (2.3.3)

l+z/a
The right side of equation (2.3.3) is expanded in powers of z/a.
The shell is assumed sufficiently thin to allow neglect of 22/a2 with

respect to unity. The expansion then yields

€ = Cop * z(moE -1) (L + 505) (1-2z) (2.3.4)
a a
A deformed element as again viewed on a meridional cut is shown
B /
in Figure 3. _%\j7 , d

Polar Axis

Figure 3. View on a Meridional Cut
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Midsurface element lengths along E? before and after deformation

N
are respectively
dsy, =@ Sin & dy (2.3.52)
ds, = (1 + eon) a Sin & dn (2.3.5Db)

The midsurface strain along E} a distance z from the midsurface is

en = [L+2 ko Sin (P -8)] [1+ e] - (1 +2/a) (2.3.6)

1+ Z/a

o1

Again neglecting 22/8.2 with respect to unity, expansion of the

right side of (2.3.6) in powers of z/a gives

€. =e. + 2 [k

il on Sin (¢ - B> - ;.] (l + eon) (l = Z/a) (29597)

on a

The continuum is assumed to be isotropic and homogeneous.
Neglecting stress normal to the midsurface, Hooke's Law yields biaxial

stress-strain relations. They are

op = _E (eg + v e (2.3.8a)

)
n
1 - 12

o, = E (en + v oe) (2.3.8b)
1 -2

where E is Young's Modulus and v is Poisson's Ratio.

2.4 Equations of Motion for Smell Displacements

Equations of motion may be derived by an energy formulation or
by consideration of the equilibrium of a shell element. Since the energy

formulation is convenient in the subsequent analysis it is to be used here,
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Assuming negligible rotary inertia the kinetic energy T is

2
T= 1 é{) + r2
2 (P 3t

volume

ggngv (2.4.1)
ot

where p is the mass density.
A non-dimensional time T, a non-dimensional radial displacement

{;, and an angular meridional displacement ¥ are defined as

=1 7 %-‘- £ (2.4.22)
a |eo (1 -1°)

(¢ =1 (a-r1) (2.4,2b)
a

V=0 -¢ (2.kh.2¢)

Substitution of T, ¢, and ¥ into (2.4.1) followed by an integra-

tion over the circumference and thickness yields
I

T = Ila®Fh ot 2 + (1-2¢) [ov 2 Sin &£ d ¢ (2.4.3)

1-1° ot oT
o

Displacements and their derivatives are assumed small; therefore,
terms of order greater than three are neglected in (2.4.3).
For free vibrations of the assumed conservative system the

potential energy V is the strain energy stored during deformation, namely

V=1 _[10§e§ + Oﬂeﬂ) av (2.4, k)
2
v

olume
From substitution of stress-strain relations (2.3.8) there results

v = E f[e§ +2 v een + €§) av (2.4.5)

2(1 - v2) Jvolume
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The midsurface quantities and the angle B may be expressed in
terms of ¢ and ¥ by substitution of (2.4.2) into (2.2.4) and (2.3.1).

The results are

€o¢ =J/-§-gi/+%§2 (2.4, 68)

€on = = LHV Cot & -%xpg -tV Cot & (2.4.6b)

fog =L (1+t+ b+ P41 a20f -ty -2% (2.k.6¢)
a 2

foq = L (L+¢-vycCot &+ (2 +y2csc® e - Vg Cott) (2.L.6d)
a Sin ¢

B=-tbatV-tt (2.h.6e)

Consistent with the retention of third order terms in (2.4.3), terms of
order greater than two are neglected in (2.4.6).

The strain energy (2.4.5) may now be expressed in terms of the
midsurface quantities by substitution of (2.3.6) and (2.3.7), and
subsequently in terms of ¢ and ¥ by substitution of (2.4.6). Terms
up to the third order are again retained after integration over the
circumference and thickness. These terms occur in two forms, the first
with coefficient h and the second with coefficient h5/l2a2. To be con-
sistent with the thin shell assumption of Section 2.3, third order terms
of the latter form are neglected. The resulting potential energy ex-

pression is
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V =1 8°E h <<: + ¥PCot2E + 2(1 + v) (t°
1 - v2

£y Cot & - ¢ ¥+ t2y Cot £+ t2Y) - 2 ¢ V2
+ 20 - € t2+ £ ¥R - y3Cot £ - 2 £ y2Cot2k
+ov(V i Cot & - F VY -2 ¢ ¥ ¥ Cot &+ 3¢ YR
-5t t2+ 52y cot &) + OR[VR+ yRCotRe
r2F F+2t v cotle + (2 + t2 Cotle

+2p(v ¥ Cot € + ¢ ¥ Cot £ + £ ¥ Cot £

+ ¢t Cot g)?>> Sin € d ¢ (2.4.7)
where o2 s & thickness parameter, is defined as
02 = he
12a°

The Lagrangian I, is defined as the difference between the
kinetic and potential energies, i.e.

L="T¢-V (2.4.8)
Hamilton's Principle states that the motion realized in nature is that
particular one for which the time integral of L assumes a stationary

value. The principle may be expressed
t2
5 [ Ldt =0 (2.4.9)

t1
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where t, and t, are arbitrary but fixed times, and & denotes the custo-
mary variational operation.

The Lagrangian is expressed as (2.4.3) minus (2.4.7). 1In order
to satisfy (2.4.9), t and ¥ must satisfy the two nonlinear partial dif-

ferential equations (see, for example, Hildebrand(l5), p. 137)

Yo+ ¥ Cot £ - ¥(v + CotPe) - £(L+v) -2 ¢ ¥

2tV +tt-2¢yCote+ s t2CotE (1-v)

+ 2 v2Cot £(3 - v) -t W(1 - v -2 CotlE) -2 v £y Cot &

+

26t (L+v) +a2[Y + 1V cot & - y(v + Cot2e)

T+t ot e - t(v+ Cotle)]

-+

=(1-2¢) Fy-2 3 N

(2.4.10a)
dr2 ot or

(L+v) (b+vcotg-2¢6-87-3t2-242-2¢ycote
~t e -t b oot E L V) +UF + €Y+ ot ¢

+v(2 ¢y cot g+t ¢‘Cot E -t )

- PV + 2ot £ - Y(1 + v + Cot®E) + v Cot £(2 - v + Cot2E)

£ 8+ 2ECot & - £(1+ v + Cot®E) + £ Cot £(2 -v + Cote)]

N2 2
=9t (éi) (2.%.100)
dr2 oT
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Satisfaction of (2.4.9) also imposes natural boundary conditions

on { and Vy. These conditions are, at & = O and I,

ag<[§fk-§§+v(éw00t§-§&>1 sin ¢
+ QB[ (¥ + é) (1L - v) Cos2t Csc & - (¥ +.E3 Sin &

+v(¥ +¢) Csc & - (¥ -t) Cos §J> =0 (2.}.11a)

5 §<<1¢7+ €+ vy +t) Cot E] Sin §:> =0 (2.4.11D)

5'w<<£¢ -t Pa2 Y+ t% v( -t + L2+ Cot ¢ -3 YR
-2 ¢ ¥ Cot &) + aPlY + € + v(Vv Cot &

+t cot £]}  sin é:> =0 (2.4.11c)



CHAPTER 3

A LINEAR STUDY

The linear motion of a closed spherical shell has received the
attention of numerous investigators. A brief survey is contained in
Chapter 1. Available results, however, are not in a form convenient for
the present nonlinear study. A linear analysis is therefore presented
in this chapter.

3.1 The Linear Solution

For sufficiently small deformations the second order terms in
(2.4.10) may be neglected. The resulting expressions constitute the
classical bending formulation of torsionless axisymmetric motion. The

two linear partial differential equations governing free motions are
T+ cott-vu(v+cot?e) - E(L+v)
+ 0PIV + ¥ Cot & - ¥(v + Cot?) +F + ¢ Cot &

- ¢ (v + Cot® ¢)] = 2y (3.1.1a)
d72

(14v) (W + Vv Cot & -2¢) -a® [V +2 7 cot ¢
- Y(1#y4C0t%E) + ¥ Cot £(2 - v + Cot®)
+E+2 ¢t Cot t - E(L+ v+ Cot3E) + ¢ Cot £(2 - v
+cot?E)] = 3P (3.1.1b)
1@

-16-
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The displacement { is expanded in a series of Legendre polyno-~
mials of the first kind., Legendre polynomials of the second kind are
singular at the poles and are therefore omitted from the expansion.

The expansion is

t = Doy (1) By (00n ) (3.1.2)

The displacement ¥ is expanded in a series of associated

Legendre polynomials of the first order, first kind. Again those of the

second kind are omitted. Thenl
w L ]
Vv = 2 bp (1) Py (Cos &) (3.1.3)
n=1

The assumed forms (3.1.2) and (3.1.3) satisfy the natural
boundary conditions (2.4%.11).
Substitution of (3.1.2) and (3.1.3) into (3.1.1) and repeated

use of the Legendre relation

P,(Cos &) + P,(Cos &) Cot & + n(n + 1) Py(Cos &) =0 (3.1.4)
yield
DPag + 2(1l + v) ap =0 (3.1.5a)
Dr2

1 én(Cos £) is more commonly expressed with the change of variable

X = Cos ¢
whereby

b (Cos t) = - (L - D)3 [P (x)] = PA(x)

See, for example, Magnus and Oberhettinger(lh), p. 53.
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bpll - v = n(n + 1)1 (1 +a°) - an{ 1+ v - of[1 - v - n(n+1) ]}

= D%by n>1
Dre

-by(L+v)n(n +1) -2a, (1+v)
- o?(an + by) [n%(n + 1)2 = (1 = v) n(n + 1)]

= Dgan n>1
D2

The solution of (3.1.5) is
ap = Ap Sin ((Do"r + Oéo)
an = Apm Sin ((Dan + Otn_m)

+ Ane Sin (Ubnc'T' + Oénc) n> 1

dnmAnm Sin (wnm'r + Oénm)

o’
]
il

+ 8pehneSin (wpeT + Ope) n>1
where Ag; Apms Anes Qos Opms and Opcare arbitrary constants.

The amplitude ratios are

8y = Lt v - o2(1 - v) +0° n(n + 1)
[1 - v -n(n+1)] (1402) + afy

(3.1.5Db)

(3.1.5¢)

(3.1.6a)

(3.1.6D)

(3.1.6c)

(3.1.7a)
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=1l+v=-02 (1 -v)+02n(n+1) (3.1.7b)

[1-v -n(n+ 1)) (1402) + afe

81’1(3

Angular freo.ency wo 1s
1
wo = [2(1 + v)]? (3.1.8)

Angular frequencies wyppy and wy. are the real, positive roots

of the frequency equation2
wﬁ - w% [1+3v -02(1 -v) +n(n+1) +voen(n+ 1)
+0Pn2(n + 1)2] = 2(1 = v2) (L +02) +n(n +1) (1 -12)

+aPn(n +1) (5-2) -4 oPn?(n+1)2 +02d(n+1)2 =0
(3.1.9)
Solving for twice the square of the frequency yields
202 =1 + 3v - 0°(1 - v) + n(n+l) (l+v &°) + 02n?(n+l)?
+[9 4+ 6v+ v2+ 20°(3 +v) (1 -v) +2n(ntl) (2v°+ 3v - 1)
+ n2(n + 1)% 2 oPn(n+l) (5v°+ 2v - 11) + 2 P neL P (9+hy)
2 023 (n+1)3- 2 atn(ntl) v(1 - v) + a'n2(n+1)2(v2+ 2v - 2)

¥ 2y ofn3(n + 1)3 4 adub(n + 1)42 (3.1.10)

2 Equations (3.1.5) are noted to be analogous to a linear, two degree
of freedom system; therefore, such roots are known to exist.
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The positive sign in (3.1.10) gives the frequency Wyy Whereas
the negative sign gives wpe.

Substitution of (3.1.6) into (3.1.2) and (3.1.3) yields the
solution of the linear problem, namely

t(t, T) = Ao Sin(wgr + Qg) + ﬁi [Apm Sin(wpmT + Qpm)
n=

+ Ape Sin(wye T + 0y0)] Py(Cos £) (3,1.11a)

VE, 1) =5 (B Sin(on T + o)

+ BuohneSin(wy, T + o)) Py(Cos t)

(3.1.11b)
3.2 Mode Classification

The n=0 mode, pure radial motion with amplitude Ao , 18 called
the breathing mode.

Introduction of time by substitution of (2.4.2) into
(3.1.8) gives the actual breathing mode angular frequency as

Wy =1

1
2
actual

L { 2 B J (3.2.1)
a o(L1 - v)
a result first derived by Lamb(4>.

The distinguishing characteristics of the two mode sets are

most readily studied by a quantitative presentation.

The frequencies
Wny and wp, are given in Table 1 for v = .3, 1 < n < 10, and two values

of a/h.
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Table 1

Angular Frequencies

®nm One

a/h
n 20 200 20 200
1 1.975 1.974 0 0
2 2.723 2.722 . 703 . 701
3 3.636 3.635 .8h1 .830
L L, 598 L, 596 .916 .881
5 5.578 5.575 . 988 . 906
6 6.565 6.562 1.081 .921
7 7.556 T.552 1.206 .931
8 8.550 8.546 1.369 .939
9 9.546 9,541 1.572 .9L6
10 10,5k 10.536 1.813 . 954

For all values of a/h the lowest mode frequency 1s wyg.

mode is called the fundamental mode.

This

A striking difference between the w,, and w,, mode sets is

shown in Table 1.

Angular frequencies for wyy, modes are relatively in-

dependent of a/h; however, w,. frequencies are sensitive to changes in

a/h° This significant effect suggests a membrane-bending, or extensional-

inextensional, mode classification.
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For a membrane, or extensional, representation of deformation,
first presented by Love(B), no consideration is given to the thickness of
the shell. All resistance to deformation is assumed to be provided by
stretching of the midsurface. A convenient measure of membrane behavior

is the sum of the midsurface strains Ey,
Ep = €op + €oq (3.2.2)
For a bending, or inextensional, representation of deformation,

first presented by Rayleigh<l), the shell midsurface is assumed to be rigid5°

Ey, a measure of bending behavior commensurate with Ej, is the sum of the

maximum strains occurring in the shell less the sum of the midsurface
strains. From (2.3.4) and (2.3.7) the maximum strains occur at z = h/2 and

their sum is

€ t €n| = €op * €on * h (1 -h -{(l + eog)[Kog -1 }
2 2a - a
max

+(1+ o) oy SI0(E-5) - L }} (5.2.5)

Hence, Ey 1s given as

1- g;{(l + eog> [KOE ) iJ ’ (l+€°n>[K°nSin(¢-6) - ﬂ}

(3.2.4)

B, =

(NI =)

% Midsurface stretching must accompany all deformations of a closed shell
(see Love(2), p. 542). Rayleigh was, therefore, able to include only
open shells in his inextensional analysis. His limiting case of the
opening angle — II was physically untenable.
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€

The order of magnitude of E, is not changed by the neglect of eog, on’

and h/2a with respect to unity. With this,

fn {[rog -1 |+ [ rqomgn) -2 ]} G2

2

E, and E, are obtained in terms of the displacements { and ¥ by substitution

from (2.5.3). The linearized expressions are

Ep==-28+VCot &+ (3.2.6a)
By =h (2 ¢+ Cot & +¢) (3.2.6b)
28,

The ratio |Em/Eb| is an indicator of mode behavior. A large
ratio indicates predominately membrane behavior; a small ratio predom-
ingtely bending behavior. For every n > 1 solution (3.1,11) yields the

following indicator for modes associated with either wpy or wpe:

=2 +n(n+1) 8 .2a (3.2.7)
Eb 2 -n(n + 1) h

in which &, 1is By, for an w,, mode and &,, for an w,, mode.
Numerical values of IEm/EbI for the w,, and w,, mode sets are

given in Table 2 for two values of a/h,
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Table 2

Mode Indicators

B /gy

a/h = 20 a/h = 200
n nm tne Wnm tne
1 % - o -
2 56, 4 3,80 564 38.0
3 40.5 2.16 405 21.6
4 36.0 1.32 360 13.2
5 34,1 .88 341 8.8
6 33.2 .6k 332 6.k
7 32.5 .48 325 4.8
8 32.0 .36 320 3.6
9 31.8 .28 318 2.8
10 31.7 2L 317 2.4

o 30.8 0 308 0

For a/h = 20 the relatively large values of [Em/Ebl indicate

that the wpy mode behavior is predominately membrane for all n.

the indicator values for the same a/h show wy, modes are both membrane and

bending in nature.

Their behavior is changed from predominately membrane

to predominately bending in the finite range of n's given.

However,
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From (3.2.7) the mode indicators are directly proportional to
the radius-to-thickness ratio. The value a/h = 20 1s about the minimum
for athin shell theory. All indicator values may be made arbitrarily
large by increasing a/h, a point emphasized in Table 2 by comparison of
a/h = 20 with a/h = 200.

The relatively large values of \Em/Ebl for wyy modes at a/h = 20
and their subsequent increase as a/h increases substantiate a membrane mode
classification for this set. The corresponding increase of wy. mode
indicators causes the transition from membrane to bending behavior to
occur at higher values of n. Conversely, for any n an wp. mode may be
made predominately membrane in behavior by choice of a sufficiently large

value of a/h. Classification of the w,, set as bending modes, as their
dependence on a/h suggests, would be equivocal. Therefore, the w,, modes
are classified here as composite modes of vibration.

An extensional treatment of the problem is obtained by setting

¢ =0, Frequency equation (3.1.10) then becomes

L Kalnins<8) studied the modes of vibration by use of strain energy
coefficients defined as ratios of bending strain energy to total
strain energy. This approach is not unlike that of ‘Em/EbI mode
indicators as presented. Modes here classified as composite modes
were classified as bending modes and were associated with predomi-
nately bending strain energy. This association 1s dependent on a/h
and n as is indicated by (3.2.7) and Table 2, and, therefore, must be
qualified. See McIvor and Sonstegard(15).
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2 m% =1l+3v+n(n+1)+[9+6v+ Ve

s

+on(n + 1) (2v%+ 3v - 1) + n°(n+1)2] 2 (3.2.8)

It follows that as n -;w5:
W —> o0 (3.2.9a)
e - [1 - 2] 2 (5.2.90)

Membrane mode frequencies increase without bound, as expected.
However, composite modes constitute an infinite set in a bounded frequency
spectrum, an untenable result.6 The increasingly membrane behavior of
composite modes as a/h increases was noted above. The degeneracy of
this set to the paradoxical extensional analysis set is,therefore, not
surprising and further substantiates a composite, and not a bending,

P . 7
classification.!

5 n cannot increase without bound in keeping with the neglect of shear
deformation and rotary inertia in this formulation. Consideration of
this case is of interest, however, in providing a better understanding of
mode characteristics.

6 This is the lower mode set of paradoxical behavior referred to in the
Introduction.

7 Association of degenerate " bending " modes with the paradoxical

extensional modes was made by Kalnins(8),
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The relative independence from a/h of membrane mode frequencies,
Table 1, and the results obtained from the extensional formulation indicate
that (3.2.8) provides an adequate means for their determination. However,
composite mode frequencies may be determined by an extensional analysis
only for sufficiently large values of a/h and/or small values of n. Both

factors must be considered before use of (3.2.8) is justified.

3.3 Response to an Arbitrary, Symmetric Radial Velocity

A closed spherical shell is suddenly enveloped by a pressure
impulse symmetric about a polar axis. For a loading time of sufficiently
short duration the result of the impulse is an arbitrary, symmetric initial
radial velocity distribution. This velocity distribution is expressed in
a series of Legendre polynomials of the first kind as

[+9]

ow = L v, P, (Cos &) (3.3.1)
oT =0

where
Ww=a-r7T

Expression (3.3.1) imparts a rigid body translation along the
negative polar axis. This motion is eliminated by use of a reference
frame with its origin at the shell inertial center moving with an appro-
priate velocity. This matter is considered in detail in the Appendix.
The velocity distribution with respect to the inertial center contributes

only to the shell deformation. It is
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Ll =vo+[vl-£ ) vnsn] Py (Cos t)
ot L, n=l,3,... -
+ vy P (Cos &) (3.3.2a)
n=2,%3,...
Qﬁ =1 2 Vp Sp l31 (Cos &) (3.3.2b)
3t N n=l,3,...

where dw/dt is the radial velocity distribution, dU/dt is the meridional

velocity distribution and

Sn = (2n)! Y +1 _n k4
220(n1)e © hp? 1 2n-1 kh-(n-2)2

+1-3  n(n - 1) . b + e ]
1'2 (2n-1) (2n-3)  k-(n-k4)2

The brackets contain n + 1 terms.
Motion resulting from the impulse is determined by imposing
(3.3.2) as initial conditions on solution (3.1.11). The problem is

thus formulated as
[e¢]
t(e,m) = ASin(wgT + ap) + Zl [ A Sin(wuyT + Ohpp)
N=

ApoSin(wy.t + 0,)] Py (Cos &) (3.1.11a)
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V(E, T) = §: [8nm Anm Sinwpm T + Opm)

n=1

+ ®ne Anc Sin(wne T + Gne)] Pn(Cos &)

C(&, O) =0
Il’(g) O) =0
éﬁ_ (é: O) =_]_-_§_€’:
oT c oT

Oo = Opp = Ope = 0
Ao = Vg
Cidg

(3.1.11p)

(3.3.3a)

(3.3.3D)

(3.3.3c)

(3.3.3d)

(3.3.ka)

(3.3.40)

(3.3. k)

(3.3.4a)



Apy = One n n> 2 (3.3.ke)

Ape = Srm Yn n>2 (3.3.4f)
wne(dmm = 8ne) ©
The solution is of the form
((&,7) = A, Sin wyT + Ay Sin wp,r Pp(Cos &)
+ noée [Agm Sin wppm + ApeSin wyeT] Py(Cos &) (3.3.58a)
¥(&,7) = &, Sin o _r P (Cos &)
+ 3 [ Ay Sinw, 7 + Ay Sine 1] P (Cos &) (3.3.5b)

n=2

Ay 8nd A, are the radial amplitudes of the nth membrane

mode and the nth composite mode respectively. Similarly3Z£m and Z%C

are the meridional amplitudes of the nth membrane mode and nth composite
mode respectively. For all n > 2 the membrane mode radial and meridional

amplitudes, A, and'Z%m , are compared to the composite mode radial ampli-

tude Anc' Then

Bym | = Bpe ®ne (3.3.6a)
Bre Sm “nm
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= Sne ®nc (3.3.60)

S
Bne Onm

These two amplitude ratios are plotted in Figure 4 for
2<n<10, v =.3, and a/h = 20. Values shown are negligibly changed

for a/h = 200.

A2

.10

.08 L
Ratio

.06

okl

02 L

Figure 4. Plot of Amplitude Ratios
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Figure 4 indicates that for all appropriate a/h and n > 2 the
motion is predominately due to vibration in composite modes. Hence, it
1s assumed that the membrane contributions to { and ¥ for n > 2 are
negligible and that the response to velocity distribution (3.3.2) mey be
expressed as

o0

¢(k,7) = v, Sin wgr + [vy- £ 2 vp8,) Sin wy,r Py(Cos &)

=l s o0
Cloo = ,5 2
c O1m
o0
+ L vp Sym  Sin wpeT Py(Cos &) (3.3.7a)
n=2

CWye  Opp - Bpe

o0

V(g,m) =% ¥ v,S, Sin wyy, P1(Cos &)

n=l,3,...
Ch1m
2]
+ I v 8pm Bne Sin wyer Py(Cos &) (3.3.7D)
n=2
®ne Som = One

Expressions (3.3.7) do not satify initial conditions (3.3.3)

but an approximate set which is
¢(6, 0) =0 (3.3.8a)
v(g, 0) =0 (3.3.8b)

ot (&, 0) = Vo + V] - + L w8, P(Cos &)
ot c n=1,%,...
[¢]




+ Y vy Bm  Pp(Cos &) (3.3.8¢c)
N=2 ¢ Bpp -dne
ov (8, 0) =1 XL wvnSp Pi(Cos &)
o T onl,...
c
+ nzé vn Snm Bnc ﬁn(Cos £) (3.3.84)

C Snm'anc

Since w,, frequencies are higher than the fundamental frequency

wpe (see Table 1) the maximum amplitude of the fundamental mode is
attained after those of the membrane modes. Hence, the displacement com=-
parison of Figure L4 is not initially valid and the entire solution (3.3.6)

must be retained. The period of the fundamental mode Ty is

Te = 2T (3.3.9)

Cloe

All composite modes will have attained their maximum amplitudes within

a time H/QC&?C ; thereafter, the transition to predominately composite mode

deformation will have occurred and approximations (3.3.7) and (3.3.8) may
be used.

Since bending effects in the shell are predominately due to
composite mode motion an accurate determination of flexural stress may
be obtained from the approximate solution. The neglect of membrane mode
contributions, however, prohibits determination of membrane stress from

this solution.



CHAPTER &
RESPONSE TO A NEARLY UNIFORM
RADTAL IMPULSE

The basic response of & closed spherical shell to a uniform
radial impulse is the breathing mode of motion. Small non-uniformities
in the impulse mey cause this response to be dynemically unstable. The
results of Chapter 3 indicate that composite mode deformstions will pre-
dominate any deviation from the basic response. Breathing mode stability
is therefore studied with respect to perturbations of composite modes
of motion. Stability criteria are thus determined by the character of
nonlinear coupling between linear modes of motion, i.e. by the possibil-
ity of autoparametric excitation.
4,1 PFormulation

When an uniform impulsive pressure of short duration suddenly

envelopes & closed spherical shell, a radial velocity vy is imparted to

every shell element. In terms of the non-dimensional quantities pre-

viously introduced the initial conditions are

¢(g, 0) =0 (4.1.12)
v(gE, 0) =0 (4,1.1b)
3t (€, 0) =vo (4.1.1c)
oT c

ov (&, 0) =0 (k,1.14)
oT

3.
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where

e~

Governing equations of motion (2,4.10) and initial conditions

(4,1.1) are satisfied by a harmonic breathing mode,

C(gJ T) = Vo Sin DT (h,l,Ea)
Clg
V(g, T) =0 (k.1.2b)
where
1
2

wy = [2(1 + v)]

If the impulsive pressure is slightly non-uniform, this basic
response may be dynamically unstable. This possibility is to be studied
by applying an axisymmetric perturbation to the initial velocity, giving

initial conditions

¢(t, 0) =0 (k.1.3a)
¥(t, 0) =0 (4.1.3b)
3 (&, 0) = vy [1 4% ey Pp(Cos )] (h.1.3c)
— — n=L

oT c
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Yy (&, 0) =0 (k.1.34d)

where

€n K 1

The basic response will be termed stable if the amplitudes of
the deviation from the breathing mode remain of the order of magnitude
of e¢,. Conversely, if these amplitudes grow to magnitudes of higher

order, the basic response will be termed unstable.

4,2 The Approximstion

An exact solution of nonlinear equations (2.4%.10) satisfying
initial conditions (4.1.3) has not been found. An approximation is
feasible by utilizing results of Chapter 3.

The perturbation in the uniform initial velocity, equations
(4,1.3), constitutes initial conditions for the response to an arbitrary,
symmetric radial velocity distribution, equations (3.3.2). From Section
3.3 the corresponding linear response is predominately composite mode
motion. Thisresult is extended to the slightly larger motions anticipated
here. The perturbation of the basic response is limited to a superpo-
sition of composite mode motion on the breathing mode. The investigation
is thus a study of the stability of the breathing mode with respect to

composite mode deviation only.
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An approximate set of initial conditions is now formulated.

Conditions (4.1.3) are expressed in the form of (3.3.8) as
t(e, 0) =0 (h.2.1a)
V(t; 0) =0 (4,2.1b)

gg (¢, 0) = Vo 1+ (e1+ &) P1(Cos ¢)

oT c
+ ¥ e, Py(Cos &) (h.2.1c)
n=2

v (&, 0) = v, | T Py(Cos &)

3 c

+ i ensncén(Cos t) (4.2.14)
n=2

The quantity € represents the effect of having chosen a refer-
ence system so as to remove rigid body motion imparted by (4.1.3). € may
be determined by the method. outlined in the Appendix. The contribution
of € to the response will be of an order of magnitude of a perturbation
and is neglected. The approximation implies a perturbation free of a
first mode (membrane) component; hence, €1 is also neglected. The re-

sulting initial conditions are
¢(g, 0) =0 (h.2.2a)

Vv(t, 0) =0 (k.2.2p)
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3t (8, 0) =vy |1+ & e py(Cos &) (4.2.2¢)
= 2 ek

éﬂ (¢, 0) = Vo L en Bne iDn(COS £) (L.2.24)
Ot c n=2

The assumed solution consists of the breathing mode together

with composite modes. From equations (3.3.7) the appropriste representa-

tion is

E(t, 1) =ag(r) + & ay(r) Py(Cos &) (4.2.38)
n=2
W(EJ T) = ozo‘ a‘n(T) Snc én(COS g) (Ll"z'jb)
n=2

4,3 Stability of the Breathing Mode

The approximation of Section 4.2 allows a study of the stabil-
ity of the breathing mode using the energy formulation of Section 2.4.
The Lagrangian L is (2.4.3) minus (2.4.7). The neglect

of 2¢ with respect to unity gives
I
L =1 &2E bl J[ 3¢ | 2+ [av |2- ¥2- v2cot2t
1 -2 \81’ \a‘r
0

- 2(1 +v) (t2- ¥ Cot £ - ¢V + t2¥ Cot & + £2V)
+ 2012~ B2Y + ¢ t2- tvP+ ytot £ + 2 ¢ YRootPs

—ov(y ¥ Cot & - S VRY -2 eyl Cot & + 5 pv? - L g 2
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+ 3820 ot k) - 02[V2+ vBcot2t + 2 €V + 2 £ v Cot2t
+ 2 + EPcot2e + 2v(V ¥ Cot £ + £ ¥ Cot ¢

+t Yot £ +¢tF Cott)) Sinkdt (4.3.1)

Representation (4.2.3) is now substituted into the Lagrangian.

Initially an(n > 2) is of an order of magnitude of a perturbation, i.e.

an <K ag. lLagrangian terms of order three will therefore be retained

only if ag occurs to at least the first power. After inteeration the

Lagrangian valid for initial motion may be expressed

De; 2
2 e =0
L;_E__af_@_h<2 De,| +2 2 \Dr [l+5§cn(n+l)]
_9° e —
1-y2 Dr on+l

-2 % aﬁcaﬁ n(n+1) [n(n+1) =1+ v]

2n+l

(<]
b(l+v) (85 + 2 a5 [1 + 8pen(n + 1))
2n+l

o]
-202 ¥ af (L+8p)°n(n+1)[n(n+1)-1+v]
n=2 ontl

0

+8(L+v) as L Bne a% n(n + 1)
n=2
2n+l




240~

+ 4 ay %é 6%0 a% n(n + 1) [n(n+1) -1+ v]
n—

2n + 1

0
+2(1 +v) ag L a% n(n +1) (1 - 82 i:} (4.3.2)
2n+l
Quantities ap and an (n > 2) are identified as generalized

coordinates. Motion is, therefore, governed by Lagrange's equations

expressed as

_:g =0 (k.3.3a)
(Da.o) Bao
D |_2oL -JdL =0 n>2 (k.3.3b)
Dt a ]EE‘_E) aan
Dt

Introducing L from (4.3.2) into (4.3.3) yields the equations
governing initial motion. They are

0

D2aQ +2(L +v) ag = 2 a% n(n + 1) 1+ v

Dr2 =2 onil 2

+2 8pe(l+v) + 8§c[n(n +1) =3-v]) =0 (4.3.ka)
2

D2an (1 + S%C n(n + 1)) + ¢ 2(1 + v)[1 + 8y, n(n + 1)]

D72
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+n(n+1) [n(n+1) -1+ v] [aﬁc + o2(1 + 5nc)2] a,

-'J—(l - 82.) n(n + 1) (1 +v) +2 85 n(n + 1) [n(n+l) - 1+v]

L

+ 4 8,.(1 +v) n(n+1)) aga, =0 n>2 (4.3, ko)

Since a% << ay initially, equation (4.3.La) may be rewritten

as

D2ay + 2(L + v) ag =0 (4.3.5)
Dr2

the solution of which is the breathing mode motion

8o = Vo Sin wgT (4.3.6)

COJO

The constants of integration have been evaluated for initial conditions

following from (4.2.2) and (L4.2.3a).
Solution (4.3.6) is now substituted into (L4.3.4b). A change

of independent variable

gives

D@y, + (0 -y, Sin7F) a; =0 n>2 (4.3.7)




“ho.
where

Qn = 1 2(1+v)[1 + 8pe n(n + 1))

wg[l+8%c n(n+l)]

+ n(n+l) [n(n+l) - 1+ v] [88, + 02(1 + 8p)%] (4.3.8a)

up=ve 1 {(1-88)n(m+1) (1+v)
cog  1+990 n(n+l)

+ 2 5%0 n(n +1) [n(n +1) - 1+v]
+ 4 8pe (L + ) n(n +1) (4.3.8b)
Equation (4.3.8a) may also be expressed as

(4.3.9)

in =

55'§K>
(@]

thereby emphasizing the character of (L4.3.4b). The linear portion of the
equations represents motion in composite modes of vibration. The non-
linear, or ap apn terms represent coupling of the bresthing mode with
composite modes.

Equations (4.3.7) are Mathieu equations. Thus deviations from

the breathing mode are Mathieu functions and their growth characteristics
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are determined from the well known Mathieu stability diagram shown in

Figure 5 (see’for example,Stoker(l6) p. 202)1,

Whether or not a particular deviation amplitude a, remains of

an order of magnitude of a perturbation is readily deduced by location of

the point (Qp, wp) on Figure 5. If the point falls in an unshaded region
or on a boundary curve other than u, =0, the amplitude a, will increase

exponentially and the breathing mode is unstable. Such a deviation will
be called a critical deviation2. Otherwise a, will not change order of
magnitude and the breathing mode is stable,

The two bounding curves for a particular unstable region inter-
sect the positive ( axis at Q = ke/h (k =1,2,3,...). In the discussion

to follow a region will be denoted by this intersection, such as region

.25,

1 Breathing mode stability for the cylindrical shell was also found to
be governed by Mathieu equations by Goodier and McIvor(l3). Their
study includes analog computor results which demonstrate the stable
and unstable growth characteristics of Mathieu functions. These
results will not be reproduced.

2 TFloquet theory, see Stoker(l6) p. 193, predicts that a critical
deviation will grow without bound, an impossible consequence for
the fixed, finite energy input of the initial pulse, Terms in
(4.3.4) predominating after growth starts have been neglected.
Their effect is examined in Section L.k,
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The membrane stress generated by the breathing mode is

E Vo  Sin weT (4,3.10)

0o

1 -v Cld,

For the material to remain elastic, o, must remain less than the yield

o)

stress. Thus for a material of yield stress Oy the maximum radial

velocity imparted by the initial pulse may be expressed as

(ZQ) = oy Wo (1 =) (4,3,11)

max

About the largest cy/E value of practical interest is 5(10)72.

The meximum value of vo/c for this case is denoted Vygx and is
Vg = 5.646 (10)™ (k.3.12)

A pertinent portion of the Mathieu stability diagram for Vi,

is shown in Figure 6. The a/h curves have significance only at inter-
sections with the dashed, nearly horizontal lines denoting integer values
of n, Those intersections occurring in unshaded regions or on their
boundaries indicate deviation growth and breathing mode instability.

For example, for a shell of a/h = 100 intersections occur in

region 1.0 at n =21 and 22. Deviation amplitudes ap] and app, there-

fore 1increase exponentially and the breathing mode is unstable., For

a/h = 50 no intersections occur in an unshaded region or on a boundary
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and the breathing mode is stable. By interpolation between curves, ajp
will cause instability at about a/h = 35, Tt is notable that no instabil-
ity cen occur for n < 9, a/h > 20,

In Figure 6 critical deviationsoccur in region .25 for sufficiently
lerge a/h. At a/h = 150 deviations 11 through 17 will cause breathing mode
instability (other critical deviations occur outside region .25, a matter
to be discussed later). More and more critical deviations are included
in region .25 as a/h is increased.

Referring now to Figure 5, regions 1.0,2.25,... become increas-

ingly narrow strips for decreasing p. Should a point Cﬁh R ﬁh) fall

within such a strip an unstable solution is indicated. The corresponding
deviation is not classified as critical, however, because an unjustifiably
precise knowledge of the system constants is presumed in order to locate
(Qn, ). Furthermore, the inevitable presence of damping cuts off por-
tions of the unstable regions which border on the Q axis, see Bolotin(12),
§ 9. From Figure 6 it is clear, however, that critical deviations may
occur in regions 1.0,2.25,... for sufficiently high n and large values of
a/h. Therefore, as a/h increases consideration must be given to occurance
of critical deviations in more and more regions.

Iubkin and Stoker(1T)showed that in the presence of an arbitrarily

small amount of demping a value Qg exists for which the region O > Qg, u < @

is entirely stable. For large n,
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Hn Vo 1 (k.3.12)
- -

Qn CWqy a2 n2

Hence, for all a/h (expect the extensional case) some n exists above
which critical deviations will not occur.

It is interesting to note that the Mathieu diagram, Figure 5,
is symmetric about the Q axis. Consequently the stability criteria for
an inward initial velocity remain unchanged for an outward initial velo=-
city.

The stability diagram for .6 Vpex » OY, what is equivalent, for
the meximum velue of vo/c when cy/E = 5(10)"5 ; 1s shown in Figure 7.

The effect of this reduced initial velocity is apparent from comparison of
Figures 6 and 7. Since Oy is independent of vo/c, the ordinate p, of all
points is simply multiplied by the factor .6. The stability diagram for
any other vo/c may be determined accordingly.

Referring to examples given on p.lilk for Figure 6, reduction
of Vygx by .6 leaves only ap] @s a critical deviation at a/h = 100.

a/h = 50 still gives a stable breathing mode. a1p will no longer give

instability for any value of a/h; in fact, no critical devietions can now
occur for n < 14, As before, consideration of region .25 and of the por-
tion of regions 2.25,... with significant width is necessary for corres-

pondingly higher a/h and n.
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Two striking characteristics of stability behavior are noted
in Figures 6 and 7. The first is that relatively high order modes are

excited. At Vygy , oy/E = 5(10)'5, no modes of order less than 10 cause
instability. For smaller values of cy/E this lower limit is increased.

The second is that for thinner shells instability will almost always

occur,

4,4 Tong~term Behavior

The Mathieu equations governing breathing mode stability are
valid only for initial motion. Only those third order terms containing
ag to at least the first power were retained in Lagrangian expression
(4.3.2)., As indicated on p. L3, terms must be added to this expression
after deviation growth starts or a paradoxical energy buildup will occur.

The ratio of meridional to radial displacements dpe is much less
than unity for the composite modes which mey be strongly excited. Signif-
icant third order contributions to the Lagrangian (4.3.1) are thus assumed

to come solely from the term (1 +v) ¢ 52 since all other such terms con-
tain ¥ and/or i,

Using representation (4.2.2), the Lagrangian is now given by

(4.3.2) plus the term

+1 2
Ta?En S(L+v) | L anPa(x)| | anPh(x) a> (b..1)
l-VE n= m=2

-1
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Subsequent substitution into Lagrange's equations gives

2 2 S 2
D7ag + WGag - 1+v 2 n(n + 1) a§ =0 (h.h.2a)
L g
Dr? 2 on + 1
D2an + wg [Qn - Cly Hp 8g ] an
Dre Vo
+1
0 % 2
- (1+v) L agPr(x)|| X PL(x) | ax =0
o - m - Q- q
San | .7 " 4

(4. 4.2b)

The last term in each of equations (4.4.2) is significant only
for those n denoting critical deviations. In (4.4,2a) this term gives
a reduction of breathing mode amplitudes as deviations grow. This term,
containing the integfal, in (4.4.2b) will give two forms of contributions.
The first form will contain products of the a's with equal subscripts; the
second will contain products with unequal subscripts. The latter form
represents interactions between critical deviations.

The relatively high orders of Legendre polynomisls involved
prohibit the practical evalyation of the integral term in (4.4.2b). The

effect of this term has been determined at Vpgyx for one critical deviation,

a1 » and at 1.4 V. oy TOT two critical deviations, 8g and a ;,. The

numerical solutions of (4.4.2) showed the integral term to be of negligible

3

consequence in these cases,

5 ©Since the solutions are qualitatively similar to other cases to be
presented later they are not pursued in detail.
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This observation lends credence to an approximation which facilitates the
study of long-term behavior for higher values of n, It is assumed that
the second order terms which would result from the retention of the inte-

gral expression are negligible with respect to the linear term m% Qp ape

The resulting equations governing long-term motion,

o]
D2a, + wia, - l+v 2 n(n+1) af =0 (k. k. 3a)
Dre 2 on + 1
2 2 _
D=ap + wo n = cp Mn @ f|an =0 (ll'a LF.Bb)
Dr2 Vo

have been solved numerically for several cases of instability.
A representative long-term behavior is shown in Figure 8 for

a/h = 100, vo/c = Vpax . Critical deviations 21 and 22 grow in ampli-

tude, as was predicted in Figure 6, and are seen to enter a cyclic energy
exchange with the breathing mode.

The results for a reduced impulse of .6 x 1s shown in

Vg,
Figure 9. As predicted in Figure‘n only deviation 21 is critical and
again a cyclic energy exchange with the breathing mode is observed.

An interesting feature of the energy exchanges which was observed

in all solutions obtained is demonstrated in Figures 6 through 9. From

Figure 8, the time required for energy exchange to occur with ans 1s less
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than that with ap] . By comparison of Figures8 and 9, the time required for

exchange with as] is significantly increased for the reduced impulse .6 Vnax®

Noting the corresponding positions of these deviations on the stability
diagrams, Figures 6 and 7, it is observed that the time required for sig-

nificant amplitude growth is less for increased p, and for increased dis-

tance from the boundaries of the instebility regions.
The extent to which energy is transferred from the breathing mode

to critical deviations is of considerable interest. The total energy Ty

imparted to the shell by the impulsive pressure is

Ty =2l a% h v§ (bok, L)

The potential, or strain, energy stored in the shell at any time

V = 2T 8°Eh of | a3
1-9°
o0
+ 0 1 (Qnaﬁ - cwyg pnaoaﬁ) (4. 4.5)
n=2 opil o

In (4.4.5) the terms corresponding to the second order terms neglected
in (4.4.3) have been deleted. Should all the energy be contained in

critical deviation N, the potential energy at some time will be

Vy = 2Me®Fh w2 Oy af (4. 4.6)

1-12 ON+1
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Equating VN to T; gives the deviation amplitude AN for complete

energy exchange. It is

1
2
aQy CWgo
For N = 22 and Vmax )
App = 6.25 [vq (4.4,8)
Cdo
For N = 21 and .6 Vy.. ,
Agl = 64)4-9 Vo (l(-.)-l-.9)
Clo

From the maximum deviation amplitudes attained in Figures 8
and 9 it is concluded that the energy exchanges are essentially complete.
In Figure 8 the different time intervals for deviation growths result
in a significant energy content in but one deviation at some instant.
In both Figures 8 and 9 the amplitude aq of the breathing mode is seemingly
significant at times of essentially complete energy exchange. Its energy
content is, however, small. The total energy was calculated as a check
at each step of the numerical analysis. The energy content of the system
remained constant and thus the terms neglected in the approximation do not

significantly contribute to the total energy.
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The sum of the maximum flexural stresses in a case of complete

energy transfer is

(o, + o) = E ,h [NN+1)-2]4 (k. 4.10)
£ Vilex T " 2a
By substitution from (4.4.7),
%
(cg + on) = E h [N(N+l) - 2 2N+1 Vo (b4, 11)
flex l-V o8, QN ca_)o

In terms of oo, the stress produced by the basic breathing mode, (4.4.11)

becomes
1
(cg +o0) = h INN+1)-2 2N + 112 o, (k412)
N flex 2a N

For the two examples of essentially complete energy exchange given above

it follows that

(cg + Gn)flex = 15.75 o, (k. 4. 138)
J N=22
.

(op + oy )flex = 14.38 o, (L. 4. 13D)
| w21

Hence, the stresses caused by breathing mode instability may be considerably

in excess of those predicted by consideration of the breathing mode alone.
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The neglect of higher order terms in (4.4.2) limits numerical
consideration of long-term behavior. The limitation may be observed in

the potential energy expression (4.4.5). For sufficiently small Q  and
large u, this expression may become negative, a physically untenable
result. Such was the case in attempted numerical solutions for Vpo.»

a/h > 150, i.e. as modes grow the contributions of the integral term in
(4.4.2b) become significant. However, for all these attempted solutions

the deviation growth was initially as predicted by the Mathieu stability
diagram and the time required for significant growth was again characterized

by the location of the deviation with respect to u, and the bordering

curves.,
4.5 Conclusions

The closed spherical shell under nearly uniform axisymmetric
impulsive loading may undergo autoparametric excitation. The parametric
effect is generated by nonlinear coupling between the breathing mode and
certain composite modes of motion, i.e. by the interaction of the mem-
brane stress with the flexural curvature.

The breathing mode seldom excites relatively low order composite
modes. High order modes are almost always excited for thinner shells.

In those cases of long-term behavior for which numerical solutions
have been obtained an essentially complete, cyclic energy exchange occurs
between the breathing mode and the parametrically excited modes. Resulting
displacements and stresses are in excess of those predicted by a consider-

ation of the breathing mode response only.
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A thorough numerical study of long-term behaviors for very thin
shells (a/h > 150) has not been made. This limitation is due to extensive
computation required in the evaluation of an integral expression involving
relatively high order Legendre polynomials. Initial behavior for these
cases is not affected by the limitation; therefore, the same general con-
clusions are implied although quantitative results are not available.

Further pursuit of long-term behavior for very thin shells does
not seem appropriate for this axisymmetric formulation. A realistic
appraisal of the physical situation for the relatively large values of n
entailed for such shells indicates that asymmetric effects would be sig-

nificant.
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APPENDIX
In Section 3.3 an impulsive pressure acting on a spherical shell
is assumed to impart a velocity distribution aw/Bt symmetric about the polar
axis. This distribution can be represented as

dw = T vy By (Cos &) (A1)
ot n=0

The Legendre polynomials of the first kind may be expressed
in cosine expansions (see, for example, Magnus and Oberhettinger(lu),

P. 50 ). The expansion is

P,(Cos &) = (2n) [Cos nEg+1.n Cos (n-2) ¢
221’1(1,1_;)2 1l 2n-1

+ 13  n(n-1) Cos(n-4) ¢ +... 1 (a2)
1.2 (2n-1)(2n-3) A

The brackets contain n+l terms.

The momentum along the polar axis Mg is

Mg =| p h dw d(Area)
- (A3)

Area

Substitution of (Al) and (A2) into (A3) and integrating yields

Mg = =]l p 8«2 Z VnSn (Ah-)
n odd
where
Sn = (2n)! Y +1 n L
220(n!)2 ~ hn® 1 2n-l k-(n-2)2
+1:3 n(n-1) L rooe ]

122 (2n-1)(2n-3) h-(n-4)2 -
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Again the brackets include n+l terms.

Expression (A4) corresponds to imparting to the center of mass

A
of the shell & velocity V along the polar axis,

[a V) [o.9]
V=-% 2 v (45)
* n odd nen

The distribution ow/dt is now considered relative to a shell
~
whose center of mass is moving with velocity V. This relative distribution

will contribute only to shell deformation. It is

a=w+\=—i°‘2’vs P (C oiVPC 6
S% Vg [Vl v en n] Pp(Cos E) + R n(Cos &) (p6a)
du =+ § vhSn%l(Cos £) (A6b)
St n odd

) N . . . . .
where w and U are radial and meridional displacements respectively.



e

10.

11.

12,

15.

~fD -

BIBLIOGRAPHY

Lord Rayleigh. " On the Infinitesimal Bending of Surfaces of
Revolution", Proceedings of the London Mathematical Society,
XIIT (1888),p.k4.

Love, A.E.H. The Mathematical Theory of Elasticity, Dover Publi-
cations, New York, 194k,

Love, A.E.H. " The Small Free Vibrations and Deformetion of & Thin
Elastic Shell", Philosophical Transactions of the Royal Society,
179A (1888), p. L491.

Lemb, H., " On the Vibrations of a Spherical Shell", Proceedings of
the London Mathematical Society", 14 (1882), p. 50.

Silbiger, A. " Free and Forced Vibrations of a Spherical Shell",
ONR Report U-106-L8, December, 1960.

Baker, W.E. " Axisymmetric Modes of Vibration of Thin Spherical Shell",
The Journal of the Acoustical Society of America, 33 (1961), p. 17L49.

Naghdi, P.M. and Kalnins, A. " On Vibrations of Elastic Spherical
Shells", Journal of Applied Mechanics, 29 (1962), p. 65.

Kalnins, A. " Effect of Bending on Vibrations of Spherical Shells",
The Journal of the Acoustical Society of America, 36 (1964), p. Th.

Lord Rayleigh. " On Maintained Vibrations', Philosophical Maga-
zine, 15 (1883) Series 5, p. 229,

Minorsky, N. Nonlinear Oscillations, D, Van Nostrand Company, Inc.,
Princeton, 1962,

Bolotin, V.V, The Dynamic Stability of Elastic Systems, Holden-
Day Inc., San Francisco, 1964,

Goodier, J.N, and McIvor, I.K. " The Elastic Cylindrical Shell
Under Nearly Uniform Radial Impulse'", Journal of Applied Mechanics,

31 (196k4), p. 259,

Hildebrand, F.B. Methods of Applied Mathematics, Prentice-Hall,
Inc., Englewood Cliffs, 1956.




1k,

15.

16.

17,

-63-

Magnus, W, and Oberhettinger, F. Formulas and Theorems for the
Functions of Mathematical Physics, Chelsea Publishing Company,
New York, 1949,

McIvor, I.K. and Sonstegard, D.A. " Discussion of 'Effect of Bending
on Vibrations of Spherical Shells' ", The Journal of the Acoustical
Society of America, 37 (1965), p. 931.

Stoker, J.J. Nonlinear Vibrations, Interscilence Publishers, Inc.,
New York, 1950 '

Iubkin, S. and Stoker, J.J. " Stability of Columns and Strings Under
Periodically Varying Forces', Quarterly of Applied Mathematics, 1
(1943), p. 215.




