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Planar Reorientation Maneuvers of Space Multibody
Systems Using Internal Controls

Mahmut Reyhanoglu* and N. Harris McClamrocht
University of Michigan, Ann Arbor, Michigan 48109

In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is
developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used
as means of control so that the total angular momentum of the multibody system is a constant, assumed to be
zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum.
We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multi-
body system with respect to an inertial frame. The theoretical background for carrying out the required
maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver,
and the corresponding control strategies, are described.

I. Introduction

I N this paper we develop a reorientation strategy for a sys-
tem of N planar rigid bodies in space that are intercon-

nected by ideal frictionless pin joints in the form of an open
kinematic chain. Angular momentum preserving controls,
e.g., torques generated by joint motors, are considered. The
TV-body system is assumed to have zero initial angular momen-
tum. Our earlier work1'2 demonstrated that reorientation of a
planar multibody system with three or more interconnected
bodies using only joint torque inputs is an inherently nonlinear
control problem that is not amenable to classical methods of
nonlinear control. The goal of this study is to indicate how
control strategies can be explicitly constructed to achieve the
desired absolute reorientation of the TV-body system.

There are many physical advantages in using internal con-
trols, e.g., joint torque controls, to carry out the desired multi-
body reorientation maneuvers. First of all, this control ap-
proach does not modify the total angular momentum of the
multibody system. In addition, internal controls have obvious
advantages in terms of energy conservation. Moreover, they
can be implemented using standard electrical servo motors, a
simple and reliable control actuator technology.

The formal development in this paper is concerned with
control of a multibody interconnection in space that has zero
angular momentum. Although these results are formulated in
a general setting, we have been motivated by several classes of
specific problems. Several potential applications of our gen-
eral results are now described.

Manipulators mounted on space vehicles and space robots
have been envisioned to carry out construction, maintenance,
and repair tasks in an external space environment. These space
systems are essentially multibody systems satisfying the as-
sumptions of this paper. To carry out the desired tasks, they
must be capable of performing a variety of reorientation ma-
neuvers. Previous research on maneuvering of such space
multibody systems has mainly focused on maneuvers that
achieve desired orientation of some of the bodies, e.g., an end
effector, whereas the orientation of some of the remaining
bodies cannot be specified, at least using the methodologies
employed.3"8 Using the approach suggested in this paper, ma-
neuvers that achieve any desired reorientation for all of the
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links of the system can be accomplished. Such additional flex-
ibility in performing reorientation maneuvers should have
great practical significance for completion of robotic tasks in
space.

Another related application is the performance by astro-
nauts of reorientation maneuvers in space. Although it is well
known that astronauts in space can perform a variety of com-
plicated reorientation maneuvers, without the use of thrusters,
the theoretical basis for such maneuvers is incomplete. Again
we note that an astronaut in space can be considered as a
multibody system that satisfies all of the assumptions of this
paper (except that motion is not restricted to be planar). Con-
sequently, the theory in this paper is applicable in principle to
the study of the maneuvering capability of astronauts in space.
Previous research in this area9 has emphasized dynamics is-
sues. Other closely related research has focused on describing
the reorientation maneuvers of a falling cat.10

Finally, we mention another area of potential application of
the results of this paper, namely, the development of deploy-
ment maneuvers for multibody antennas connected to a space-
craft. If deployment maneuvers for an antenna, or other de-
ploy able structures, are performed using only torque motors
at the joints of the antenna segments, then the spacecraft-
antenna system is a multibody system that satisfies the assump-
tions of this paper. Consequently, our results can be used to
develop efficient antenna deployment maneuvers. The impor-
tance of such deployment maneuvers is that they do not change
the final orientation of the spacecraft or the total angular
momentum of the spacecraft-antenna system, thereby reduc-
ing the requirements of the spacecraft momentum manage-
ment system. To our knowledge, such control approaches to
antenna deployment have not yet been exploited. It is expected
that such an approach would have many advantages over the
use of existing passive antenna deployment mechanisms.11

This paper is organized as follows. In Sec. II, a mathemati-
cal model for a planar multibody system in space is derived.
We then formulate a control problem associated with planar
multibody reorientation. In Sec. Ill, we first summarize sev-
eral relevant theoretical results. We then introduce a control
strategy to solve this reorientation problem. In Sec. IV, we
apply the theoretical results to a three-link system. We present
computer simulations illustrating the control strategy. Section
V consists of a summary of the main results and concluding
remarks about future research. Although a complete treatment
of the topics in the paper requires use of differential geometric
tools, our presentation avoids these tools and uses only ele-
mentary mathematical methods. However, references to rele-
vant literature are provided throughout.
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II. Problem Formulation
We consider a system of TV planar rigid bodies intercon-

nected by frictionless one-degree-of-freedom joints in the form
of an open kinematic chain. The configuration space, for an
observer at the center of mass of the system of rigid bodies, is
N dimensional. Since we assume an open kinematic chain,
there are exactly TV-1 joints. We consider controlling the
rotational motion of the system using torques at the joints;
each joint is assumed to be actuated so as to permit free adjust-
ment of the joint angle. It is assumed that there are no external
torques acting on the system. It is clear that the configuration
of the N bodies can be described by the absolute angle of any
one of the bodies (say body 1) and TV- 1 joint angles. Denote
by 0i the absolute angle of body 1 and by the (TV- 1) vector
i /^OAi,. . . ,i/W-i) the joint angle vector. Clearly, (0i,^) is a
generalized coordinate vector for the rotational motion. It can
be shown that the Lagrangian (which is equal to the rotational
kinetic energy under the preceding assumptions), written in
terms of these coordinates and their time derivatives, does not
contain 6\ explicitly, i.e., 0i is a cyclic or ignorable coordinate.
Consequently, the generalized momentum associated with the
cyclic coordinate 0] is conserved. This conserved quantity is the
first integral of the motion corresponding to conservation of
angular momentum of the system. In this paper we assume
zero initial angular momentum so that angular momentum
remains zero throughout a maneuver.

It is clear that Lagrange's equations describe the motion on
the joint angle space, and the evolution of 0t can be obtained
from the expression for conservation of angular momentum.
Thus, the motion of a planar multibody system, under the
preceding assumptions, can be described by the following re-
duced-order equations:

(1)

(2)

where T = (TI , . . . ,r/v-i) denotes the (TV-1) vector of joint
torques, Js(\l/) is a symmetric positive definite (TV-l)x(TV-l)
matrix function, and s(\I/) and Fs(\l/,\l/) are (TV - 1) vector func-
tions. Note that in this paper a prime denotes transpose. The
explicit specifications of these functions can be found in the
literature.1'2'12

State-space equations for Eqs. (1) and (2) are

(3)

(4)

(5)

Note that Eqs. (4) and (5) are expressed in terms of the joint
phase variables (^,$) only. Hence the joint angle space con-
stitutes a reduced configuration space for the system. This
reduced configuration space is also referred to as the " shape
space" of the system.12'16 It is possible to consider control
problems expressed solely in terms of the shape space; such
problems can be solved using classical methods. However, in
our work we are interested in the more general control prob-
lems associated with the complete dynamics of the multibody
system defined by Eqs. (1) and (2) [or Eqs. (3-5)].

Note that Eqs. (4) and (5) only, which represent the projec-
tion of the motion onto the shape phase space, are feedback
linearizable using the feedback transformation

\l/ = co

u = - (6)

where u £RN~l. The previous feedback transformation yields
the following normal form equations:

(7)

\l/ = co (8)

cb = u (9)

We remark here that it is impossible to completely linearize the
system defined by Eqs. (3-5) using static or dynamic feedback
combined with any coordinate transformation.

Note that an equilibrium solution of Eqs. (3-5) correspond-
ing to 7 = 0 [or equivalently an equilibrium solution of Eqs.
(7-9) for u =0] is given by (0f, 1/^,6), where (0f,^0 is referred
to as an equilibrium configuration. Hence, an equilibrium
solution corresponds to a trivial motion of the system for
which all of the configuration space variables remain constant.

Note also that Eq. (3) represents conservation of angular
momentum. This equation is nonholonomic for TV>3 (i.e.,
if the multibody system consists of three or more links), since
the differential expression (3) is not integrable for TV> 3. This
fact has important implications in terms of controllability
properties of the system as will be shown in the subsequent
development. As a consequence of the symmetry possessed by
the system, 0i does not apear explicitly in Eq. (3). Mechanical
systems with such symmetry properties are referred to as non-
holonomic Caplygin systems.17'21 As a consequence of the
nonintegrability for TV> 3, the scalar analytic functions

(/,./) e/2 (10)

where 7 = { l , . . . , T V - l ) , d o not all vanish, except possibly on
a set that has measured zero with respect to the shape space.

III. Reorientation Maneuvering Problem
In this section, we address the following control problem

associated with planar multibody systems described by Eqs. (1)
and (2):

Problem: Given an initial state (0?, ̂ °, co°) and a desired
equilibrium solution (0( ,i/^,0), determine a motion

such that

and

satisfies Eqs. (1) and (2) for some control function t^r(t).
Note that, in particular, if co° = 0, then this problem corre-

sponds to a rest-to-rest maneuver.
The existence of solutions to this control problem was

demonstrated in our earlier work.1'2 In particular, we studied
the nonlinear control system described by Eqs. (7-9) and em-
ployed certain results from nonlinear control theory to charac-
terize controllability properties of planar multibody systems
described by Eqs. (1) and (2). These results not only prove the
existence of solutions of the preceding problem but also pro-
vide a theoretical basis for construction of nonlinear control
strategies required to achieve the desired maneuver. We next
summarize those results.1'2

Under the stated assumptions, a planar multibody system
has the following properties if TV > 3, i.e., if it consists of three
or more links:

1) The system is strongly accessible.
2) The system is small time locally controllable from any

equilibrium.
3) The system can be transferred from any initial condition

to any desired equilibrium in arbitrarily small time.
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If TV = 1 or 2, then the system is not even accessible and is not
small time locally controllable, and there exist initial condi-
tions that cannot be transferred to a desired equilibrium.

The proofs1'19 of the first two results depend on showing
that certain Lie algebraic conditions are satisfied if 7V>3. The
third result is proved1'19 constructively.

It should be emphasized that the subsequent development is
assumed to be carried out for multibody systems consisting of
three or more links (TV >3); this should be understood even if
it is not always explicitly stated. Note that the reorientation
problem generally has many solutions. In this paper, we de-
scribe one solution approach, outline the theory behind it, and
present some data from simulations. The key observation is
the following.

Consider Eq. (3). Assume that joint angles are controlled in
such a way that \l/(t)9 0 < / i < * < * 2 » describes a closed path 7
in the shape space. Integrating both sides of Eq. (3) from t = t\
to t = t2 and using the fact that d^ = j/ dt, we obtain

(11)

Thus, by proper selection of a path 7 in shape space, any
desired geometric phase (which is a rotation of link 1) can be
obtained. By the nonintegrability property just mentioned, the
preceding integral is in fact path dependent, thereby guaran-
teeing the existence of (many) such paths.

Note that in differential geometry the quantity

is referred to as the geometric phase (or holonomy) of the
closed path 7. This quantity depends only on the geometry of
the closed path and is independent of the speed at which the
path is traversed.

Note that Stokes' formula can be applied to obtain an equiv-
alent formula for a(y) as a surface integral. For simplicity,
assume that TV = 3, i.e., the shape space is the (^1,^2) plane.
Also, let 7 be traversed counterclockwise. Then by Stokes'
theorem the preceding formula can be written as

zWi
where S is the surface within the boundary 7. In the case that
the path is traversed clockwise, the surface integral is equal to
-a(y).

More information concerning geometric phases can be
found in the literature.15 Geometric phase ideas have proved
useful in a variety of inherently nonlinear control prob-
lems.19"21 These ideas have also been used for a class of path
planning problems based solely on kinematic relations.13'14'16

Fig. 2 Function

We now describe a control strategy, using the preceding
geometric phase relation (11), which solves the reorientation
problem.

Let (0f,^e,0) denote the desired equilibrium solution. We
refer to (B\,\l/e) and \l/e as the desired equilibrium configura-
tion and the desired equilibrium shape, respectively. We de-
scribe four steps involved in construction of an open-loop
control function U[0ttf) = (MI , . . . , UN_ i)' that transfers any ini-
tial state ((??,^°,w°) to (0i,i/^,0) in time exactly t f , where tf>0
is arbitrary.

Let Q<ti<t2<ti<tf denote an arbitrary partition of the
time interval [0, (/•).

Step 1: Transfer the system to the desired equilibrium
shape, i.e., find a control that transfers the initial state
(0?,^0,a>°) to (01,^,0) at time ti9 for some 0|.

Since the dynamics on the shape phase space are so simple,
namely, decoupled double integrators, step 1 has many solu-
tions that are easily obtained using classical methods. One such
control function is

M[0,f i) = "

cosl —
i f € [0,0.5*0

Lsm

*€ [0.5*i,*0
(12)

Next, we select a closed path 7 (or a series of closed paths,
see remark 1 following) in the shape space that achieves the
desired geometric phase. There are many ways to accomplish
such a construction; in our work we have found it convenient
to use only two joint motions, keeping the other joints locked,
and to use a square path in the restricted two-dimensional
shape space. It is convenient to select the center of the square
path in a region of the shape space that corresponds to a
"large" geometric phase change (see remark 2 following).

To make the earlier ideas more concrete, we present a spe-
cific construction. Let (ij) € 72, / &j9 denote a pair of joints.
Assume that for t>t\ only this pair of joints are actuated
while all of the other joints are kept fixed. This is equivalent
to locking all of the joints except the ones labeled / and j
and treating the TV bodies as three interconnected bodies, for
t > ti . In this case the desired geometric phase formula can be
written as

where +(-) corresponds to counterclockwise (clockwise)
traversal of the closed path 7. Since we desire to make
0i((/) = 0f> the closed path 7 should be selected to satisfy

Fig. 1 Three-link example. 0?-0!=±c*(7)
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The path 7 lies in the two-dimensional plane, so that

where the scalar functions 5/(^/,^) and Sj(\l/i9\l/j) are obtained
by evaluating 5/(^) and Sj(\l/) at ̂  = \l/e

k, vA: € 7 where A: 5* /,y .
As mentioned earlier, we choose 7 to be a square path in the

O/'/j'A/) plane that is centered at the shape defined by \j/* and
that has side of length z*, where z* satisfies

Here yz indicates the dependence of the square path on the size
parameter z. In most cases, this equation is easily solved using
standard numerical procedures.

Thus the four corner points of this square path are defined
by shape vectors

where ei and e/ are the /th and yth standard basis vectors in
RN~l. Thus the specific square path selected depends on the
TV - 1 vector ^* that is the center of the square and the size of
the square z*.

Remark 1: Note that here, for notational simplicity in pre-
senting the main idea, we assume that the desired geometric
phase can be obtained by a single closed path. In general, more
than one closed path may be required to produce the desired
geometric phase; for such cases 7 can be viewed as a concate-
nation of a series of closed paths.

Remark 2: Selection of the center point ^* of the path is
rather arbitrary, e.g., one selection is \j/* = \j/e. However, other
choices may provide a greater change in the geometric phase
for a given size path. In this regard, the use of Stokes' theo-

rem, as indicated previously, suggests that \[/* should be chosen
where

is a maximum.
We now describe the remaining three steps as follows.
Step2: Transfer the system from state (0j,i//e,0) to a state

corresponding to the corner of 7 closest to \j/e, along an arbi-
trary path in the shape space, in tj. — t\ units of time.

As an example, if p* is the corner of 7 closest to \//e, we
propose the following control function for step 2:

(13)

Step 3: Traverse the selected square path (counterclockwise
or clockwise, depending on the sign of the desired geometric
phase value), in t3 -12 units of time; the resulting change in
the angle 0i is necessarily 0f-0}.

Without loss of generality, we assume that the desired geo-
metric phase value is obtained by counterclockwise traversal
of the closed path starting and ending at/7*. Then, the follow-
ing control functions guarantee traversal of the closed path,
thereby accomplishing step 3:

u[t2)t2+h} =
.

sin

h2 •sm

(14)

(15)

(16)

(17)

Step 4: Transfer the system back to the desired equilibrium
shape \l/e following the path used in step 2, in tf -13 units of
time, thereby guaranteeing that the desired final state (0f ,i/^,0)
is reached at time tf.

The following control function

(18)

accomplishes step 4.
The corresponding control torque T can be computed using

Eq. (6). It is clear that the constructed control torque transfers
the initial condition of the system (1) and (2) to the desired
equilibrium configuration at time tf. It is important to empha-
size that the preceding construction is based on a priori selec-
tion of a square as the closed path in the shape space. Selection
of square paths simplifies computation of the controls; how-
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Fig. 5 Motion in shape space.
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Table 1 System characteristics

Body /
1
2
3

a, m
0.5
0.5
0.5

b, m
0.5
0.5
0.5

m, kg
120

12
12

/, kg-m2

10
1
1

and the vector function F5(\l/,w) can be expressed as

ever, other path selections could be made. There are infinitely
many choices for control functions that accomplish the pre-
ceding four steps, and the total time required is arbitrary.

IV. Example of Maneuvering a Three-Body System
In this section, the theory developed in Sec. Ill is used to

illustrate a specific maneuver for interconnected multibodies
using only torque inputs at the joint connections. As discussed,
general planar maneuvers cannot be achieved using two or
fewer interconnected links. An interconnection of three links
provides complete maneuvering capability; consequently, that
is the case considered here. Maneuvers of an interconnection
of more than three links can always be reduced to a sequence
of submaneuvers, each submaneuver involving the motion of
only three links.

For illustration purposes we consider a planar three-link
system modeled as in Fig. 1. The first link represents a space-
craft, whereas the other two links represent antenna segments;
the reorientation maneuver that is studied represents a deploy-
ment of the antenna that is to be accomplished while achieving
a specified orientation of the spacecraft. The system character-
istics are given in Table 1.

Using the notation already introduced with TV = 3, the fol-
lowing are the reduced-order equations of motion

(19)

(20)

= MI

(21)

(22)

(23)

The functions s\(\l/i9\l/2) and 52(^1,^2)» determined from the
angular momentum expression, are given as

= 1,2

where

NW) = 17.5 + 7.5 cos i/'i + 10.5 cos fa + 2.5 cosfch + fo)

7V2(i/0 = 3.75 + 5.25 cos i/-> + 2.5 cosfth + fo)

D(\fr) = 32.5 + 15 cos i/'i + 10.5 cos fa + 5 cos(^i + fo)

and the transformed input u is related to the control torque r
by

where Js($) is a 2x2 matrix with entries

JSllW) = 17.5 + 10.5 cos ife - N

JSl2W) = 3.75 + 5.25 cos ife - N

JS2l(ifr) = 3.75 + 5.25 cos ife - N

•"• i V T » *•" / j , ' > * \ l l i ^ « 'd/ 2 o\l/ L J

where \I/ = (\l/\9 ^2) and a) = (o?i, 002). We first compute the func-
tion

on [-7r,7r]x [-7r,7r]. This function is shown graphically in
Fig. 2. The joint angles (^1,^2), where H takes the largest
absolute value, are approximately

[(27T/3, 57T/6) , (-5ir/6, -2ir/3)]

Consequently, geometric phases for the square paths centered
at ^* = (27r/3,5?r/6) are computed numerically. Figure 3
shows the geometric phase as a function of the size of the
square path.

We present a representative rest-to-rest maneuver that de-
ploys the antenna segments from a folded configuration to a
deployed configuration while achieving a desired orientation
of the spacecraft link. The maneuver is defined by an initial
rest configuration (0, TT, - TT) and a final rest configuration

Fig. 6 Control torques n and

Initial Configuration Step 2

Step 3 Step 4 Final Configuration

Fig. 7 Configuration of links.
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(0.57T, 0, 0). The specific control functions indicated previ-
ously were used in the simulation; the times for each of the
indicated steps are ti = 8, t2=12, ^3 = 20, and tf = 24. In this
particular case, the required geometric phase change 0f —0}
was computed to be 0.39 rad, which defined the square path
used in the simulation.

The time responses for 0 l 5 ^, and \[/2 are shown in Fig. 4.
Figure 5 illustrates the motion in the shape space. The control
torques T\ and T2 are shown in Fig. 6. In Fig. 7 the maneuver
is demonstrated by showing the configuration of the links for
a sequence of uniformly spaced time instants.

V. Conclusions
In this paper we have developed a reorientation maneuver-

ing strategy for planar rigid bodies interconnected by ideal pin
joints in the form of an open kinematic chain. The maneuver
strategy uses the nonintegrability of the expression for angular
momentum conservation. We have demonstrated that large
angle maneuvers can be designed to achieve an arbitrary reori-
entation of the multibody system with respect to an inertial
frame; the maneuvers are performed using internal controls,
e.g., servo torque motors located at the joints of the body
segments. The theoretical background for carrying out the
required maneuvers has been briefly summarized. The results
have been applied to a specific space maneuver of a three-body
interconnection. We mention two nontrivial extensions of the
approach in this paper that are currently being developed. The
first extension is to nonplanar reorientation maneuvers of
multibody systems; in this case the dynamics issues are much
more complicated, but in principle the approach is viable.22

Another extension is the development of feedback implemen-
tations of the controls presented in this paper; some results
have been obtained19 using a (necessarily) discontinuous feed-
back strategy. These important extensions generally require
the use of differential geometric methods for a complete treat-
ment. One motivation of the present paper has been to present
the key ideas, in the case of planar reorientation maneuvers,
using only elementary methods of analysis.
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