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Abstract 

An extremum problem formulation for the equilibrium 
analysis of general structures made of stiffening material is 
applied to the analysis of trussed structures. The nonlinear 
material is modeled in a way to simulate an arbitrary, po- 
lygonal stress-strain relation; material properties may vary 
over the truss. The form of this convex nonlinear program- 
ming problem statement is convenient for the prediction of 
the evolution (over the truss system) of local member stiff- 
ening under increasing proportional load. Computational 
solutions are obtained directly on the basis of the extremum 
problem statement, using commercial minimizer software. 
The formulation for analysis is extended to model a design 
problem for the prediction of the optimal modification of 
certain material properties, namely the bounds that reflect 
the onset of stiffening in the material. Computational re- 
sults for this optimal material design problem are also pro- 
vided. 

1.0 Introduction 

The goal of this paper is to demonstrate the utility of a re- 
cently developed extremum principle' in the context of the 
analysis and design of structures that include nonlinear- 
stiffening materials. In brief, the formulation treats total 
strain in the nonlinear problem as a superposition of an ar- 
bitrary number of independent constituent fields. The prob- 
lem is expressed in 'mixed form'. and i t  has the structure of 
a convex, constrained, nonlinear extremum problem state- 
ment. This additive decomposition of a nonlinear material 
response is distinct and offers certain advantages over typ- 
ical formulations (" "',4' . The model is general for materi- 
als of stiffening type; i.e. with the proper identification of a 
set of parameters, it is possible to simulate any stiffening 
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material. Also, the parameters that are used to define the 
material properties, (here the moduli of each constituent 
field and bounds on the constituent response) appear ex- 
plicitly in the problem formulation, and this facilitates an 
extension of the formulation to treat certain aspects of de- 
sign of material properties. 

The first aspect of the paper specializes the general prin- 
ciple for its application to the analysis of truss structures 
made of stiffening materials. The problem formulation is 
stated and interpreted for general trussed structures. Using 
a commercially available optimizer package, numerical so- 
lutions of two nonlinear trusses are provided as examples 
of the feasibility and utility of this approach. In the second 
phase of this study, a convex extremum problem statement 
is presented for the optimal design of material parameters 
related to the onset of stiffening. This second problem al- 
lows the nonlinear aspects of the structural response to be 
fashioned within a resource constraint. A numerical exarn- 
ple of this material design problem is also provided. 

2.0 A Minimum Principle For  Equilibrium Analysis 

The minimum principle described by Taylor' for general 
continuum structures is specialized here for arbitrary two 
or three dimensional trusses. Our approach is to first de- 
scribe the structure of the model for the nonlinear stiffening 
material itself, and then to present the extremum problem 
statement covering global equilibrium analysis for the truss 
made of such material. Computational results showing the 
evolution of hardening over the truss system under increas- 
ing load are presented in this section as well. 

2.1 Model Description 

Total strain of the nonlinear stiffening material is rep- 
resented (for the i th truss member) in terms of independent 

P measures oi and ci ( S  = 1, 2, . . . N i )  as 



This superposition corresponds in form to the representa- 
tion of kinematics for a system in which mechanical ele- 
ments, each associated t i t h  the separate measures in ( I ) ,  
are connected in series. El represents a specified constant 
which can be interpreted as the modulus of the ol constit- 
uent. Suppose now that the quantities E!, which are re- 
ferred to as constituent strains, have the following form: 

I o l / ~ $  when (-pa < E! < 61) . else 

E$ = E! when (ol 2 E~E!) (EQ 2) 

B B 1 -e$ when (ol 5-E,  5 )  

Here values E!, cF. and E! are specified and can be inter- 
preted as the modulus, lower bound, and upper bound of 
the E! constituent, respectively. This stress-strain relation 
describes what has been labelled an elastic/locking mate- 
rial (see Figure 1); the model was first presented by pager s. 
With this definition of constituent strains E$, the total strain 
of expression (1) has the form shown i_n Fioure 2. Given 

73 that the values specified for parameters E , ,  Ei . p!, E!, and 
N , ,  are arbitrary, the polygonal form defined by (1) and (2) 
is regarded to be the general representation of constitutive 
properties for the stiffening material considered in this pa- 
per (we do not address here the identification problem, es- 
sentially one of curve-fitting, of matching the present 
model to data for a specific material). 

FIGURE 1. Plor of ~ h c  locking and cndunng constituent strcrs 
stram bchavlor of  a trus5 member. 

- - - - --- - 

The formulation for global equilibrium analysis is de- 
scribed next. I t  is distinguished from certain known mixed 
models for the analysis problem (see e.g. Washizu6, Oden 
and ~ e d d ~ ' ,  ~rthurs ' ,  and sewel19) by the features that i t  
has the form of an e.rtremum pmhlem, and i t  provides in its 
structure for specification of material properties (for the 

general polygonal material) in terms of a set of parameters. 
We note also that in the present formulation the model for 
our nonlinear material is incorporated quite simply (in im- 
plicit form) within the variational problem statement, and 
consequently it becomes unnecessary ever to deal directly 
with the mathematically cumbersome forms of ( I )  and (2). 

FIGURE 2. Plot of the total stress strain behavior of a truss 
member. 

The variational problem statement described here can be 
identified as a generalization of the classical minimum po- 
tential energy formulation for equilibrium analysis of sys- 
tems with linear materials (indeed, the conventional form is 
recovered as a special case within our formulation)'. Ex- 
pressed in words the problem is stated: 'Minimize a load 
factor within constraints that bound the value of a gener- 
alized potential energy, that reflect limits on the magnitude 
of the strain constituents introduced in (1) above, and that 
enforce strain-displacement relations'. In the context of the 
variational problem, the load factor a, stresses (3,' strain 
constituents EQ, and nodal displacements u, are indepen- 
dent. The problem formulation may be expressed in the fol- 
lowing form: 

I 
min a 

a, a. E ,  u 
subject to: 



Additional syrnbols appearing here are A, and I i  for mem- 
ber area and length, py and u y  for system loads and dis- 
placement fields, Diy for the compatibility matrix. M 
represents the number of truss members in the system and, 
N identifies the number of independent nodal displace- 
ments u y ,  and N, is the count of independent constituents 
in the i th member. 

Formulation [PI describes a convex, constrained nonlinear 
programming problem. Thus the 'necessary conditions' for 
the problem suffice to detennine a unique solution, and it 
may be verified that the equilibrium state of the truss is giv- 
en by this solution. Toward a verification of this, the 
Kurash-Kuhn-Tucker conditions for the problem are to be 
interpreted. With multipliers A ,  v:, up, and K~ associated 
with constraints ( C  1 - 3)  respectively, stationarity with re- 
spect to load parameter a ,  and fields crl, E:, and uy are (in 
order, and after s~mplification): 

Equation (3) simp1 y provides for the evaluation of A .  Sub- 
stitution of K~ = A o I  from (4) Into (6) produces a state- 
ment of the system equilibrium equations in terms of 
stresses o,, i.e., 

With the elimination of K~ from equations ( 5 ) ,  the constit- 
uent strains are expressed as: 

For convenience i r  = I l y / ~  and ;! = U ~ / A  are intro- 
duced The solution to problem [PI is required to satisfy the 
following additional necessary (KKT) conditions: 

-P B  -P A , I , ~ ,  (E, -E!) = o p i  2 o 
- P  - P Vi ; VP (EQ lo) 

Aillui  (-E/ - $) = 0 ui 2 0 

N, 

A { D i Y y  - ( + l i  = 0 Vi ( E Q  11) 

y =  1 Ei p = 1  

To complete the interpretation of this system, note from (4) 
and (1 1) that oi # 0 implies satisfaction for the respective 
truss member of the strain-displacement constraint (C3). 
This this property together with (7) assures that fields oi 
and E: in combination satisfy the system equilibrium and 
compatibility relations. We note that these results apply in- 
dependent of the degree of material stiffening associated 
with the particular solution. This latter condition is inter- 
preted uni uely for each constituent field &: as follows. If ? - P  0 < E! < Ei or 0 I --E! < E!, from (10) p i  = 0 and 
;/ = 0, whereby (5) provides (for the P th constituent): 

( E Q  12) 

In other words, the constituents for which this relation 
holds follow their respective linear stress-strain behavior. 
Otherwise, for fir > 0 or (5: > 0), from (10) E/ - C: = 0 
(or -E! - $ = 0), i.e. the constituent is in the locked state. 

-P  - P  Accordingly, multipliers p i  and u, may be evaluated from 
( 5 )  as: 

- P P-P Vk; VP pI = 0. - Ei  Ei ( E Q  13) 

- P P P  Vk;VP u.  = -oi - Ei -Ei ( E Q  14) 

One or the other of these conditions necessarily applies to 
every constituent, i.e. for each value of p and over all truss 
elements. It may be verified from the necessary conditions 
that for every element i , each constituent p within the set 
Ni = { pi ( P  = 1, 2, . . .Ni)  } belongs either to 
Ni = { !3 E Nil (E? < E!) and (--E/ < $) } , 
N, = p E N~ ( E B  = r!) 1 , or 
Ni = { f3 E Nil (-&r = $) },  and Ni  = Ni u Ni u N. In 
this way it its clear that the constituent fields &: are fully 
determined via the necessary conditions listed, and this to- 
gether with the already indicated solution oi provides that 
the unique solution to the global equilibrium analysis prob- 
lem [PI is complete. 

In summary, the means has been described by which the 
equilibrium analysis problem for arbitrary trusses, having 
members whose constitutive properties correspond to a pa- 
rameter-specified polygonal form of stiffening material, is 



represented in the form of the convex problem [PI. It may 
be of interest to note that this model is dual in concept to a 
formulation presented earlier by Taylor" for softening ma- 
terials. 

2.2 Computational E x a m ~ l e s  

The following examples demonstrate the feasibility and 
utility of using the model [PI for equilibrium analysis to 
predict computationally the evolution of response of truss 
structures composed of nonlinearmaterials. The model was 
implemented using a commercially available constrained 
optimizer program incorporated in MATLAB", running on 
a Hewlett-Packard computer". This program is based on a 
sequential quadratic programming algorithm13. The model 
was interpreted directly into the program, with no special 
provisions made to improve efficiency of the solution pro- 
cedure. For instance, the gradients were calculated numer- 
ically rather than provided in analytic form. For all the 
models discucsed here, each solution required on the order 
of 10' seconds on the computer. 

The numerical implementation was checked by comparing 
simple one and two dimensional trusses with a typical anal- 
ysis pieced together manually. However a special feature of 
this model is that equilibrium is not explicitly specified, 
i.e., equilibrium is a consequence of the minimization. 
Thus verification that the end result truly satisfies equilib- 
rium provides a check on the numerical implementation of 
the minimization. 

2.2.1 Pentaronal Truss 

The first model demonstrates the application of this method 
of analysis to a typical truss geometry. This geometry con- 
sists of five nodes and nine bar elements as shown in Figure 
3. The truss is loaded at node number 1 by a load inclined 
at an angle of rt/5 from horizontal. Nodes number 4 and 5 
are constrained not to move. Each truss member has the 
same material and sectional properties. The material con- 
sists of a strictly linear constiluent and two symmetric stiff- 
ening constituents. That is, E, = 128, E; = 256, 
E; = 63 .El = E,' = 0.003 .E2 = E' = 0.006, and 

' I  - ' I I 

A ,  = 0.1 for { i ~  1 ,2 ,  . . .  9 1 .  

The analysis for given values of energy bound (n) , and 
load and material data proceeds by iteration within the pro- 
gram on the load factor ( a )  , displacement (u , )  , and con- 
stituent ( o l )  , ( E P )  variables until the load factor is 
sufficiently converged toward a minimum. The loads at 
each specified energy resulting horn this minimization are 
shown in Figure 4. The energy parameter is approximately 
quadratically related to the load factor. The energy load re- 
lationship is not truly quadratic because of the nonlinear 

constitutive response; it is in fact piecewise quadratic in 
each region where the active constraints are the same. (This 
piecewise behavior is not evident on the scale of this fig- 
ure.) 

The displacement of the unconstrained nodes (1,2, and 3) 
as a function of the load are given in Figure 5. Here the non- 
linear behavior inherent in the model is clearly evident. At 
small loads each truss elements has an effective modulus, 
E,, given by equation (15) which is indicative of the series 
construction of the constituents. 

(EQ 15) 

FIGURE 3.Pentagonal Tmss Geometry  and Load Vector. 

-1.5l 1 
0 . 5  1 1 . 5  2 2 . 5  3 

Node X Position 

FIGURE 4.Load vs. Specified Energy. 
-- -- 

As the allowable energy rI is increased, and with the re- 
maining data held fixed, certain constituents reach their 
constraint values. A constituent that has an active con- 
straint is 'locked' in the sense that the constituent can no 



longer deform. In effect the modulus of the constituent be- 
comes infinite and it's inverse becomes zero in equation 
(15), thereby increasing the effective modulus of the ele- 
ment. When all the constituents for an element become 
locked, the tangential modulus of the subsequent response 
becomss the modulus of the linear constituent, i.e., 
E, = E,.  

FIGURE 5.Load vs. Displacement 
-- -- - -- - 

The stress distribution amongst the truss elements, with the 
specified energy as a parameter, is displayed in Figure 6. At 
this scale, the effect of the nonlinear behavior is not overtly 
evident. The nonlinear behavior is shown clearly, however, 
in a plot of the stress or strain as a function of load. The 
strain of the first constituent for each member, depictedas a 
function of load is given in Figure 7. 

FIGURE 6. S t ~ c \ s  at c x h  clcmcnt for each energy point 
d i \p l~ycd  In Frgure 4 Note thdt the cpec~hed 
energy v a l u ~ s  ale d \epar~ted  by a factor o! 2 

-- ---- -- - 

Element Number ( i )  

At sufficiently small energies (and loads) the system be- 
haves linearly. However, as soon as one of the constituents 
'locks', nonlinear behavior ensues. The evolution of the 
first hardening constituent, ~f , is representative of the be- 
havior of all the constituents for the remaining elements 
(i.e. o, ,  and E:), except note that the linear constituent, oi, 
is not limited. This type of nonlinear behavior is excep- 

tional in the sense that the usual ingrained notions of pro- 
portional loading are not followed. 

FIGURE 7. Strain of the first constituent, for each of the nine 
elements, as a function of load. 

0 0 . 5  1 1 . 5  

Load (a) 

2.2.2 Pyramidal Truss 

The preceding example demonstrates that this technique 
can be employed to analyze a typical truss geometry with 
an atypical nonlinear hardening constitutive law. However 
in many respects the example is cumbersome in that the 
evolution of behavior in the constituents is not immediately 
obvious. Part of this stems from a geometry with elements 
that are intertwined at disparate angles. Interpreting these 
results requires a ponderous process of piecing together as- 
pects of several of the figures. To simplify matters, espe- 
cially for the subsequent example design problem, a 
simpler geometry was explored. 

The second example problem demonstrates the application 
of this method of analysis to a simpler truss geometry, one 
for which the nonlinear evolution is easier to follow. This 
geometry consists of twelve nodes and eleven bar elements 
as shown in Figure 8. The truss is loaded at node number 1 
by a horizontal load a. All nodes except the first are con- 
strained not to move, i.e. representing a fixed support. Par- 
alleling the previous example, each element has the same 
unbounded linear constituent modulus, the same cross sec- 
tional area, and is composed o_f two symmetrically stiffen- 
ing constituents. That is, Ei  = 64, 6: = E; = 0.008, 
6: = E: = 0.016, and Ai = 0.1 for {i  E I ,  2, ... 11) .  
However, here the moduli for the hardening constituents 
vary over the truss. This distribution is shown in Figure 9. 
The moduli have been chosen such that E: + E: = 160, so 
that for small energies where the system is linear, the ge- 
ometry, material properties and loading are all symmetric. 
However, here the locking of a constituent, will not only 
cause the system to become nonlinear but to loose sym- 
metry as well. 



FIGURE 8. Pyramidal truss geometry and symmetric loading. 
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FIGURE 9.Modul1 of  the 'lock~ng' constituents as d funct~on 
of member suppmt posltlon at x=O 

-- - - - ---- - -- -- 

FIGURE 10 .Lod  v\  d~spldcemcnt ol the free node 
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Thus, as shown in Figure 10, the deformation of the vertex 
of the truss in the y-direction (u,) is initially zero, owing 
to the symmetry of the problem. As the material evolves, 
the symmetry is lost and there is a non zero (u,) defor- 
mation. At higher energies and loads, all the constituents 
lock, and the material response again becomes symmetric 
and the deformation in the y-direction approaches zero. 

- 1 -0.5 0 9 5 1 

Support Posltlon (y) 

The evolution of the linear constituents (0,) is shown in 
Figure 11. Evolutions of the two locking constitu- 
ents (E: and E;) are shown in Figures 12 and 13, respec- 
tively. 

FIGURE 11 .Stress of the enduring constituents as a function 
of support position with increasing energy as a 
parameter. 

Support Position (y) 

These figures reinforce the statements concerning the load- 
displacement behavior of the system. At small energies and 
loads, the system remains linearly elastic. At higher ener- 
gies, the locking constituents reach their constraints. This 
causes the nonlinearity in the load-displacement behavior. 
This is evident in the enduring constituent (oi)  as a slight 
asymmetry in the stress distribution. At higher energies, 
when almost all of the members have 'locked', the stress 
distribution has nearly recovered its symmetry. 

FIGURE 12.Strain in the first locking constituent as a function 
of support position with increasing energy as a 
parameter. 
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FIGURE 13. S t ra~n  in the cecond locking conctitucnt as a 
luncLion of support posltion with increasing energy 
as a paramctcr 
- - -- - -- - - 

Support Position (Y) 

3.0 D e s i ~ n  of Material Pronerties for The O ~ t i m u m  
Truss 

A formulation is presented in this section that relates to the 
prediction of optimal material properties in the context of a 
global structural design problem. Specifically, the purpose 
is to determine the distribution of arlju.rtment.s to the ma- 
terial properties identified with locking limits, for a11 or a 
part of the set of constituents, so that a lower bound on the 
overall structural 'energy' is maximized. This is equivalent 
to minimizing an equilibrium state for which the total en- 
ergy is no less than a specified value. (The two formula- 
tions are alternate statements of equivalent, isoperimetric 
problems.) Stated differently, the optimal adjustments are 
those for which stiffening of the structure is deferred as 
much as possible. The optimal design problem presented 
here is a convex problem stated in isoperimetric form. An 
interpretation is given for the 'necessary conditions' of this 
problem, and the optimal quality of the solution to the sys- 
tem is verified. 

3.1 D e s i ~ n  Problem Formulation 

Mod~fications to the locking limits are symbolized by vec- 
tors $: and v:, which represent respectively the changes 
in value of the upper and lower bounds on constituent 
strains Components of these vectors are restricted to be 
nonnegative, and the overall modification to structural ma- 
terial is limited by the isoperimetric constraint: 

(EQ 16) 

b I 

Bound R appearing in this contraint is a measure of total 
resource for material modification and is a new element of 
data. The design problem is described formally relative to 
the analysis problem [PI, in terms of an outer 'min' with 

respect to the design parameters @! and y!. In other 
words, the sets of design parameter are to be determined ac- 
cording to: 

min [min a ]  
subject to: 

The order of the 'min's is interchangeable (see e.g. Jog, 
Haber & Bends@e14 or Bendsge et. aI.l5 for a justification), 
and so it is justifiable to consider separately the necessary 
conditions associated with the desion part of the problem 
[MI. With the introduction of q!, ~ 7 ,  and r as multipliers 
associated with the last three amongst the constraints listed, 
i.e., the constraints associated with design variables @: and 
v!, these conditions are: 

-pr-q!+r = 0 (EQ 17) 

-.p-<!+I- = o (EQ 18) 

It may be verified that so long as R > 0 in problem [MI, the 
multiplier r satisfies I- > 0.  An immediate consequence of 
(17) is that in order for a modification of the locking limit to 
occur, it is necessary that the respective strain constituent 
should have become locked in the original, i.e. unmodified 
system. This result may be verified via the following ar- 
gument. Suppose that constraint (C 2.1) of problem [MI is 
met by inequality; then the associated multiplier p: has 
value zero, and so from (17): 

$ =  I- (EQ 19) 



Thus in view of the (Kurash-Kuhn-Tucker) requirement 
rlF@! = 0 b'i ; P, it follows that, for components governed 
by (19), satisfaction of constraint (C2.1) by inequality im- 
plies 4; = 0 ,  i.e., the associated locking constraint bound 
value is not modified. Similar argument leads to the coun- 
terpart of this result for the constraint bounding strain on 
the negative side, and completes the proof. 

To continue the interpretation, note that for $ > 0, from 
constraint (C2.1) of problem [MI, E! - (E! + @) = 0. It 
follows from (C2.2) that in this case ur = 0. Given the 
similar argument as it applies in reverse, i.e., u; > 0 im- 
plies p! = 0 ,  we have that the multipliers p; and are 
orthogonal; p!up = 0 for all i and P. The alternative pos- 
sible consequences of the necessxy conditions (17,18) are 
considered next. As noted from (C2.1) in the case $ > 0 
{or from (C2.2) for up > 0 )  that: 

If also rlr > 0 or (or  51 > 0 1, then there is no modification 
to the strain bound i.e., @ = 0 {or yf = 01, and so the 
value of the associated strain constituent is just equal to the 
original locking strain bound, E! = E' {or -E! = 5 : ) .  

5 h4ore generally one expects to find $I  > 0  in conjunction 
with p! > 0 {or Wr > 0 with up > 0 ) .  and then the asso- 
ciated (optimal) modifications are evaluated directly from 
(20) and (21). Referring to expressions for stredstrain re- 
lations obtained in section (2), and with the substitution of 
p! = r or U P  = I- from the results above, the stresses 
evaluattd according to the solution for the optimally mod- 
ified locking constraint values are given by: 

B -P o, - E l  ( E ~  + $r) = r / A  where $ > o  

P B -0, - El + y~!) = r / A  where u!>0 

According to these results the difference between total 
stress o, and the values of stress at with locking occurs 
('locking stress') has constant value. This remarkable re- 
sult holds for all constituent strains E! (over the structural 
system) which have become locked at the respective loads. 
Also, as a sidelight, i t  may be observed from this property 
of the results that the solution for design problem [MI min- 
i171i~e.s the mu.uirnurn tneusurr of the cited difference in 
stress values (again, over the entire structure). 

3.2 Computational Examples 

The above design problem was applied to the same pyra- 
midal truss that was treated in Section 2.2.2 as the second 
example of analysis. As noted in the problem description 
given above, the evolution of local stiffening in a structure 

made of stiffening material may be determined from the re- 
sults of a set of solutions to the original analysis problem. 
The end result of a series of such solutions is summarized 
in Figure 14 with the details of one of the locking constit- 
uents shown in Figure 15. The overall effect of the design 
is, as expected, to minimize the structural stiffness of the 
truss. Here this minimization predicts a modification of 
stiffening limits that has structural response tend toward 
that of the linear structure. 

FIGURE 14. Load versus displacement for increasing values 
of resource of the locking constraint. 

0  0 . 0 2  0 .04  0 . 0 6  0 . 0 8  0 . 1  0 . 1  

D i s p l a c e m e n t  (u) 

At small energies, there is no modification to the load dis- 
tribution in the problem. As the specified energy is in- 
creased, the locking constraints are modified to allow the 
system to remain linear elastic (i.e. not locked). The dis- 
tribution of the locking parameter varies as a function of 
energy. Considering that the extension of the modelling for 
this problem to accommodate the present purpose, i.e. the 
prediction of optimal relaxation of the locking bounds, it is 
understandable that the solution to the design problem var- 
ies with load (or energy) level. This is characteristic of 
problems in optimal design in the presence of a constitutive 
nonlinearity. 

It may be established as well from the results for the design 
problem described in this section, that there exists an upper 
limit say R ,  such that the problem admits sensible inter- 
pretation for values of modification resource R lying with- 
in the range 0 < R < R .  The upper bound value, which 
varies with overall load on the structure, is the value such 
that in the structure with optimally modified material, all 
constituent strains EP will at most have just reached their 
respective locking limits in the fully loaded system. In oth- 
envords, the solution associated with R = R provides that 
no locking occurs as the loads are app1ied.A~ a conse- 
quence, the structural response is simply linear. Note that in 
this case the conventional measure of compliance is min- 
imized for the optimal structure. This behavior can be seen 
for the present example in Figure 16. 



FIGURE 15.Effect of available resource on the strain 
distribution. and limits for the first strain 
constituent. The grey lines indicate the improved 
design, the black lines indicate the original design 
(i.e. Figure 12). 
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FIGURE 16.0verall st~ftne\\ of the structure lor lncredslng 
valuer ot dllowdhlc resource and lncremng energy 

- --- - - - 
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4.0 C o n c l u d i n ~  Remarks 

The analysis of a truss system composed of a nonlinear ma- 
terial has been demonstrated using a mixed form equilib- 
rium principle. This principle was extended to incorporate 
the design of parameters identified with the constituent 
locking limits of the stiffening material. Perhaps the most 
significant conceptual steps are in the formulation of the 
original principle described in the analysis problem [PI. 
Here a set of constituents are assembled to provide an over- 
all nonlinear material response. This formulation leaves 
normal conservation statements (e.g. energy, compatibity, 
and constituent limits) in their simple form as constraints 
on the response of the system. For instance even though the 
overall response of the system is generally nonlinear, the 
mathematics is remarkably tidy. This form of the analysis 
problem allows the straightforward insertion of the param- 
eters, and simplifies extension of the extremum problem 
statement to cover the design of the material properties. 

One can speculate that other aspects of [PI (e.g. the infin- 
itesimal of the strain-displacement equations) might also 
be directly extended (e.g finite strain-displacement equa- 
tions). 
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