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Abstract

A model for the core of a viscous vortex is presented.
It is based on a similaxity solution to the Navier-Stokes
equations in which the following assumptions are made:

o the flow is incompressible;

o the flow is axisymmetric;

e the flow is comical;
o ithe Reynolds number is high;
o the vortex is slender.

Under these assumptions, the Navier-Stokes equations and
the continuity equation take the form of four coupled, non-
linear, ordinary differential equations. These equations are
discretized using centered differences, and solved by a New-
ton procedure, after imposing appropriate boundary condi-
tions. The model is found to agree fairly well with ex-
perimental data of Earnshaw [1], and very well with the
matched asymptotic solution for a vortex core developed
by Hall {2]. The level of total pressure loss predicted in the
core of the vortex is found to be independent of Reynolds
number, depending only on the edge circumferential veloc-
ity. Some implications of this result on the prediction of
the onset of vortex bursting are given.

Introduction

Due to the critical role that vortices play in aeronautical
engineering, naval engineering and meteorology, a number
of models for vortex cores have been developed through the
years. These have ranged from very simple ad hoec models
to complicated multiple-scale analyses. In this paper, the
vortex core will be modeled as a region of distributed vor-
ticity. Similar models have been proposed by Long [3], Hall
(2], Luckring [4] and Brown (5], among others.

While a vortex core of distributed vorticity can occur
only in a viscous flow, Euler calenlations of vortex flows by
the authors [6,7] and others [8,9,10] indicate that the dis-
crete Euler equations model the flow inside a vortex core
surprisingly well. In particular, the level of total pressure
loss inside the core of a given vortex computed by the dis-
crete Euler method is independent of computational pa-
rameters such as mesh spacing and artificial viscosity level
(111, and agrees well with losses measured in experiment
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Figure 1: Cylindrical Coordinate System

[12). Navier-Stokes calculations [9,13,14] have comparable
losses. This namerical evidence has driven the authors to
determine wh<ther there is a vortex core model which ac-
counts for viscosity, but has a total pressure loss level that
is independent of the level of viscosity.

Burgers’ Vortex

Burgers developed a core model {15] that, it will be
shown, has this characteristic. Tt is an exact solution to
the axisymmetric, incompressible Navier-Stokes equations.
For the cylindrical {r 8,2} system, shown in Figure 1, the
velocity field is given by

v = =Ar
v = u(r)
w = 24z

where »(r} is to be determired from the f-momentum equa-
tion. The velocities are non-dimensionalized by a reference
velocity W, and r and z are non-dimensionalized by a ref-
erence length L. This velocity field satisfies the continuity
equation,

10 dw
Tt =0

identically. The r-momentum equation (with pressure non-
dimensionalized by pW?) reduces, for the above choices of
4, v and w, to
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The r-momentum equation redaces to
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and the §-momentum equation becomes

2
dr  r  Re\dr® rdr 13
Burgers’ original analysis was carred out in unscaled
variables. The relation between the total pressure and the
Reynolds number may be seen more easily, however, by
rescaling the equations. Introducing scaled variables
i = u [ ARe
- 2
i = &
T2
W = w
P = P
. = . [ARe
B 2
Z = z
does not affect the continuity equation. The #-momentam
equation becomes
39 1 .\ 3¢ 1y,
s+ (3+2) 30+ (2- 5)o=0.
Applying the boundary conditions of zero swirl on the vor-
tex axis and a potential flow at large radius,
p—_
=190 at Ff=10
o — A/2 a8 F—o0
yielda the solution
. Af‘ —F
MY (1 —° )
where [' is a scaled circulation, related to the physical cir- E
culation T by
I' JARe
L= 2y 27
The r and z momentum equations, when integrated, yield
the relation for the static pressure;
4 [ A 2.2
p= 2 ~dir — e~ 24
From this the total pressere may be calculated, giving
4 AP
P = h—;[j—;dr+-§-]
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— Figure 2 is a plot of po/f'z as a function of 7 which holds

for any Reynolds number. This means that the level of the
total pressure loss in the core is set solely by ', where

f ~T'VARe.
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Figure 2: Burgers’ vortex — po/[? va ¢

The position of the “edge” of the vortex, r., scales with
1/v ARe, which implies that

I' ~ v,r, Je
~ Ualy ~ .
;ARG

Thus,

[~ v,

and, for a given edge circumferential velocity, the total
pressure loss level in a Burgers’ vortex is independent of
Reynolds number. If the value of the edge velocity, v., is
known, the magnitude of the total pressure loss in the core
is determined. This is not an obvious result — the static
pressure depends on the Reynolds nnmber, as does the ra-
dial velocity. The distribution of the total pressure logs does
depend on the Reynolds nember; it scales with 1/ VRe.

Conical Core Model

While Burgers’ vortex exhibita the desired independence
of Reynolds number for the level of the total pressure loss,
the velocity field is necessarily a very contrived one. [n this
section of the paper, a conical analog to Burgers® vortex is
derived which exhibits the same behavior for the total pres-
sure. The assumption is made that, in the #-momentum
equation, the viscous terms are not negligible, bat of the
same order as the convective terms. The core is also as-
sumed to be slender and conical. While a viscous flow may
not be truly conical, the approximation is a reasonable one
due to the high Reynolds number.

The equations of motion for a steady, axisymmetric, vis-
cous incompressible flow are the continuity equnation,

18 aw
Tt gy =0

the r-momentum equation,
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the -momentum equation,

Yar Yoz T F T Relror\'ar 8z 2y’

and the z-momentam equation,

dw Sw dp 1 [li( Bw) a’w] ’

= ¥ ar r? dz2
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where the Reynolds number is based on a reference length
L and a reference velocity W. Introducing the conical vari-
ables ¢ = r/z and { = +/r? + z? and assuming conical
self-similarity (that the solutior is independent of ¢), the
continuity equation becomes

" L]

The r-momentam equation becomes

2
o r_ Y = _y
-¢(w—$)u 3 ? +

Rlc, [(1+¢’) u” (%qu) u’—;'—,],

the f-momentum equation becomes

uY , uv
—-¢(w—$)v+¢ =

Fle_: [(1 +¢%) 0" + (%+2¢) v - -f,-]

and the z-momentum equaticn is given by

(o3 - o

-Ele—, [(1 + ¢2) w' + (% + 2¢) w'] .

In the above, Re, is a Reynolds number based on the local
value of z and the primes denote differentiation by ¢. Since
the Reynolds number has a z-dependence, the conical as-
sumption does not truly hold. Conical self-similarity may
therefore hold only in a “local” sense.

As with Burgers’ vortex, Reynolds number dependence
may be seen most easily by scaling the variables. Introduc-
ing the scaled variables

& = uvRe,

v = v
w o= w
F = p

$ $vRe,

and dropping the terms that are higher-order in Re,, the
continuity equation becomes

-—c;('-—-f) + 2
T3

it
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=0,
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the r-momentum equation becomes

=

= =
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the §-momentum equation becomes

oy 1 - f ] t 1 il .
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and the z-momentum equation becomes

@' + [%%5 (w—%)] &+ 5 =0,

where the primes now denote differentiation with respect
to ¢.

As written, there are no parameters in these equations
— they enter only through the boundary conditions. The
equations require one bonndary condition each for p and u,
and two each for v and w. The boundary conditions chosen
for the velocities are

i=0 at ¢é=0
=0 at ¢=0
=0 at ¢=20
=1 st $= dmas
pp~T at @ =dmor

where the last boundary conditicn is implemented as
= -F/d at = dmas

This system of equations for the velocities is rewritten as
a set of five first-order equations and solved using centered
differences and a Newton procedure. The equation for the
pressure is then integrated independently, to give the static
pressure coefficient Cp. The total pressure coefficient,

Po — Poo
Ch = 4/,
h 1,2

ig calculated from Cp and the velocities.

There are two parameters in the boundary conditions;
' and $mas. Solutions may be characterized by a single
parameter, however. This parameter, v., is the maximum
circamferential velocity of the vortex. Plots of the veloci-
ties and pressures for three different values of v, are shown
in Figures 3-6. As the edge circumferential velocity in-
creases, the axial velocity surplus in the core increases and
the static and total pressures in the core decrease. As can
also be seen, the gradients of circumferential velocity and
total pressure are rauch more localized about the axis of the
vortex than are the gradients of axial velocity and static
pressure.

The scaled circulation I' is related to the physical circu-
lation T by the relation

[ ~ 2xTRe;.
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Pmas r Ve Ch..
25 [ 0.95 | 0.50 | +0.49 1
so | 175|050 1049
25 3.73 1 1.00 { —1.06
50 6.68 | 1.00 | —1.06

Table t: v, and C),,, as fanctions of ' and Pmas
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The size of the vortex scales with 1/\/Re,. Thus, as was
the case with Burgers’ vortex, it is the circumferential ve-
locity ve that sets the level of the total pressure losa in the
core. That this is true may be seen in Table I, where the
maximum circamferential velocity v, and the minimum to-
tal pressure are tabulated for several values of rnas and I
The variation of Ch,,,. with v, is shown in Figure 7. The
solid line is the result of the conical model; the symobls are
the curve
Chpa =1—297.

This is the funciional relationship that occurs for a very
simple core model {16] in which:

1. radial velocity is negligible;

2. circumferential velocity is uniform and vanishes on the
axis;

3. changes in static pressure and axial velocity cancel in
the total pressure relation.

Thus, 28 with Burgers’ vortex, the total pressure loss is pro-
portional to the square of the edge circumferential velocity
of the vortex.

Comparison of Results

A comparison of the conical model with experimental
measurements of the core of a leading-edge vortex for a

delta wing is shown in Figures 8-11. “The experiment was
carried out by Earnshaw [1]. In the figures, the solid line
represents the conical model and the symbols represent the
experimental data. The spatial coordinate is normalized by
the semi-span of the wing. The calculation was carried out
0 a8 to match the Reynolds number and maximum swirl
velocity of the experiment.

The large gradient in circumferential velocity in the core
is modeled well, however the rate of decay of circumferen-
tial velocity far from the axis is underpredicted. The axial
velocity surplus in the core is overpredicted, as is the snc-
tion peak in the vortex. The level of total pressure loss on
the axis is matched with experiment; however the width of
the lossy region is drastically underpredicted.

The shortcomings of the model could be attributed to
three features of the experiment which are not included in
the model: too low a Reynolds number, lack of axisymme-
1ty doe t0 the presence of the wing, or turbulence, The
Reynolds number in the experiment was on the order of
one million, so that the high-Reynolds number assump-
tion should hold. The traverses through the measured vor-
tex showed a certain amount of asymmetry, however not
enough to invalidate the model. The real culprit appears
to be turbulence. Since the measured vortex shows a more
diffuse lossy region, there must be a diffnsive pracess in
the experimeni that is not modeled in the similarity solu-
tion. Matching the solution to the experiment at a higher
Reynolds number improved the comparison for the total
pressure loss distribution, but degrade:’ the resulis for the
staiic pressure and swirl velocity.

Another effect that must be considered is experimental
error. The total pressure loss was measured with a five-hole
probe that was locally aligned with the flow. The measared
lossy regiom is only two or three probe-widths in extent,
however. In addition, the actual magnitnde of the total
pressure loss is small in comparison with the free-stream
pressute. The total pressure loss coefficient, Cp, may be
related to the incremental total pressure loss, giving

Po M3,
1 - =t o,
o 24+ YM3E ( o]
Thus for a core loas Ch,,in = ~1.0, the total pressure loss

is only three percent of the freestream total pressure, which
could be difficult to measure accurately.

A comparison of the new conical core model with the
matched asymptotic expansion of Hall [2] is shown in Fig-
ures 12-15. Here the agreement is very good. The cir-
cumferential velocity and the static pressure are matched
extremely well. The axial velocity surplus is less in the con-
ical model, and the total pressure loss in the core is greater.

The close comparison of the corical similarity solution
and Hall’s matched asymptotic expansion is due to marked
similarities in the two derivations. Hall’s model is composed
of a viscous, non-conical inner solution matched to an in-
viscid, conical outer solation. The inner equations bear a
resemblance to the conical mode! presented here. Since Hall
is matching to conical outer conditions, it ia not surprising
that his solution closely resembles the conical similarity so-
lution.
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Discussion

The model as it stands could help to give some insight
into prediction of the onset of vortex bursting. Experi-
ments show that the magnitude of the care total pressure
loss greatly affects the accurence of bursting [17]. Several
theoretical models relate the onset of bursting to & “crit-
ical swirl angle® [18]. The model developed in this paper
shows a dixect correlation between cote total pressure loss
and v,, the edge swirl velocity of the vortex. Since the core
total pressure loss and edge swirl velocity predicted by the
model compare well with experiment, the onset of bursting
should be predicted well by the model. Since the model
is conical, it cannot model bursting, It could, however, be
used as an upstream condition for a vortex in a pressure
gradient. Grabowski and Berger [19], for instance, carried
out a numetical study of vortex bursting by assuming an
upstream state for the vortex and solving the axisymmetzic
incompressible Navier-Stokes equations for the bursting of
this vortex. Their upatream state was an a priori function
of the radius. Using a more physically justifiable upstream
state could lead to more meaningful results. The core model
presented here could fill that role.

Another advantage of the model is the generality of its
derivation. Similarity equations for a compressible viscous
core model can be derived by a process similar to the one
demonstrated above. This has been done, yielding the set
of ordinary differential- equations below. They consist of
tke continuity eqnation

-~ ’ -
- . - [ pt‘
(e-g] e
¢ $
the r-momentum equation
(5T) =

the #-momentum eqmmon

o 1 o f- @\l [1 . ).
oo e[

the z-momentum equation

(e

and the energy equation

1——1

Conclusions

A model for an axisymmetric vortex in high Reynolds
number flow has been presented. It is based on a new
similarity solution to the Navier-Stokes equations. The
model compares well with the previously existing model of
Hall, due to the similarities in their derivations. The model
compares well in a qnalitative sense with experimental re-
sults. The measured vortex appeared more diffuse than the
model, most probably owing to the effects of turbulence.
The model is extendable to compressible flow, and shows
promise in the prediction of the onset of vortex bursting.
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