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Alpha Particle Dynamics in Muon-Boosted Fusion 
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Terry Kammash1, Ricky Tang2 and Alec D. Gallimore3 
University of Michigan, Ann Arbor, MI, 48109 

In a previous paper,1 we demonstrated that negative muons resulting from antiproton 
annihilation in a relatively cold deuterium-tritium (DT) plasma confined in a gasdynamic 
mirror (GDM) can result in catalyzing on average over 100 fusion reactions.  The alpha 
particles produced by these reactions could contribute significantly to heating the 
background plasma toward ignition.  In fact, it was pointed out that on the basis of 
energetics only, muon-catalyzed fusion would reduce the amount of antiprotons required to 
achieve thermonuclear burn by about 60%.  This scenario, however, does not address the 
issue of alpha particle confinement in the GDM, and thereby leaves open the question of 
their true effectiveness in providing the heating noted above.  In this paper, we address this 
problem by noting that, as they slow down, these alpha particles can escape from the system.  
We deduce explicit expressions for alpha particle density as a function of energy, and 
calculate the mean energy of these particles allowing simultaneously for slowing down and 
escape as reflected by the confinement time.  Assuming that the alpha particles slow down 
primarily on the electrons, as is the case in relatively cold plasmas, we find that muon 
catalyzed fusion is indeed effective in heating the plasma in a GDM device. 

Nomenclature 
μc  = number of catalyzed fusion per negative muon 

E  = alpha particle energy 
0E  = initial (birth) energy of alpha particle 

thE  = thermal energy 

αE  = mean alpha particle energy 
e  = elementary charge 
L  = plasma length 
Λln  = Coulomb logarithm 

m  = particle mass 
aN  = confined alpha particle density 

n  = number density 
( )Enα  = alpha particle energy distribution function 

R  = plasma mirror ratio 
eT  = electron temperature 

τ  = time constant, or confinement time 
μτ  = muon lifetime 

v  = monoenergetic particle velocity 
Z  = particle charge state 
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I. Introductory Remarks 
e have shown in previous work1 that in antiproton-driven fusion propulsion systems, plasma heating results 
from fission fragments as well as from the annihilation products produced by antiproton annihilation in U238 

targets.  We have also indicated that some additional significant heating comes about as a result of muon catalysis in 
a deuterium-tritium (DT) plasma whereby a negative muon can uniquely attach itself to both D and T ions, thereby 
allowing them to undergo fusion reactions and releasing energetic alpha particles into the plasma.  Such catalysis 
results in more than 100 fusion reactions during the lifetime of the muon, and the resulting alpha particles provide 
sizable amount of heating towards ignition.  The assumption made in those studies is that the alpha particles in the 
confinement device – the gasdynamic mirror (GDM) – deposit their energy through collisions and not escape while 
doing so.  In this paper, we address this question by allowing for escape while these particles slow down.  We 
assume that alpha particle confinement follows that of the ions, and deduce the appropriate expressions for their 
velocity distribution and mean energy, as well as their confinement time in the GDM.  We find that despite particle 
losses, the fraction of alpha particles that are confined can still contribute a significant amount of plasma heating as 
suggested earlier.  What follows is a mathematical confirmation of these predictions.  

II. Energy Distribution 
The number of alpha particles in an interval of energy ΔE is ( ) EEn Δα , where ( )Enα  is the number density per 

unit energy.  If a loss mechanism has a time constant ( )Esτ , then in steady state we have 
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 Rearranging and using the definition of a derivative, we obtain the following governing differential equation for 
the energy distribution of alpha particles. 
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Integrating Eq. (2) over the range of energies E to 0E , where 0E  is the initial energy (i.e. birth energy) of the 

alpha particles, we obtain the following. 
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The first term of the integrand can be rewritten as follows 
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and can be readily integrated yielding the following expression for the alpha particle energy distribution. 
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Now consider alpha particles produced via muon-catalyzed fusion, the initial energy distribution would be given 

by the following. 
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where μn  is the negative muon number density, μτ  the muon lifetime, and μc  is the number of catalyzed fusion 
(i.e. number of alpha particles born) per negative muon.  dtdE  represents the rate of decrease of alpha particle 
energy and can be expressed by the following, with the first term denoting energy loss to the plasma electrons and 
the second term loss to the ions due to Coulomb collisions. 
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1c  and 2c are coefficients that depend on the incident and target particles, as well as plasma density and 

temperature. 
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where m and em  are respectively the mass of the incident particle (i.e. alpha particle) and the electron.  Similarly, Z 
and Ze are the charge state of the incident particle (i.e. alpha particle) and the electron, respectively.  ne is the 
electron density, and Te is the electron temperature.  Equation (8a) is written in the CGS system, and all the 
quantities have the standard CGS units, with the exception of the electron temperature Te.  For convenience, Te in 
Eq. (8a) has unit keV.  The conversion factor aC  makes explicit the conversion to the CGS system.  Finally, ln Λ is 
the Coulomb Logarithm given by the following for a DT plasma, 
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Similarly for 2c , Eq. (10a) is written in the CGS system, and all quantities have their standard CGS units.  The 

conversion factor bC  ensures that 2c  has the correct energy unit of keV in order to be consistent with the other 
equations. 
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 Substituting Eqs. (6) and (7) into Eq. (5) yields the following energy distribution for alpha particles produced via 
muon-catalyzed fusion, where E has unit keV. 
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To evaluate Eq. (11), we need the time constant (i.e. confinement time) ( )Esτ .  The confinement time for the 
GDM, ignoring the ambipolar potential, is as follows, 
 

 ( )
v

RLE =τ  (12) 

 
Here R is the plasma mirror ratio, which is the ratio of the magnetic field seen by the plasma at the mirror to that at 
the center.  The monoenergetic particle velocity is given by Eq. (13) 
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where αm  is the mass of the alpha particle, and cC  is a unit conversion factor allowing E in Eq. (13a) to be 
expressed in keV in order to be consistent with Eq. (11).  All the other quantities in Eqs. (12) and (13a) have the 
standard CGS units.  The choice of the CGS system here is arbitrary; SI units may be used instead in Eqs. (12) and 
(13a), in which case cC  would be modified to relate Joule to keV.  Substituting these equations into Eq. (11) yields 
the final expression for the energy distribution for alpha particles produced via muon-catalyzed fusion inside the 
GDM. 
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III. Electron Heating Only 
The analytical solution to the full integral in Eq. (14) is very complicated.  For a relatively cold plasma, e.g. at the 

ionization temperature, 1c  can be several orders of magnitude larger than 2c , and therefore, electron heating 
dominates, which is what we expect for a cold plasma.  If we envision a GDM system wherein these alpha particles 
produced via muon-catalyzed DT fusion reactions contribute to the initial phase of the plasma heating, it is 
reasonable to assume the bulk of their energy being deposited into the plasma electrons.  We can therefore simplify 
the integral in Eq. (14) accordingly by assuming 02 =c . 
 

 ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−= ∫

0

21
11

12
exp

E

E

c

Ec
dE

RLm
C

Ec
nc

En
α

μμμ
α

τ
 (15) 

 
The resulting integral can be easily evaluated, yielding the following distribution function. 
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where we have defined the following quantity. 
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Inspecting Eq. (16), we see that the distribution behaves as follows. 
 

 ( )
E
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EA

~α  (18) 

 
For relatively small energy E, E1  dominates, whereas for large E, the exponential dominates.  The minimum of the 
distribution occurs at an energy Emin. 
 

 2min
4

A
E =  (19) 

 
Since the energy of the alpha particles will be bounded by Eth (thermal energy) and E0 (initial energy at birth, i.e. 3.5 
MeV), only this portion of ( )Enα  is meaningful.  Using typical orders of magnitude for the defined quantity A, i.e. 
10-3 to 10-5 for a dense cold plasma, we see that our distribution lies significantly to the left of the minimum, where 

E1  dominates.  Figure 1 shows a representative plot of the distribution function for this range of energies. 

 
Figure 1. Typical profile for the alpha particle energy distribution function. 

A. Confined Alpha Particle Density 
To obtain the total density, we integrate the distribution, Eq. (16), over all energies between the lower and upper 

bounds. 
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A change of variable transforms the integral in Eq. (20) into 
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Each of the integrals in Eq. (21) is defined as the “exponential integral function” and is denoted by Ei.  Therefore, 
the total density assuming electron heating only is given by the following. 
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B. Mean Kinetic Energy 
The mean alpha energy can be calculated as follows. 
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The integral I can be readily evaluated by first making a variable substitution EAx ≡  and then using integration 
by parts. 
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And the final expression for the mean alpha particle energy is 
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C. Sample Calculations 
We consider a deuterium-tritium (DT) plasma with density 5×1016 cm-3 at an initial temperature of 13.6 eV, 

corresponding to the ionization potential of the propellant.  The system is antiproton driven.  First, “at rest” 
annihilation of antiprotons in uranium-238 targets causes fission at nearly 100% efficiency.2,3  The resulting fission 
fragments and annihilation products, namely pions and their decay product muons, contribute to the heating of the 
plasma.  In addition, in a DT plasma (even if it is cold), each negative muon can on average catalyze approximately 
100 DT fusion reactions, each releasing an alpha particle of 3.5 MeV of kinetic energy that further contributes to the 
initial phase of plasma heating. 

For a GDM with plasma mirror ratio of 25, a plasma length of 2 meters (note: this calculation is not sensitive to 
these two quantities), and an antiproton density of 2.07×1012 cm-3 (based upon heating requirements not addressed in 
this paper and corresponding conservatively to the same density of negative muons, which in turns yields an initial 
alpha particle density of 2.07×1014 cm-3), the number of alpha particles being confined is about 1.68×1013 cm-3.  The 
mean energy of these confined alpha particles is roughly 294 keV. 

To determine the change in plasma temperature, we consider a simple energy balance. 
 

 ( ) ( )EEnTTn inceee −=− 002
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where incn  is the incident particle density (i.e. alpha particles in the current analysis), and the subscript 0 denotes 
initial values. 

If we assume the confined alpha particles deposit almost all of its energy into the plasma electrons, i.e. slow 
down on the electrons from their birth energy of 3.5 MeV to a final average kinetic energy ( ) eV 4.2023 == TE , 
corresponding to a temperature of 13.6 eV, the change in the electron temperature is eV 784=Δ eT .  This represents 
the maximum heating produced by these alpha particles. 

Alternately, if we make a more conservative estimate and assume the confined alpha particles slow down on the 
electrons until they reach their mean kinetic energy of 294 keV, then the corresponding change in the electron 
temperature is eV 718=Δ eT . 

From Eq. (26), we see that 
 

 E
n
n

T
e

inc
e ΔΔ ~  (27) 

 
 Since ΔE is more or less fixed, the important factor is the density ratio.  Increasing this ratio either by increasing 
antiproton density or decreasing electron density or both can result in a eTΔ  of multi-keV’s, for instance.  Of course, 
due to the heating requirements, these two densities are not necessarily independent.  For example, changing the 
electron density will change the minimum antiproton density required, meaning the negative muon density, and 
hence the confined alpha particle density, will change as well.  However, one can increase the antiproton density 
beyond the minimum required value dictated by the heating requirements to produce a larger eTΔ , if this is desired 
and the associated increase in cost of obtaining and confining the antiprotons is not prohibitive. 

IV. Conclusion 
In this paper, we have derived an energy distribution (or equivalently a velocity distribution) for the alpha 

particles produced via muon-catalyzed fusion inside the GDM.  The distribution incorporates a time constant to 
address particle losses due to escape from the system during slowing down.  We have derived from the distribution 
the number density for the confined alpha particles, as well as their mean energy, by assuming that the majority of 
energy transfer is to the plasma electrons, a valid assumption for a relatively cold plasma. 

We found that although there are particle losses, the number of alpha particles remaining and the heating they 
contribute are nevertheless significant.  For a given plasma density, we can increase the antiproton density to 
increase the amount of heating as a result of an increase in the confined alpha particle density.  For instance, in the 
above calculations, doubling the amount of antiprotons will result in ~1.5 keV increase in the electron temperature.  
The mean energy and the percentage of alpha particles confined, however, will remain the same for a given plasma 
density. 

Another way to increase the contributed heating is to increase the alpha particles utilization.  Brief calculations 
showed that utilization increases as the plasma density decreases.  For instance, when -316 cm 101×=en , the 
percentage of alpha particles confined long enough to heat the plasma increases 4-fold compared to the calculations 
in the previous section, and the associated heating increases significantly as well.  The tradeoff, however, is that the 
plasma dynamics inside the GDM dictates a rather rapid increase in the plasma length with decreasing plasma 
density, and the system soon becomes prohibitively massive. 
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