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Abstract— This paper presents the microwave-propelled sail,
its structure, assumptions. We will present its equations of
motion, then we will conduct stability analysis and we will design
two controllers to make it asymptotically stable and marginally
stable.

I. I NTRODUCTION

While space has intrigued humans from the beginning of
time, it wasn’t until the twentieth century that man began his
space conquest. Though it has been almost half a century since
Sputnik orbited the earth, the aerospace technology is still in
its infantry with a huge potential. This paper will discuss a
new generation of spacecraft, the microwave-propelled sail.
The idea builds upon solar sails[4] which have been in the
literature since the 1970’s. The idea of microwave-propelled
sails is very similar, but instead of the sun’s photons hitting
the solar sail at the right angle, the microwave-propelled
sail alleviates that problem since we have ”control” over the
power source and its direction. The microwave sail architecture
comprises very large ultra-weight apertures and structures.
One of its distinguishing improvements is mission capability
and reduction in mission cost, plus the ability of interstellar
exploration missions. Microwave-propelled sails, along with
solar and other types of sails will provide low-cost propulsion,
and long-range mission. In [4], McInnes gives a general view
on solar sails. Stability and control of carbon fiber sails
propelled using microwave radiation in 1-D has been studiedin
[1], [2]. This paper will cover the sail shape and assumptions
needed for our analysis of the sail, along with its equationsof
motion, and control design structure.

In this paper, we will start in section II by the physical
dimensions of the sail and listing the different assumptions
used, we will then describe the coordinate frames in section
III, the equations of motion will be introduced in section IV,
followed by a stability analysis in section V, and a linearization
approach in section VI, with the presentation of two controllers
in section VII, and simulation results in section VIII.
Notation An arrow above the symbol designates a vector, and
all vectors are assumed to be column vectors,⊗ refers to the
quaternion multiplication,q∗ refers to the quaternion complex

conjugate,Lq∗ is the frame rotation matrix. For any vector
~v = [v1, v2, v3]

T , the cross product operator is defined as:

~̃v =





0 −v3 v2
v3 0 −v1

−v2 v1 0





II. SAIL

The sail studied has an umbrella-like configuration with
concave sides facing the radiation source and has a bounded
motion behavior. The sail is composed of a reflector made
out of a light-weight carbon fiber material, a hollow mast and
payload represented by a ball. The mast is attached at the
reflector center of mass (CM), and connects the payload to the
reflector. The payload is not directly attached to the reflector
for stability reasons. To obtain passive dynamic stability:

• The reflector must be located aft of the vehicle CM for
rotational stability

• The reflector must be of a concave shape such that the
concave shape faces the radiation source for translational
stability.

The notion of beam-riding, i.e. the stable flight of a sail
propelled by Poynting flux caused by a constant power source,
places considerable demands upon a sail. Even if the beam is
steady, a sail can wander off the beam if its shape becomes
deformed or if it does not have enough spin to keep its angular
momentum aligned with the beam direction in the face of
perturbations. The microwave beam pressure keeps concave
shapes in tension, so concave shapes arise naturally while
beam-riding. they will resist sidewise motions if the beam
moves off-center, since a net sideways force restores the sail
to its position (See figure 5). Therefore, our sail will have a
concave shape, depicted in the figure below,1.

A. Assumptions

In this section, we list the assumptions needed to simplify
our analysis of the microwave-propelled sail.

• The system is considered as a rigid body
• The reflector has full reflectivity. The actual carbon fiber

used in our experiments has 98% reflectivity.
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Fig. 1. Microwave sail concave shape

• There are no internal reflections.
• The payload and the mast do not block the microwave

beam.
• There are no aerodynamic influences
• The microwave source is modelled as a point source with

a square wave-guide.
• The gravity vector g, points towards the negative Z-axis

of the inertial frame (See figure 4).

B. Reflector model

Since we have chosen our reflector to be of a conical
shape, any cross-section orthogonal to the mast is a circle.
The reflector surface is created by revolving a parameterized
curve about the body z-axis. The following is a fourth order
polynomial approximation of the parameterized curve:

f(r/R) = a0 + a1(r/R)+ a2(r/R)2 + a3(r/R)3 + a4(r/R)4

(1)
where a0, a1, a2, a3, and a4 are shape constants,r is the
radial distance from the body z-axis,R is the radius of the
circle. We obtain a conical shape whena0 6= 0, a1 < 0,
and (a2, a3, a4) = 0, with concave facing-down shape. The
circle is chosen because of its symmetry and its advantages
to stability. For more details on the reflector shape design,the
reader is referred to [3] (See figures 2 and 3 for illustration).

III. C OORDINATE FRAMES

There are two coordinate frames defined for this system, as
depicted in figure 4: the inertial frame and the body frame. The
xb, yb, zb axes of the body frame are attached to the vehicle
CM with zb aligned with the mast axis. The inertial frame
{XI , YI , ZI} has the gravity vector in the−ZI direction. The
microwave source which is represented as a point source is
located on the{ZI} axis at{0, 0,−D} in the inertial frame
(with D > 0). The microwave beam radiates in the+ZI

direction with its maximum intensity aligned with the+ZI .
The offset between the vehicle CM and the reflector CM,
defined as d (d > 0). SinceD � d then we consider the
distance from the source to the reflector CM to be D.

IV. EQUATIONS OF MOTION

For a rigid body, the equations of motion are very well
established,[3],[5] and [6].

Fig. 2. Representative mesh illustrating elements and corresponding areas,
notice that boundary elements require special consideration in area and normal
vector calculations

Fig. 3. Reflector mesh in MATLAB illustrating the parameterized curve

~̇r = ~v (2)

~̇v =
~F

m
+ ~G (3)

~̇q =
1

2
~q ⊗ ~ω (4)

~̇ω = J−1[−~ω × J~ω + ~T ] (5)

~r is the coordinate vector in the inertial frame(m).
~v as the velocity vector in the inertial frame(m/s).
~q is the attitude quaternion that specifies body frame
orientation in inertial coordinates and~q = [q1; q2; q3; q4] =
[q1; ~α]
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Fig. 4. Microwave sail coordinate systems and states.

~ω as the angular velocity vector in the body frame(rad/s).
m is the total mass of the system(Kg).
~G is the gravity vector such that~G = [0, 0,−9.807]T (m/s2).
J is the vehicle moment of inertia(Kg/m2).
~F is the radiation-induced inertial force on the vehicle
(Kg.m/s2).
~T is the radiation-induced body torque on the vehicle
(Kg.m2/s2).

The force ~F and the torque~T are given by [3]:

~F = ~q∗ ⊗






2

∫ ∫

ref

dAρecos
2ψe

~̂neb

~̂neb(3)






⊗ ~q (6)

~T =

∫ ∫

ref






~reb ×






2

∫ ∫

ref

dAρecos
2ψe

~̂neb

~̂neb(3)












(7)

with ~reb is the vehicle CM to element location vector in the
body-frame.
~̂neb is the reflection unit normal in the body frame at~reb.
dA is the element area.
ψe is the angle between the element local normal and the
direction of incident radiation.
ρe is the energy density function.

For a square wave-guideρe becomes

ρe = Pt

(cos2φcosnxθ + sin2φcosnyθ)

4πs2
(8)

wherePt is the transmitted power.
nx, ny are the power indices in the inertial X and Y directions
respectively.
θ is the angle with the inertial Z-axis.
φ is the angle with the inertial X-axis.
s is the distance from the source

∥

∥~r
∥

∥ =
√

x2 + y2 + z2

The physical control inputs to the system are therefore,
Pt, nx, andny. In section VII, we will design controllers using
the force ~F and torque~T andPt, nx, andny respectively as
our control inputs.

V. STABILITY ANALYSIS

Let ~x = {~r,~v, ~q, ~w} be the state of the system. The equa-
tions of motion are then described by the nonlinear differential
equation

~̇x = f(~x) (9)

The equilibria for the nonlinear systemf(~x) = 0 are obtained
as ~x0 = {(0, 0, zeq), (1, 0, 0, 0), (0, 0, 0), (0, 0, 0)}. Since we
do not have any source of natural damping, the system can be
marginally or neutrally stable at best. Basically, equilibrium is
achieved when the body-frame axes are aligned (parallel) with
the inertial frames axes, and the origin of the body-frame is
on the inertial Z-axis, at a desired distance from the source.

Perturbations occur in translational directions represented
with cylindrical coordinates,RI and ZI , and in angular
directions represented with the Euler angles, yaw, pitch, and
roll. For most of the translational displacements, the reflector’s
concave shape will compensate and will bring the vehicle to
equilibrium as discussed previously. The angular perturbations
are more serious. When the reflector shape provides a ”restor-
ing force” effect, we notice that the force is greater on the
reflector surface closest to the microwave beam leading to
rotation away from equilibrium. This will cause the system to
become unstable to pitch and roll perturbations. To compensate
this effect, a stabilizing torque is induced by the additionof
the payload. In the next section, we will attempt to get a more
analytical understanding of stability through linearization.
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Fig. 5. A means of obtaining a ‘restoring force’ via reflector shape
manipulation
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VI. L INEARIZATION

Using the linearization technique as a way to analyse the
stability of the nonlinear system, the linearized state equation
becomes:

~̇x = A~x (10)

whereA is the Jacobian evaluated at~x0, A = ∂f
∂~x

∣

∣

∣

∣

~x=~x0

. The

stability characteristics of the linearized equations of motion
are determined by the real parts of the eigenvalues ofA. If
these real parts are negative then the system is stable, unstable
if they are positive, and marginally stable if the real part is
zero,[7]. We mentioned in section V that the system lacks
natural damping, therefore the best performance that we hope
to obtain is marginal stability. The vehicle has six degrees
of freedom. One is a zero frequency mode which rotates
the vehicle around thezb axis. The other five are oscillatory
modes. The first oscillatory mode is the bouncing or hopping
mode that makes the vehicle translate up and down along
the ZI -axis. It is always neutrally stable. The other four are
combinations of attitude and translation motion in theYIZI

andXIZI planes. They are a combination of pendulum and
yo-yo modes. These four modes determine the neutral stability
of the vehicle. Therefore, the system is usually unstable, and at
best marginally stable,[1]. In the 1-D case, we can stabilize the
microwave-propelled sail using delayed measurements,[2], and
by feedback linearization,[1] . In an effort to alleviate the non-
linear constraints imposed by the system, we linearize around
the origin ~x0 = {(0, 0, zeq), (1, 0, 0, 0), (0, 0, 0), (0, 0, 0)}
which is considered the equilibrium point. The resultingA
matrix has the following eigenvalues:

λ1,2 = −137.3 ± 144.61i

λ3,4 = +137.3 ± 144.61i

λ5,6 = −46.563 ± 1.237i

λ7,8 = +46.563 ± 1.237i

λ9,10 = 0 ± 32.258i

λ11 = 0

λ12 = 0

λ13 = 0

We notice that the eigenvalues are conform with our analysis
and the linearized system is unstable fromλ3,4 and λ7,8

which have large positive real parts. Therefore, using the
linearization technique in order to control the nonlinear system
is unrealizable.

In the following sections, we will present a controller that
will use nonlinear control on the force and torque, with
a numerical example. Afterwards, we will investigate the
statistical learning approach .

VII. C ONTROLLER

In this section, we will present two controllers. The first
controller is based on the the force~F and torque~T and the
second onPt, nx, andny.

A. Controller I

Going back to the equations of motion and making the
following changes in order to have the origin as the desired
equilibrium. Let~e = ~r−~rd andβ = q1−1. The new equations
of motion become

~̇e = ~v (11)

~̇v =
~F

m
+ ~G (12)

β̇ = −
1

2
~αT ~ω (13)

~̇α =
1

2
(~α⊗ ~ω + (β + 1)~ω) (14)

~̇ω = J−1[−~ω × J~ω + ~T ] (15)

Using the nonlinear control law given in [6] and modified
in [5].

~F = −m
(

~G+ ~e+ ~v
)

(16)

~T = −
1

2

[(

~̃α+ (β + 1)I
)

Gp − γβI
]

~α−Gr~ω (17)

whereGp and Gr are symmetric positive definite diagonal
(3x3) matrices andγ is a positive scalar. Let us investigate
the following Lyapunov function candidate .

V =
1

2
~eT~e+

1

2
~vT~v + γβ2 + ~αTGp~α+ ~eTJ~e (18)

which is defined for all~x such that~x = [~e,~v, β, ~α, ~ω]. The
derivative ofV is V̇ = −2~ωTGr~ω − ~vT~v which is negative
semi-definite. LetΩ be the set wherėV = 0. The largest
invariant set inΩ is the origin.

Replacing~ω = 0 and~v = 0 in the equations of motion, we
obtain the following.~e = 0, ~α = 0, βI = −Gp(Gp − γI)−1.
Sinceβ does not converge to zero directly, therefore we have
local stability.

B. Controller II

The actual control inputs to the system arePt, nx, andny

but they are nonlinearly related to the force and torque as
seen in equations (6), (7) and (8). To avoid working with such
nonlinearities, we turn to numerical methods. For simplicity
purposes, we will assume that the wave-guide related param-
eters represented bynx and ny are constants at 3.75 each.
Since the amount on the transmitted power depends mainly
on the distance, we pickPt = Pt + ~K ∗ ~r with ~K being a
3x1 gain vector. Following the examples of Vidyasagar and
Koltchinskii et.al.in [8] and [9] respectively, the vector~K is
chosen randomly within a certain range. We chose a candidate
Lyapunov function of the formV = x′Px where P is a
diagonal matrix with positive entries within a predesigned
range. The candidate Lyapunov function as chosen is always
positive, but the behavior of its derivativėV = 2ẋ′Px is
unknown. The best scenario is forV̇ to be negative.
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VIII. N UMERICAL EXAMPLE

A. Controller I

The spacecraft model used in this simulation is a scaled
version of the real microwave-propelled sail. The mass
is 6.11345 g, the inertia matrix is given by 1.0e-006
*diag([0.3368,0.3368,0.0737])Kg/m2. The initial orientation
of the sail is given by the~q = [.85; .85; .85] andβ = −0.004.
The gravitational vector is given byG = [0; 0;−9.807]. Using
the above mentioned controller with the feedback gains chosen
for Gp = diag[100100200], Gr = diag[100100100], and
γ = 100. As you see in figure 7,q0 converges almost to
zero, while in figure 6, the attitude vector converges to zero
at different rates to zero, depending on the values ofGp.

We also tested the robustness of the controller when the
sail is subjected to different physical variations: shape change,
area variation and random disturbance. The desired position
we chose for the sail to converge to is[x, y, z] = [1, 2, 3].

When we change the shape of our sail from a cone to a flat
circumference and we vary the thickness of the circumference,
the controller still drives the sail to the desired position, for
one, five and ten levels of thickness respectively, and with all
other states reaching their equilibrium.

If we ”poke” holes in the surface area of the original
cone-shaped sail, the controller will compensate and the sail
will reach its desired location, where we have removed every
second, fifth and tenth element area respectively, and with all
other states converging to their equilibrium.

In case of the disturbance, we have investigated two in-
stances.

For a random but constant disturbance whose magnitude is
between 0 and 100, the maximum deviation from the desired
position is 0.6115 while all other states converge to their
equilibrium position. For smaller disturbances the changeis
barely noticeable.

For a random continuously changing force, all states go to
a different equilibrium every time.

B. Controller II

For the sake of time, we used only 48 initial conditions/plant
in the vicinity of the desired equilibrium point 0 and 2 con-
trollers in the range (0,1). We obtain the following controllers:
~K1 = [0.85800.68020.3567] ~K2 = [0.33580.05340.4983]

with the diagonal matrixP in the range (0,1) that yield an
oscillatory behavior that is conform with marginal stability
as described in [3] and shown in figures 8 and 9 . Unfortu-
nately,the derivative of the candidate Lyapunov function was
also oscillating between a negative and a positive value as seen
in figure 10, therefore rendering our results purely numerical.
If the range of the controller~K or the diagonal matrixP is
increased beyond (0,1) the sail looses its marginal stability and
goes unstable.

IX. CONCLUSION

We have presented a general view of the microwave-
propelled sail, along with its dynamics and two controllers
that drive it to local stability, as was shown in our numerical
examples. More work is under way for the improvement of
the second controller.
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Fig. 6. Attitude vector~α of the sail.
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Fig. 7. q0 of the attitude vector~α.

Fig. 8. Oscillatory behavior of the sail with K1

Fig. 9. Oscillatory behavior of the sail with K2
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Fig. 10. The derivative of the Lyapunov function


