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Abstract— This paper presents the microwave-propelled sail, conjugate,L,- is the frame rotation matrix. For any vector
its structure, assumptions. We will present its equations of 7 — v1,v2,v3]T, the cross product operator is defined as:

motion, then we will conduct stability analysis and we will design 0 —us Vo
two controllers to make it asymptotically stable and marginally =
U= VU3 0 —un
stable.
) 1 0
. INTRODUCTION . SAIL

While space has intrigued humans from the beginning of The sail studied has an umbrella-like configuration with
time, it wasn't until the twentieth century that man begas hconcave sides facing the radiation source and has a bounded
space conquest. Though it has been almost half a centuy sinotion behavior. The sail is composed of a reflector made
Sputnik orbited the earth, the aerospace technology Isirstil out of a light-weight carbon fiber material, a hollow mast and
its infantry with a huge potential. This paper will discuss payload represented by a ball. The mast is attached at the
new generation of spacecraft, the microwave-propelletl sakflector center of mass (CM), and connects the payload to the
The idea builds upon solar sails[4] which have been in theflector. The payload is not directly attached to the refiect
literature since the 1970’s. The idea of microwave-pragaell for stability reasons. To obtain passive dynamic stability
sails is very similar, but instead of the sun’s photonsitti , The reflector must be located aft of the vehicle CM for
the solar sail at the right angle, the microwave-propelled (otational stability
sail alleviates that problem since we have "control” ovex th , The reflector must be of a concave shape such that the

power source and its direction. The microwave sail architec concave shape faces the radiation source for translational
comprises very large ultra-weight apertures and strusture  stapility.

One of its distinguishing improvements is mission capspbili

A . , The notion of beam-riding, i.e. the stable flight of a sail
and reduction in mission cost, plus the ability of interstel

) L i . ; propelled by Poynting flux caused by a constant power source,
exploration missions. Microwave-propelled sails, alonihw |65 considerable demands upon a sail. Even if the beam is
solar and other types of sails will provide Ic_)w-cost projuis . steady, a sail can wander off the beam if its shape becomes
and long-range mission. In [4], McInnes gives a general Vieysormed or if it does not have enough spin to keep its angular
on solar sails. Stability and control of carbon fiber Sa"ﬁwmentum aligned with the beam direction in the face of
propelled using microwave radiation in 1-D has been stulied o hations. The microwave beam pressure keeps concave

[1], [2]. This paper will cover the sail shape and assumptionp,nes in tension, so concave shapes arise naturally while
needed for our analysis of the sail, along with its equatians beam-riding. they will resist sidewise motions if the beam

motion, and control design structure. moves off-center, since a net sideways force restores the sa

_In this paper, we will start in section 1l by the physical, jis nosition (See figure 5). Therefore, our sail will have a
dimensions of the sail and listing the different assumtion. ., -ave shape, depicted in the figure below,1.
used, we will then describe the coordinate frames in section ’ ’

lll, the equations of motion will be introduced in section, IV .

followed by a stability analysis in section V, and a lineatian A. Assumptions

approach in section VI, with the presentation of two comérsl ~ In this section, we list the assumptions needed to simplify
in section VII, and simulation results in section VIII. our analysis of the microwave-propelled sail.

Notation An arrow above the symbol designates a vector, ande The system is considered as a rigid body

all vectors are assumed to be column vectargefers to the  « The reflector has full reflectivity. The actual carbon fiber
guaternion multiplication;* refers to the quaternion complex used in our experiments has 98% reflectivity.
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Fig. 1. Microwave sail concave shape

o There are no internal reflections.
« The payload and the mast do not block the microwas

beam. + elements
« There are no aerodynamic influences *  area boundariss
« The microwave source is modelled as a point source with

a square wave-guide. Fig. 2. Representative mesh illustrating elements and quoreting areas,
« The gravity vector g, points towards the negative Z-axi®tice that boundary elements require special consideratiarea and normal

of the inertial frame (See figure 4). M

B. Reflector model

Since we have chosen our reflector to be of a conic
shape, any cross-section orthogonal to the mast is a circ
The reflector surface is created by revolving a parametdriz
curve about the body z-axis. The following is a fourth orde
polynomial approximation of the parameterized curve:

f(r/R) = ap+ai(r/R) +az(r/R)? + as(r/R)> + as(r/R)*
1)
where ag, a1, a2,a3, and a, are shape constants, is the
radial distance from the body z-axi® is the radius of the
circle. We obtain a conical shape whep # 0, a; < 0,
and (as, as,aq) = 0, with concave facing-down shape. The
circle is chosen because of its symmetry and its advantag
to stability. For more details on the reflector shape degtymn,
reader is referred to [3] (See figures 2 and 3 for illustrgtion

a=-1, b=2, c=1, d=-2, e=-1, R=2.54

[1l. COORDINATE FRAMES
. . . Fig. 3. Reflector mesh in MATLAB illustrating the parametedzeurve
There are two coordinate frames defined for this system, as

depicted in figure 4: the inertial frame and the body frames Th
Ty, Yp, 2 axes of the body frame are attached to the vehicle

CM with z, aligned with the mast axis. The inertial frame P )
{X71,Yr, Z;} has the gravity vector in the Z; direction. The .

microwave source which is represented as a point source is R

located on the{Z;} axis at{0,0,—D} in the inertial frame S +G ©)
(with D > 0). The microwave beam radiates in theZ; 1

direction with its maximum intensity aligned with theZ;. =549 (4)

The offset between the vehicle CM and the reflector CM, . .
defined as dd > 0). Since D > d then we consider the G=J -G x JG+T] (5)

distance from the source to the reflector CM to be D. L. , . L
7 is the coordinate vector in the inertial frane).

¢ as the velocity vector in the inertial fran{e:/s).

¢ is the attitude quaternion that specifies body frame
For a rigid body, the equations of motion are very welbrientation in inertial coordinates anfl = [¢1;g2; q3; 4] =

established,[3],[5] and [6]. [q1; @]

IV. EQUATIONS OF MOTION



The physical control inputs to the system are therefore,
P;,n,, andn,. In section VII, we will design controllers using
the forceF and torque‘f and P, n,, andn, respectively as
our control inputs.

V. STABILITY ANALYSIS

Let ¥ = {r, v, q,w} be the state of the system. The equa-
tions of motion are then described by the nonlinear difféa¢n
equation

i = f(@) 9)

The equilibria for the nonlinear systefi{z) = 0 are obtained

as 7y = {(0,0, z), (1,0,0,0),(0,0,0), (0,0,0)}. Since we

do not have any source of natural damping, the system can be
marginally or neutrally stable at best. Basically, equilin is
achieved when the body-frame axes are aligned (parallét) wi
the inertial frames axes, and the origin of the body-frame is
on the inertial Z-axis, at a desired distance from the source

Fig. 4. Microwave sail coordinate systems and states.

& as the angular velocity vector in the body frafred/s). Perturbations occur in translational directions represin

m is the total mass of the syste(#g). with cylindrical coordinates,R; and Z;, and in angular

G is the gravity vector such that = [0,0, —9.807]" (m/s?). directions represented with the Euler angles, yaw, pitcld, a

J is the vehicle moment of inertig g/m?). roll. For most of the translational displacements, the cifles

F is the radiation-induced inertial force on the vehicleoncave shape will compensate and will bring the vehicle to

(Kg. m/s?). equilibrium as discussed previously. The angular perticha

T is the radiation-induced body torque on the vehiclare more serious. When the reflector shape provides a "restor-

(Kg.m?/s?). ing force” effect, we notice that the force is greater on the

. reflector surface closest to the microwave beam leading to

The forceF' and the torqué are given by [3]: rotation away from equilibrium. This will cause the systemn t

become unstable to pitch and roll perturbations. To conmggens
- this effect, a stabilizing torque is induced by the additafn
F=q® 2/ / dAp.cos*ip. qneb ®q (6) the payload. In the next section, we will attempt to get a more
Teb(3) analytical understanding of stability through lineariaat

ref

ref ref

T = / / Py X |2 / / dApecos® weﬁeb(:%) (7) \

Resultant Force Resultant/Restoring Force
with 7., is the vehicle CM to element location vector in the
body-frame.

fiep is the reflection unit normal in the body frame7at,.

dA is the element area. Intepsity Intensity
1. is the angle between the element local normal and the
direction of incident radiation.

pe IS the energy density function.

For a square wave-guide becomes ‘ 6\

(cos?pcos™ 0 + sin?pcos™ ) ®) a) b)

4ms? D D

where P; is the transmitted power.

pe:Pt

ns, n, are the power indices in the inertial X and Y directions Microwave Source Microwave Source

respectively.

0 is the angle with the inertial Z-axis.

¢ is the angle with the inertial X-axis. Fig. 5. A means of obtaining a ‘restoring force’ via reflectdrape

s is the distance from the soutp®| = /22 + 32 + 22 manipulation



VI. LINEARIZATION A. Controller |

Using the linearization technique as a way to analyse theGoing back to the equations of motion and making the
stability of the nonlinear system, the linearized stateatign following changes in order to have the origin as the desired

becomes: equilibrium. Leté = ¥—7,; and3 = ¢; —1. The new equations
I =AZ (10) of motion become

where A is the Jacobian evaluated 3§, A = % . The e=17 (11)

stability characteristics of the linearized equatigﬁgomftim . F

are determined by the real parts of the eigenvaluesl off T=—4+G (12)

these real parts are negative then the system is stablaplmst m

if they are positive, and marginally stable if the real part i . 1y

zero,[7]. We mentioned in section V that the system lacks p= v (13)

natural damping, therefore the best performance that we hop

to obtain is marginal stability. The vehicle has six degrees & = 1 (@R + (B+1)d) (14)

of freedom. One is a zero frequency mode which rotates 2

the vehicle around the, axis. The other five are oscillatory 5o T x J& + f] (15)

modes. The first oscillatory mode is the bouncing or hopping

mode that makes the vehicle translate up and down alongsjng the nonlinear control law given in [6] and modified
the Zr-axis. It is always neutrally stable. The other four arg, [5].

combinations of attitude and translation motion in %eZ; ~ 5 o, -

and X;Z; planes. They are a combination of pendulum and F=-m (G Tt v) (16)
yo-yo modes. These four modes determine the neutral $¥abili 1

of the vehicle. Therefore, the system is usually unstalple s T=_— [(52 +(B+ 1)]) Gy — 75]} a-Go A7)
best marginally stable,[1]. In the 1-D case, we can stabilie 2

microwave-propelled sail using delayed measurementsifg] where G, and G, are symmetric positive definite diagonal
by feedback linearization,[1] . In an effort to alleviateethon- (3x3) matrices andy is a positive scalar. Let us investigate
linear constraints imposed by the system, we linearizeratouthe following Lyapunov function candidate .
the origin Zy = {(0,0,z2¢4),(1,0,0,0),(0,0,0),(0,0,0)} 1 1
which is considered the equilibrium point. The resultidg V=_élet+ iTo+yp2 +a’G,a+eélge (18)
matrix has the following eigenvalues: 2 2

which is defined for allz such that? = [¢,7, 3, a,d]. The

Atz = —137.3+ 144614 derivative of V is V = —287G,& — o7 which is negative
Aza = +137.3+144.617 semi-definite. LetQ2 be the set wherd” = 0. The largest
X\se = —46.5634 1.237i invariant set inf2 is the origin.

’ . Replacingd = 0 and@ = 0 in the equations of motion, we

A = 46.563 £+ 1.237 - . ’

s N _ ! obtain the following.e¢ =0, @ = 0, I = —G,(G, — ).
Moo = 0+32.258i Since does not converge to zero directly, therefore we have
A1 = 0 local stability.

)\12 = 0

Az = 0 B. Controller Il

The actual control inputs to the system dtgn,, andn,

We notice that the eigenvalues are conform with our analy§st they are nonlinearly related to the force and torque as
and the linearized system is unstable from, and \;s S€€N in equations (6), (7) and (8). To avoid working with such
which have large positive real parts. Therefore, using tmenlinearities, we turn to numerical methods. For simplici
linearization technique in order to control the nonlinggstem PUrposes, we will assume that the wave-guide related param-
is unrealizable. eters represented by, andn, are constants at 3.75 each.

In the following sections, we will present a controller thaPinCe the amount on the transmitted power depends mainly
will use nonlinear control on the force and torque, witlP" the distance, we pick; = P + K « " with K being a

a numerical example. Afterwards, we will investigate thaxl gain vector. Following the examples of Vidyasagar and
statistical learning approach . Koltchinskii et.al.in [8] and [9] respectively, the vectdf is

chosen randomly within a certain range. We chose a candidate
Lyapunov function of the formlV = 2'Px where P is a
diagonal matrix with positive entries within a predesigned

In this section, we will present two controllers. The firstange. The candidate Lyapunov function as chosen is always
controller is based on the the fordé and torqueff and the positive, but the behavior of its derivativE = 2i'Pz is
second onP;, n,, andn,,. unknown. The best scenario is fof to be negative.

VIl. CONTROLLER
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In case of the disturbance, we have investigated two i
stances.

For a random but constant disturbance whose magnitude
between 0 and 100, the maximum deviation from the desir

0.06

005

4 004

position is 0.6115 while all other states converge to the oo .
equilibrium position. For smaller disturbances the chaigye 0oz .
barely noticeable. oo _

For a random continuously changing force, all states go
a different equilibrium every time.

1 I 1
1] 5 10 15 20 25 a0 35 40 45 50
Time ins

B. Controller Il

For the sake of time, we used only 48 initial conditions/plan
in the vicinity of the desired equilibrium point 0 and 2 con¥ig. 6. Attitude vector@ of the sail.
trollers in the range (0,1). We obtain the following conlecs:

K1 = [0.85800.68020.3567] K, = [0.33580.05340.4983]
with the diagonal matrixP in the range (0,1) that yield an
oscillatory behavior that is conform with marginal statili
as described in [3] and shown in figures 8 and 9 . Unfortu-
nately,the derivative of the candidate Lyapunov functiceisw
also oscillating between a negative and a positive valueas s
in figure 10, therefore rendering our results purely nunadric

If the range of the controlle’ or the diagonal matrix? is
increased beyond (0,1) the sail looses its marginal stglaitid
goes unstable.

IX. CONCLUSION

We have presented a general view of the microwave-
propelled sail, along with its dynamics and two controllers
that drive it to local stability, as was shown in our numdrica
examples. More work is under way for the improvement of
the second controller.
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