AAA Paper
No. 69-914

W

AMERICAN RaNA”TIcAL SOCIETY

MINIMUM-FUEL THRUST-LIMITED TRANSFER TRAJECTORIES
BETWEEN COPLANAR ELLIPTIC ORBITS

by

E. A. KERN

TRW Systems Group
Houston, Texas

and

D. T. GREENWOOD
University of Michigan
Ann Arbor, Michigan

AIAA/AAS Asirodynamics
Gonierence

PRINCETON, NEW JERSEY/AUGUST 20-22, 1969

First publication rights reserved by American lnstitute of Aeronautics and Astranautics, 1290 Avenye of the Americas, New York, N.Y. 10019

Abstracts maoy be published without permission if eredit is given to author and to AlAA. [Price: AlAA Member $1.00. Nonmember 31.50
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Abstract

A method is developed for the computation of
minimum-fuel transfer trajectories between coplanar
elliptic orbits with a thrust-limited variable-mass
rocket moving in a central gravitation force field.
Each orbit is defined through the eccentricity,
semilatus rectum, and argument of pericenter., Trans-
fer time 1s left open. The minimum-fuel trajectory
is assumed to consist of two thrusting phases separ-
ated by a coasting phase. Computation of the
minimum-fuel transfer trajectory is accomplished by
a direct integration of the rocket equaticns of
motion and the associated adjoint equations. This
direct approach is made possible by a transformation
of the adjoint equations into a set of equatiens
which provide a much better understanding of the
general behavier of minimum-fuel transfer trajec-
tories. An IBM 7094 digital computer program with
primarily single-precision arithmetic is used for
the computation. Rapid convergence is obtained
over a broad class of transfer trajectories and
rocket thrust levels.

Nomenclature

- z a cosp
- ratie of maximum rocket thrust to initial rocket weight
-z e sineg ’
-~ rocket gffective exhaust velocity
- orbital eccentricity
- true anomaly
- hamiltonian
- a portion of the hamiltonian
- a portion of the hamiltonian
- 1ingtantaneous rocket mass
- semilatus rectum
- distance from center of force to the rocket
- switching function (s positive impllies thrust is on)
- time
- radial velocity/r
- transvarse velocity/r
-~ reciprocal of the instantanecus mass
- recliprocal of the per-unit-mass angular mementum
t _1(59
- an " )]
- £ + 1t
adjoint variable
- combination of adjoint and state variables
- combination of adjoint and state variables
- thrust intensity contro! variable (Q <« ¢ 1)
. 1/2
N
e Vo Kw]

p =~ argument of pericenter
¥ - angle of thrust orientation above local horizontal
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1. Introduction

The problem considered here concerns the deter-
mination of time-open minimum-fuel thrust-limited
transfer trajectories between coplanar elliptic
orbits. That is, given two coplanar elliptic orbits
defined, for example, by pairs of semilatera recta,
eccentricities and arguments of pericenter, the
problem is to find the minimum-fuel transfer tra-
jectory between these two orbits. Prior attempts to
find a reliable and efficient method for solving
this preblem have met with only limited success due
to the extreme sensitivity of the particular two-
point boundary value problem. A significant contri-
bution has been made by McCue who used a highly
sophisticated quasilinearization method to obtain
solutions, (1} However, McCue's method consumes a
relatively large amount of computer time and appears
very difficult to program., The approach taken in
this paper is to transform the conventioral adjeint
variables into a set of variables which provide more
insight into the characteristics of the optimum
transfer trajectory. Differential equations are
developed for the transformed variables, and these
equations are integrated directly along with the
rocket equations of motlon te find the minimum-fuel
transfer trajectory. The known two-impulse trans-
fer trajectory is used to assist in the cholce of
the unknown initial conditions.(Z,3, A systematic
approach is employed to force the set of differen-
tial equations to satisfy the boundary conditiens.
The transfer trajectory is assumed to consist of
two thrusting phases separated by a coasting phase.

11. Necessary Conditions for Optimality

The optimal transfer trajectery must satisfy
the desired initial and final boundary conditions
while maximizing the final mass of the rocket. 4
set of necessary conditions for this optimal tra-
jectory can be developed from varlational calculus
principles.

Units and Scaling

In order to obtain better scaling of the prob-
lem variables and parameters and to make the results
more readily applicable to motion about any central-
body attracting force, the feollowing set of units
is employed throughout the study:

unit length == r* = convenient distance from

attracting center

unit acceleration = g% = acceleration of
gravity at distance r*

initial mass of the rocket
vehicle

unit mass =

As a result of this choice of units
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S . . .
Tri)gE] /2. unit of time (in ome time unit a satel-

lite in circular orbit of radius r*
would traverse through a central angle
1/2 of one radian).
rr* g*] ' "= unit of velocity (the orbital velocity
of 2 satellite in a circular orbit of
radius r* would equal one velocity

5 unit).
gy¥ = gravitational parameter of the central
body = 1.

Egquations of Motion
The differential equations defining the motion

of the rocket are derived under the following

assumptions

1. The rocket is a variable mass particle.

2. Rocket thrust is always in the plane of metion,
can be varied in both magnitude and direction,
and is a linear function of the mass flow rate.

3. The acceleration of the rocket is due solely to
the rocket thrust and a spherically symmetric
inverse square central gravitational force
field.

With the above assumptions the rocket equations of

motion are

dh - _un 1
at (1)
du - y? _ y? _ h® + af wh sin¥ 23
dat

%{ = - 2uv + af wh cosV¥ (1)

do o~ afwh[{v? + 0¥ cos¥ ~ (v2 . B3y ain¥]

4
dt RS - v3(2h® - u2 - v2) 4
dw - afu®
F )

where, with r the radial distance from the center

of thelattracting body,

=%

u = vradial velocity/r

v = transverse velocity/r

a = ratio of maximum rocket thrust to initial

rocket weight

E = thrust intensity control variable
(G o 5_51)

w = vreciprocal of the rocket mass

¥ = angle of thrust orientation above the local
horizontal

¢ = rocket effective exhaust velocity

The hamiltonian for the system defined by
Equations (1) - {(5) is

wh
Hos -ubdy + (v2uB-h20 - 2w + afv[bA cos¥ + A sin¥)+ _EH] (6)

where Kh,Ku,KV,thand A are the adjoint variables
associated with h, u, v, ¢, and w respectively,
and

xm(v2 + h3)u

he — Vz{ghﬁ - w? va)

Ao=hgt

(7}

A (v2 ~ K3y
©

Ay

Mo - B~ v2(2h3 _ 42 _ 42) {8)

The optimal control must be chesen to maximize
the hamiltonian. Therefore, the thrust-orienta-
tion angle must be chosen such that

A
sint = 2 (9
A
cos¥ = KX (10)
where
2 2. U2
A= [Au © Ay (11 S’

The hamiltonian maximized with respect teo the thrust-
orientation angle becomes

P u%
= —uhh + (v¥-u®-h )k“ - 2uvh, + afu(hh + ~€.) (12)

In order to maximize the hamiltonian with respect
to the thrust intensity contreol varizble £ it is
convenient to partition the hamiltonian as follows

H=E, + aEwH, (an

where
Hy= = uhry + (v - u® - 1\3))\u - 2uvh (14)
WA
Hy = hA+ -c—“ (15>

Tt follows that £ must be chosen equal to one if

H, 1s greater than zero and equal to zero if H, is
léss than zero. In other weords, if H, is posi}ive,
the rocket should be thrusting at maximum intensity
while for H., negative, the rocket should be in a
non-thrusting or coasting phase. If H. is zero over
any finite time interval, § could take on any value
in its permissible range without affecting the ham-
iltonian. However, for the case of time-open trans-
fer trajectories, minimum-fuel thrusting arcs for
which the thrust-intensity control variable takes on
intermediate values in the range zero to one have
been shown by Robbins and also Kopp and Moyer to be
non-existent.‘”»

From the hamiltonian of Equation (12) the ad- ~
joint equations are

4 2 Tuh
d_t-\! = hu o+ 3T - aFun - iﬁ"’_ (:\u/\m + A A (18

. ' Evh
Feb = agh b Ay 2y - BEE AN, HAA LD D)

- Fuh
a..tx = - D+ 2D - &K"— {hAg t {\v!\w) (18)
Efm o] (1%)
dat
da» 2a§wkw A
R . . h 2
dt e a.g (20
where
- env® + mPv%? - By . Inys
= X
han = (r® - v3(2n? - u® - v2)3? (21
_ 2uys - 2uv3hd (22)
g @ [pe - v2(2n% - u? - v2)]*®
LR h® + vo - B5v2 _ ndvd o vhe® L hE AR (23)
voT [n® - v2ian® - u® - &) )°
EE g 5.8 2, 3 2
Ay =2 9h%we® - 3T - EhYuww® 4 3hSuty (26
h @ ® _ vHan® - o - va}]e
Ay = A h? - 18v? - vin® . uPvPh® _ uivt § b (2%

(B8 ~ v2(2n® - of - v}}°

~



Ag = X Savh® - 2vbu - 2vu®h® - 4y
[t - v2(an® o R - e2) P

(26)

Transformation of the Adiocint Variables

The conventional adjoint variables can be re-
placed by a set of new variables which are coupled
in a physical sense more directly to the actual
transfer trajectory. The differential equations
which these new varlables must satisfy will be shown
in the subsequent analysis. Differentiating both
sides of Equations (9) and (10) and simplifying, it
can be shown that

A = 2up + v pin¥ - A _cosV (27
dt @
a¥ = 2v + 1(v cos¥ + »_sin¥) (28)
dt A b4
where, with £ the true anomaly
37 sin
vE Ny - e (29)

S5ince the sign of H., controls the rocket thrust-
ing, a switching function s can be defined as fol-
lows

H
1
= = 30
s = (30)
A is by definition a positive quantity. Therefore,

for s positive the rocket thrust should be at maxi-
mum intensity (H. » 0), while for s negative the

rocket thrust should be zero (H, « 0). Direct
differentiaﬁio?73f Equation (30} yvields after some
simplification
%% = _-‘!_R_h(kq’cosw - vsin¥®) + uh - s(Ru + é%‘i) (31}
Finally, differentiating Equation (29), t%?)defin—
ing equation for +, it can be shown that
% = A h{3n%sin¥ - aFw) (32)
The conventional adjoint variables, A _,A ’Kv’hw
can now be replaced by the variables p, Y, s? and

v. Therefore, the differential equations (27), (28),
(31), and (32) replace the adjoint equations (16),
(17}, (18), and (20). 1In addition to being simpler
to integrate, these new differential equations pro-
vide a much greater understanding of minimum-fuel
trajectories.

Transformation to the z, A, B Coordinates

A transformation of the state variables can be
emploved to facilitate the integration of the state
equations. By means of several fundamental two-
body orbit relationships it is possible to show
that

2 6 2

1 - Fan? o LBy - onbe (33
where e is the orbital eccentricity. Therefore, the
right-hand side of Equation (4) approaches infinity
as the orbital eccentricity apprcaches zero. This
singularity in the ©® equation of metion can be elim-
inated by transfeorming, as suggested by Fraeijs
DeVeubeke, from the original set of state variables
h, u, v, ¢ and v to a new set of state variables z,
A, B, 0, and v defined by 28’9

. =2 (34)
A =z e coso (35
B=2ze sing (36)
B og+ F (37)

These new variables can be shown to satisfy the
following differential equations

2

dz - _ 85wz cos¥ (38}
dt h
2

g_'_A = aEw( cosfl cosV + sinf sin¥ + %-' cos¥ CDSG) (39)
%
4B - aFul(sin® cos¥ - cosb sin¥ + %3 cos¥ sind) (40
at

& BEERCY

@

The above four equations along with Equatiomns
(5), (19}, (27), (28), (31), and (32) are the basic
set of equations which must be satisfied by the mini-
mum fuel trajectory. This set of equations will be
defined as the system equations. The variables h,

u, and v which appear in these equations can hbe
found from the auxiliary relations

-1
- B
p = tan (3 (s2)
e=_A (43)
z eoap
=1
p=L {44)
z2
f = 8«0 (455
h = (1 + e cos {) 22 (46}
u = hezsinf (&7
h?
v = (48)
z
The thrust intensity control variable £ is deter-
mined by the switching function according to the
following legic
g1 530 (49)
g0 s<0 (50)

Boundary Conditions

Let the initial and final orbits be defined by
the sets (p_, e ¢0)and b, e, wf) which represent
the semilatls réctum, eccengric ty, and argument of
pericenter for the initial and final orbits respec-~
tively. 8Since the initial mass of the rocket is
known, the boundary conditions on the state variables

at the initial time t_and the final time tf will be
as follows °
1/2 1/2
2lty) = L} altg) =1 (s1)
Py Py
Ar) = z(to)eocosmo A(tf) = z(tf)ercosmf (52)
B{t,} = a{ty)a,eing, B{tp) = sltplepsinge (53
w{t,) =1 (54)

The times t_ and te are defined as the times at

which the transfer is initiated and terminated
respectively. Defining the times in this manner
eliminates the need for coast periods at the start
and the finish of the computation., This results in
no loss in generality since the initial and final
true anomalies are not pre-specified but must be
determined to satisfy the two-point boundary value
problem.

As a consequence of the transversality condi-
tions and the boundary conditio?%)on the state

variables it can be shown that
69-~914



Ho(tc) =0 ”o(tf) -0 (55)
For the time-open case being considered here, the
hamiltonian must vanish atong the entire transfer
trajectory. This fact along with Equation {55) and
the definition of the times t and t_ leads to the
boundary conditions on the switching function

s(t ) =0 s{ty) = 0 (56)

A boundary condition on one adjoint variable can be
chosen arbitrarily. Hence, without any loss in

generality, it is permissible to set
Auo>t 1 (57)

IIT1. Minimum-Fuel Algorithm

The minimum-fuel trajectory must satisfy the
differential Equatiomns (5), (19), (27), (28}, (31),
(32), and (38) - (41) and the boundary conditions
given by Equations (531)-(57). To find a trajectory
which satisfies this system of equations is a rel-
atively difficult task since at the initial time,
the polar angle @, the thrust angle Y, the variable
v and the adjoint variable Ay are unknown. The
basic problem is to find that correct combination
of the initial conditions for B8, ¥, v, and Ay such
that when the system of differential equations is
integrated, the boundary conditions at the final
time are satisfied. Without any loss in generality
the reference line from which all angular measure-
ments are made can be defined to pass through peri-
center of the initial orbit. Therefore (t ) will
be equal to zero, and from Equation (45) itis
obvious that finding the initial polar angle &{(t )
1s equivalent to finding the initial true anomalg
f(to}. The final time in this case is not fixed
but can be defined as the time at which all the
conditions at the end of the trajectory are satis-
fied.

The Initial-Approximate Transfer Trajectory

The corresponding two-impulse transfer trajec-
tory can be used as an aid in constructing a finite-
thrust transfer trajectory which serves as a good
first ap§r2§imation to the desired transfer trajec-
tory.(z’ ’ This finite-thrust transfer trajec-
tory is defined as the initial-approximate transfer
trajectory. Reasonable estimates for the initial
thrust angle, initial true anomaly and the thrust-
ing interval durations can be easily derived from
the two-impulse transfer trajectory. The initial
thrust orientation angle is set equal to the thrust
orientation angle for the first impulse, and the
initial true anomaly is computed by conjecturing
that on each thrusting phase the average trueanomaly
for the impulsive thrust should be equal to the true
anomaly at the midpoint of the corresponding finite-
thrust interval. The durations of the thrusting
intervals for the initial-approximate transfer tra-
jectory are chosen so that the integrals of rocket
acceleration for the finite-thrust case are equal
to the respective magnitudes of the velocity change
vectors for the impulsive case.

The four unknown initial conditions Y{t ),
E(to), v(t ) and A are not independent. With
three of these unknowns selected the fourth condi-
tion is fixed through the requirement that H_ van.
ish at the initial time. 1t has proved convenient
to set independently the initial conditions on f,
¥, and v. Setting H_ from Equation (14) equal to

zere and solving for Ay gives after some simplifi~
cation.

(58)

- evsinf _ eAsinf Coiny tosfiecos2f
¥ | lrecost 3" sinf

- 2:05Y(l~ecosf)]]
I‘.'tn

The initial values of ¥ and v can be chosen so
that the thrusting intervals are of the desired
duration. A good first approximation for ¥(r ) is
available from the two-impulse trajectory, buft this
value must be refined in order to achieve the de-
sired thrusting durations. In selecting a first
approximation for w(t ) a considerable amount of in-
sight can be gained by writing Equations (27}, (28),
and (31) in the form

QE = 2 ¥ -
S v + & cos(¥ - B) (59
ds ~h-3s - B) 4 hu - + afu
R N psin{¥ - B) + hu - s{2u - ) (60)
b = 2uh + painlV - B) (61)
dt
where
1/2
I LR (62;
e
B tan L 63
M

In order to achieve the desired switching function
characteristics on the first thrusting interval,

the switching function must be as shown in Figure 1.
Numerical results from the two~impulse trajectory
indicate that the thrust angle should always be near
either 0° or 180° on the thrusting inteyyals. This
has been verified analytically by Culp. With
¥{t ) limited in the above manner, a closer examina-
tion of Equations (59) and (60) indicates that for
the switching function to exhibit the proper char-
acteristics on the first thrusting interval, V(tn)
must be(gﬁstricted to the following ranges of
values.

v(to)]w(t y2o0 <o (64}
(=3

¥todly(s, yzig00 7 © (63)

vit)) < fuit)l € 2v(t,) (66)

Further refinements on the choice of v(t ) will be
made when fixing the desired second thrusting in-
terval.

tl\ t

Figure 1. TDesired switching function kehavior
for the first thrusting interval.

With vt } established in the range provided
by the abovcoinequalities, the initial value of ¥
can be found such that the switching function ex-
hibits the behavior shown in Figure 1. The compu-
tation of ¥(t ) is based upon the principle that
the duration of the first thrusting interval is pro-
porticnal to the ratio of the first and second de-
rivatives of the switching function evaluated at



time ty In other words
ds
dr 3
(ty - tD) = -K T«- (67)
°s
z
at
d2

if ——% were constant over the time interval to -

t,, then the propertionality factor K in the
a%ove equation would be equal te two. The initial
true anomaly is determined from the two-impulse
trajectory, and a reasonable starting value for

w(t ) is selected from the range defined by in-
equalities (64}-(66). Equation (67) is then solved
iteratively for the initial thrust angle using K=2
on the first set of iterations. The system differ-
ential equations are then integrated to determine
the actual duration of the first thrusting interval.

Defining

tl = desired time for termination of the
desired first thrust interval

t = termination time of first thrust inter-
1 . . .
actuyal val established by integration

then a new value of X is computed according to the

following rule
t -t
1- ldesired 1actual X
f.i -to old

desired

(68)

This new value of X is now substituted into Equa-
tion (67), and Equation (67) is once again solved
iteratively for Y(to). The process is repeated
until t becomes within a certain tolerance
actual

desired

of t

This method of determining Y(t ) has proven
very reliable and efficient. In the actual computey
program, double-precision arithmetic is used for
the iterative solution of Equation (67), but the
integration of the system equations is performed in
single-precision arithmetic. For most minimum-fuel
problems considered, the difference between t

7 desired

and t can be made less than 5x10° " time

actual
units in three or four iterations.

The desired duration of the seceond thrusting
interval is attained in an iterative manner through
a simultaneous adjustment of ¥(t )} and w(t ). This
is accomplished by computing Y(to) to obtaln the
desired first thrusting interval, For every new
value of w(t_ ), Y(t ) must be re-computed in order
to satisfy the requirements of the first thrusting
intervatl.

The specific manner in which v(t ) 1s changed
in order to satisfy the second thrusting interval
requirements depends upon the type of transfer tra-
jectory being considered. Transfer trajectories
can be classed according to the direction of the
thrust vector on each of the thrusting intervals.
Let forward and rearward thrustings be defined as
thrustings along which the thrust angle is near 0
and 180" respectively. Then each transfer trajec-
tory can be classed according to the thrusting
sequence as forward-rearward, rearward-forward, for-
ward-forward, or rearward-rearward. The duration
of the second thrusting interval can be set through

a proper choice of vw(t )} for each of the above types
of transfer trajecteries. However, the manner in
which v(t_} affects the switching function in the
forward-rearward and rearward-forward transfers is
notably different from the forward-forward and
rearward-rearward transfers.

Selection of a reasonable u(ty) for forward-
rearward and rearward-forward transfers is governed
by the requirement that the thrust angle must ro-
tate through approximately 180" along the transfer
trajectory. The curves of Figure 2 can be used to
show how switching is accomplished on a typical
transfer trajectory with a forward-rearward thrust-
ing sequence. As is evédent from the figure, the
angle ¥- is near + 180 on both thrusting intervals.
Examination of Equations (59) and (60) reveals that
this requirement on the angle (Y¥-B) must always be
met if switching is to be accomplished. As is
typical of all forward-rearward transfers, the
thrust angle increases over most of the trajectory,
the variable v Increases monotonically over the en-
tire ceoast trajectory, and the angle [ changes by
approximately 180° over the transfer trajectory.

In addition, the time t_ at which v passes through
zero corresponds very clesely to the time on the
coast trajectory at which the slope of the switch-
ing function reverses from negative to positive.
Since V increases monotonically aleng the coast
trajectory, the time t_ can be controlled with the
initial value of y. Therefore, a certain amount of
control can be exerted upon the switching function
by means of y{t ). Larger negative values of v(to)
will result in Targer values of time, t The
value of ty in turn has a direct effect upon the
duraticn of the second thrusting interval. Larger
values of t_ allow the switching function to be-
come more negative on the coast phase. Consequent-
ly, because of the particular nature of the switch-
ing function dyramics, the duration of the second
thrusting interval is decreased. This leads to the
important conclusion that the duration of the second
thrusting interval can be controlled with {t ).
More negative values of y(t ) result in smaller
gsecond thrusting intervals.

+180°
v o0° -
-180°

Figure 2. Typical behavior of ¥, v, 8, W- g8,
and the switching function over an entire trans-—
fer trajectory for the case of a forward-rearward

thrusting sequence,
69~-914



Similar reasoning can be applied to the case of
rearward-forward transfer. In this case higher
positive values of vw(r ) will lead to smaller sec~
ond thrusting intervals.

Therefore for forward-rearward or rearward-
forward thrusting sequences the following itera-
tive procedure for determining the initial value of
v can be formulated.

1. Select an initial, reasonable vw(t ). For
example °
v(to) = 1.5v(t ) for rearward-forward thrust-
ing
wle ) = -1.5v(ty) for forward-rearward
thrusting

Z. Compute Y(t ) such that the correct first
thrusting interval is attained.

3. 1Integrate the system equations to some time
t. ¢+ At sufficient for the transfer to be
accomplished, The time t_. can be easily ob-
tained from the two-impulse transfer.

4. Compute the second thrust interval. If this
interval is too small, decrease lu(t )|. If too
large, increase lV(t ). @

5. Repeat, using the improved value for w(t ),
until the actuval second thrusting interval dura-~
tion, as determined from the integration, is
within a certain tolerance of the desired sec-
ond thrusting interval duration.

Using the above approach it is possible for
most of the transfer trajectories considered in thig
study to obtain the actual second thrust interval
duration to within 5 x 107~ time units of the de-
sired second thrust interval duration.

For the case of rearward-rearward or forward-
forward transfer trajectories the thrust angle
experiences only 2 small net change over the entire
transfer trajectory, In order to restrict the
thrust angle in this manner, w(t ) must be chosen
very near -2v(t ) for forward-forward transfers and
near +2v(t ) for rearward-rearward transfers. The
value of v does not change sign along these transfer
trajectories. Reversal of the switching function
slope and therefore the duraticn of the second
thrusting interval i1s governed by a very delicate
balance between the terms hu and —33% p sin(y-B)
appearing on the right hand side of Equation (6D).
A congideration of the switching function behavior
for these types of transfers leads to the conclusicn
that larger absoclute values of {t_) will lead to
larger second thrusting interval durations.

This fact can be used as a basis to formulate an
iterative procedure for establishing the second
thrusting interval duration for forward-forward or
rearward-rearward transfer trajectories. The basic
procedure will be similar to the case of forward-
rearyard or rearward-forward transfers. However,
to start the iteration, vu(t ) must be near either
+2V(to) or -2v(t ). 1In addition, as discussed
above, changes in y(t } will produce the opposite
effects upon the durafion of the second thrusting
interval.

Final Convergence Method

The procedure daeveloped in the previous section
results in a transfer trajectory with final boundary
conditions which are only reasonably close to the
desired boundary conditions. Better matching of the
final boundary conditions is achieved by a two-step
procedure which is based primarily upon small per-
turbations about the initial - approximate transfer

trajectory developed in the previous section.

The first step in improving the initial-approx-
imate transfer trajectory is to make small adjust-
ments in the initial true anomaly f(t ) in order to
improve the final argument of pericenfer w(t_).
This is accomplished by computing a semsitivity
coefficient which relates small changes in £(t )
to small changes in ©(t_.). The resulting sensi-
tivity coefficient is used in a conventional linear
interpeolation or extrapolation procedure to compute
a2 new f(t ) which will result in an improved o{t_)}.
After each change in f(t ), ¥(t ) and {t ) are
readjusted as outlined ifi the pPfevious seftion in
order to maintain the desired thrusting intervals.
In the actual computation f(t ) is adjusted in this
manner until o(t_ ) is within .02 radians of the
desired value.

Final convergence to the desired transfer tra-
jectory is achieved through the use of a sensitivity
matrix which relates small changes in £(t ), ¥(t )
and vw(t ) to corresponding changes in the final
semilatds rectum p(t_ ), final eccentricity e(tf),
and final argument of pericenter ¢(t.). On tha
first iteration the sensitivity matrgx 1s computed
by perturbing one at a time f(t ), ¥(t ¥, and y(t }
and observing the resultant chagges inop(t ), e(t?),
and m(tf). Subsequent computations of the sensi-
tivity imatrix can be made directly from the two most
recent trajectories by emp%o{ing a method described
by Kulakowski and Stancil.(l ) “The sensitivity
matrix computed in this manner is used in the well-
known linear algerithm to compute an improved set
of initial conditions, £(t ), ¥(t ), and w(t ).
Coemputation is terminated 3hen the final cgn itions
p(tf), e(tf), and (t_ ) are all within 107" units
of their respective désired values.

IV. Computational Techniques

In the process of determining the minimum-fuel
transfer trajectory it is necessary to compute
transfer trajectories for a relatively large number
of starting conditions. 1In order that the computa-
tion be efficient, it is essential that both the
total number of transfer trajectories computed and
the amount of required computation for each trans-
fer trajectory be kept within reasonable bounds.
The techniques which make possible the efficient
computation of minimum-fuel trajectories are as
follows.

Canonical Transformation on the Coast Trajectory

Computation along the coast trajectory is made
possible by means of a canonical transformatien
suggested by Fraeijs DeVeubeke of the system state
variables, adfoint variables and the independent
variable t.(8] The independent variable in the new-
ly transformed set is the polar angle 8, and the
new set of state variables are z, A, B, w, and ¢,
where z, A, and B have been defined previously in
Equations {34)-(36). Along the coast trajectory
with this particular transfoermation, H,, the por-
tion of the hamiltenian which governs Switching,
is a function only of the state and adjoint var-
iables at cutoff of the first thrusting interval
and the polar angle g.(8 Computation of the coast
phase is accomplished by performing the canonical
transformation at the end of the first thrusting
interval. S8ince H, must be negative along the en-
tire coast trajectory and equal to zero at the end
of coast, the peolar angle 8 which defines the end



of the coast phase is easily established by means
of a Newton iteration procedure. To begin the
iteration a reasonable first estimate of the de-
sired potlar angle 1is computed from the correspond-
ing two-impulse transfer trajectory. With the po-
lar angle at the end of coast established in this
manner, a transformation back to the original
variables is performed and integration of the sec-
ond thrusting interval is initiated.

Computation of the Thrusting Phases

The two thrusting phases are computed using a
fixed step-size, fourth-order Runge-Kutta integra-
tion algorittm with single-precision arithmetic.
With proper choice of step-size, application of the
fixed step-size integration routine rather than an
integration routine employing automatic step-size
control reduces the required computation time by a
factor of about three. The system hamiltonian,
which must remain zero over the entire transfer

trajectory, provides a convenient measure of integra-

tion accuracy. Integration step-size is chosen
such that the hamiltonian ordinarily remains less
than 5 x 10-7.

The thrusting phases must be terminated at pre-
c¢isely the instant at which the switching function
s passes through zero. This is accemplished by
allowing the integration to proceed until the switch-
ing function reverses sign and becomes negative.
The values of s and s are computed at this time,
and the Integration routine is given a new step-size
- 8f4. This process 1is repeate9 until the magni-
tude of s becomes less than 107°.

Backward Integraticn of the System Equations

For certain classes of transfer trajectories
the resulting final values of semilatus rectum,
eccentriclity, and argument of pericenter become
very sensitive to small changes in the program
initial conditions. This is particularly true when
the second thrusting interval is very small. Tor
this case it becomes practically impossible to find
the set of initial conditions which will allow the
switching function to provide proper switching on
the second thrusting interval. Very small changes
in the initial conditions on the crder of 5 x 10-8
result in either too much thrusting time or else no
thrusting time for the second thrusting interval.
This difficulty is overcome by computing these
transfer trajectories in the reverse sense, start-
ing at the desired terminal conditions and integrat-
ing backwards in order to meet the desired initial
conditions.

Determination of the Initlal Value of v

The initial value of the variable v 1is deter-
mined so that the desired duration of the second
thrusting interval is attained. For most transfer
trajectories, the duration of the secend thrusting
interval 1s very sensitive to the choice of the
initial value of v. In order to limit computer
time, a considerable amount of computation legic is
required in establishing the desired initial value
of v, The general behavior of the error in the
duration of the second thrusting interval as a func-
tion of the initial value of !v! is shown in Figure
3 for the case of a forward-rearward transfer tra-
jectory. The maximum error in Figure 3 is a con-
sequence of the initial |y| being too large. This
causes the switching function s to remain negative
on the desired second thrusting interval resulting
in a complete absence of the second thrusting inter-
val. On the other hand, the minimum error is caused

by the initial value of Ivl being too small., This
results in a failure of the switching function to
return to zero on the second thrusting interval and
therefore, the thrusting interval is not terminated.

+

errorl

.75 error]max
“ linear region
WWW_______TEE_

— .75 errorl 1
"‘errorimin min

Error in Second
Thrusting Interval
[

Figure 3, Error in the duration of the second

thrusting interval :
value ofgk. as a function of the initial

The basic computational problem is to find the
initial value of y which reduces the duration error
to a small value without requiring an unreasonable
number of trajectory computations. Therefore, in
the early stages of the computation, large changes
in the initial value of y are programmed in order
to establish quickly the minimum and maximum error
bounds. Once these two error bounds have been
established, linear interpolation between these
bounds is employed, with the restriction that the
interpolation zlways be conducted between the values
of positive and negative error. This procedure is
followed until twe initial values of  can be found
for which the errors lie within a region with upper
and lower bounds of .75 x (maximum error) and .75
x {minimum error) respectively. From this point on
in the computation, linear interpolation or extrapo-
lation is conducted between the two most recent
pairs of initial y and error values. Computation is
terminated when the duration of the second thrusting
interval is within 107" time units of the desired
duration.

V. Numerical Results

In order to define the limits of applicability
of the method and to eliminate any serious defi-
ciencies in the computer program, a large number of
different transfer trajectories were considered.
8ix of these trajectories are summarized in Table 1.
An effective exhaust velocity, ¢, of .5 is used for
all the transfer trajectories. I1f the basic unit of
length is taken as the earth's radius, this effec-
tive exhaust velocity is equivalent to a specific
impulse of approximately 400 seconds. A transfer
trajectory is considered to be convergent if the
errors in the final (in the case of forward compu-
tation) or initial {in the case of backward compu-
tion) eccentricity, semilatus rectum, and argument
of pericenter {radians) are each less than 10-7,

All of the transfer trajectories in Table 1 are
convergent by the above definition.

Table 1. Summary of Minimum-Fuel Transfer Trajectories

Finite Twe
Run a e(to) P(to) e(tf) p(tf) (3323 Thzﬁst Img;lse
1 b i 1.5 .2 1.0 150 |.2635435 13622068
2 4 0512.0 05 (1.0 0 1.7803388 .2802910
3 ps) .2 J1as| .2 |1.s0120 1462795 |142668s |
4 4 o2 1.50 .8 1.0 90, [.2050198 | 3048221
5 4 03 01,25 .2 1.5 | 120 10920852 [.0920252
6 4 051190 05120 0 12807767 |.2805172

69-914



The thrust angle behavior for runs 1 and 2 of

Table 1 is shown in Figure 4. Also included are
the initial and final true anomalies. The forward-
rearward transfer, Figure 4A, is typified by the
thrust angle changing by approximately 180° along
the transfer trajectory, while in the case of the
forward-forward thrusting sequence, Figure 4B, the
thrust angle experiences only a very small net
change over the entire transfer trajectory. Figure
4B shows the thrust angle behavior for the transfer
between almost circular orbits (e == e. = .05).
The thrust angle behavior and the initial and final
true anomalies bear close resemblances to the mini-
mum~fuel two-impulse transfer between circular or-
bits, better known as the Hehmann transfer.

2000 sy thrust
ey = .7
W Po = 1.5
100° fef = .2
pf = 1.0
AP = 150°
e Flty) = 176.39°
fCef) = 210.02°
0 5 10 15 20
A. Forward-Rearward Thrusting
==y thrust e, = .05
10°
W
50
0° f(tg) = -10.85°
© f(tg) = 181.82°
0 12 3 4 5,6

B. Forward-Forward Thrusting

Figure 4. Typical thrust angle time histories
along the minimum—fuel transfer trajectory.

IBM 7094 computer time requirements ranged from
a low of ten seconds to a high of about fifty se-
conds, with the higher computer times being asso-
ciated with transfer trajectories which are very
sensitive to small changes in the initial condi-
tions. The above times are for the finite-thrust
transfer trajectory computation only. Approximately
twenty additional seconds of computer time is re-
quired for the computation of the corresponding
minimum~fuel two-impulse transfer trajectory. A
detailed computer time breakdown for the trajec-
tories summarized in Table 1 is shown in Table 2.

Table 2. Computation Time (IBM-70%4&)

Kun *Phase Time (secs) T?tal
Phase 1 Phage T1 Phage 111 E;?gs)

1 4 3 2 11

2 8 10 3 21

2 7 ] b 15

o 9 14 4 27

5 a g 3 16

& 7 36 2 45
*“Phase I - Inirial approximate transfer trajectory

#Phase 1I- Adjustment of initial rrue anomaly
*Phase T11-Final convergence {sensitivity matrix)

The run numbers appearing in the table are consis-
tent with Table 1. Computer time is given in sec-
onds.

The individual errors in the desired semilatus
rectum, eccentricity, and argument of pericenter for
run 5 of Table 1 are given in Table 3 as a function
of the iteration number.

Table 3. Error Behavior (Run 5, Table 1)
Iteration Error X 103
p o w(radians)

0 1.17368 -22.87911 | 329.3G260
1 1.12581 -25.11474 | 349,50271
2 ~.16358 1.88112 | -45.978%2
3 .00699 -1.035%4 29.97921
4 -.03710 .04818 1.08311
5 -.15672 .09923 2.11155
6 .01580 .00327 -.88245
7 -.04964 .02363 1.04833
8 -.01002 .00512 23766
9 -.00547 .00264 .12189
10 -.02010 .00963 41148
11 -.01302 00654 .29120
12 - .00454 00227 | 09516 |

This particular transfer trajectory is computed in
a backward sense, starting at the desired final
conditions and attempting to match the desired
initial conditions. The low initial eccentricity,
e =.03, results in rapid changes in the argument

of pericenter as the initial orbit is approached.
This causes the argument of pericenter error toc be
relatively large, thus slowing down the convergence.
The errors corresponding to iteration zero are the
errors for the initial-approximate transfer tra-
jectory. On iteratioms 1 - 4 the initial true
anomaly £(t ) is adjusted to reduce the argument

of pericentér error. Tteration one obtains the
initial sensitivity relating changes in f{t ) to
changes in argument of pericenter error. The true
anomaly f(t } is increased arbitrarily by .01, and
¥{t } and w(t ) are recomputed to attain the re-
quired thrusting interval durations. At the end

of iteration four, the argument of pericenter error
is less _than the pre-established maximum value of

2 x 1072, and the simultaneous adjustment of £(r J,
“(t ), and w(t ) by means of the sensitivity matrix
is initiated. “Computation is terminated at the end
of iteration 12 with the errors all less than 1077,

The region of applicability of the convergence
method cannoct be precisely defined because of the
many possible combinations of rocket thrust levels
and initial and final orbits. Minimum-fuel transfer
trajectories have been successfully comguted for
orbital eccentricities greater than 107 and less
than .8 and for rocket thrust to weight ratiocs
greater than .025 and less than 1.0, Convergence
is more difficult to attain for trajectories with
forward-forward or rearward-rearward thrusting
scquences. This is primarily due to the delicate
balance which must be maintained between the terms

h-
“ﬁg psin (¥ - ) and hu of Eq. (60) in order to



obtain the desired switching function characteris-
tics. Both of these terms remain very small and
are of opposite sign over most of the transfer tra-
jectory. This results in very small changes in the
switching function over the entire transfer trajec-
tory.

Vi. Conclusion and Future Study

An efficient method for computing time-open
minimum-fuel finite-thrust transfer trajectories
between twe given coplanar elliptic orbits has been
developed. Computation of the minimum-fuel trans-
fer trajectory is accomplished by a direct integra-
tion of the rocket equations and the associated
adjoint equatiens. This direct approach is made
possible through the insight gained from a trans-
fermation of the adjoint equations.

A study is currently in progress to make the
convergence method applicable to a larger class of
transfer trajectories.(12) A finite-thrust correc-
tion developed by Robbins is being applied to the
thrusting intervals during computation of the
initial-approximate transfer trajectory.(13) This
corrcction will force the initial-approximate trans-
fer trajectory closer to the desired transfer
trajectory. It is anticipated that this will extend
convergence to lower thrust levels and to transfers
regquiring higher impulse levels. In addition, a
method is being developed to compute an initial
estimate of y{ty) directly from the two-impulse
program. This should improve convergence by elim-
inating the rather crude method being employed to
obtain an initial estimate of y(ty). Also, the
entire method is being programmed in double preci-
sion arithmetic. This will increase the accuracies
at every stage of the computation thus extending the
method to include morc sensitive transfers,
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