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This paper presents a continuum design sensitivity analysis (DSA) and optimization of high 
frequency radiation problems using the Energy Finite Element Method (EFEM) and Energy 
Boundary Element Method (EBEM).  The noise radiated from the vibrating structure at a 
high frequency range is obtained through a sequential procedure.  The structural EFEM 
calculates structural energy distribution, which is then used as the boundary condition for 
EBEM to calculate the energy density at a far-field observation point. For DSA, the direct 
differentiation method calculates the sensitivity of the exterior noise through the sensitivity 
of the structural energy density obtained from EFEM.  The adjoint variable method 
calculates the adjoint load from an acoustic EBEM re-analysis, and the adjoint response is 
obtained from a structural EFEM re-analysis.  The sensitivity information is obtained by 
carrying out numerical integration only on the structural FE part.  The proposed DSA 
approach has been applied in the design of automotive and naval structures to search for the 
best material layout to achieve lowest noise level at high frequency.  

 

 

Nomenclature 
 
x  =   Position vector 
ρs  =   Structural mass density 
p  =   Acoustic pressure 
ρ0  =   Acoustic mass density 
cg  =   Group speed 
c0  =   Acoustic wave speed 
h  =   Thickness of plate 
f  =   Frequency 
ω  =   Radian frequency 
ψ  =   Performance Measure 
u  =   Design variable vector 
ε  =   Perturbation size 
δu  =   Design perturbation direction 
e  =   Energy density 
e′   =   Partial derivative of energy density 
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cgB  =   Structural bending group speed 
η   =   Hysteresis damping factor 
π   =   Power density input 
ksB  =   Structural bending wave number 
k  =   Acoustic wave number 
σrad  =   Radiation efficiency 
ηrad  =   Radiation damping 
α  =   Effective mass density coefficient 
I  =   Energy intensity 
P  =   Power radiation 
au(•,•)  =   Structural energy bilinear form 
bu(•,•)  =   Structural-structural coupling term 
ℓu(•)  =   Structural load linear form 
Ks   =   Structural stiffness matrix 
Jss   =   Structural-structural coupling matrix 
τ   =   Power transfer coefficient 
λs  =   Structural adjoint response vector 
ξ  =   Acoustic adjoint load vector (for energy density) 
ζ  =   Acoustic adjoint load vectors (for energy intensity) 
Fadj  =   Structural adjoint load 
G(x,x0)   =   Green’s function for time-averaged energy density  
H(x,x0)  =   Green’s function for time-averaged energy intensity 
s(•)  =   Linear scalar integral form 
m(•)  =   Linear vector integral form 
H  =   Stiffness matrix of EBEM 
σ  =   Acoustic energy strength vector 
W  =   Conversion matrix 
h(•)   =   Linear integral form 
w(•)  =   Linear integral form 
 
 
 
 

I. Introduction 
The objective of this paper is to present an analytical approach for the design sensitivity analysis of structure-

induced sound and vibration at a high frequency range to design structural systems with desirable acoustic 
performance while minimizing the mass of the structure. To this end, the Energy Finite Element Method (EFEM) 
and Energy Boundary Element Method (EBEM) are used to predict the noise radiated from a vibrating structure and 
continuum design sensitivity analysis is developed for a sequential EFEM-EBEM procedure for parametric design 
variables, such as the thickness and material property of a structural plate to evaluate design sensitivity information 
at the current design and study the potential design change for an optimum design. 

The reason that the EFEM and EBEM are used for high frequency structural-acoustic analysis over the 
traditional Finite Element Method (FEM) [1-3] and Boundary Element Method (BEM)  [4-6] is because that the 
FEM and BEM are proved to be only suitable for structural-acoustic problems at low frequency range. Since the 
structural or acoustic domain is discretized in finite elements or boundary elements for FEM or BEM, the element 
size should be small enough to accurately capture the wave propagation through the structural or acoustic domain. 
Atalla and Bernhard [7] presented a complete comparison of FEM and BEM in low frequency structural-acoustic 
analysis, and they recommended that at least six linear elements or three quadratic elements be required per 
wavelength for an accurate analysis. From their research, it is commonly agreed that FEM and BEM would only be 
suitable for a given problem with a maximum frequency of 200 Hz. 

Statistical Energy Analysis (SEA) is an alternative to analyze the response of vibrational structures [8-10] at high 
frequency. According to SEA, the structural system is divided into subsystems with similar energy modes and the 
power balance equation is solved to obtain the lumped energy carried by each subsystem. The biggest drawback for 
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SEA is that the variation of energy response cannot be predicted and design variables do not appear in the governing 
equation of SEA, so it is not a preferred analysis tool from a design point of view. 

The Energy Finite Element Method (EFEM) is the application of finite element techniques in power balance 
equation to obtain a localized time- and space-averaged energy density solution [11-20]. Since energy conservation 
is imposed locally in power flow analysis, it is possible to represent the structural geometry in detail, which is 
critical from a design point of view. The response variable (energy density) is not continuous across structural 
junctions and structural-acoustic interfaces in EFEM. In order to assemble different structural components (rod, 
beam, membrane, plate, etc.) and to place an acoustic medium into built-up structures, a coupling matrix method 
was developed [16,17] in which the structural-structural and structural-acoustic power transfer coefficients [20,21] 
are used to consider power flow conservation between coupled structural components and structural-acoustic 
interfaces. The effect of fluid loading on structural vibration at a high frequency is investigated by Zhang et al. [22] 
and as a result, the power flow governing differential equation is modified to consider the fluid effect and the 
application of EFEM is extended to vibrating structure immersed in dense fluid, i.e., naval engineering.  

Energy finite element method has been successfully applied to various engineering problems. Vlahopoulos et al. 
[23,24] validated EFEM by applying it to a complex ship structure and comparing the EFEM results to SEA and a 
very refined FEM results. Wang [25] used a degenerated version of EFEM to analyze the cabin of a heavy-duty 
truck. 

Since the EFEM still requires the discretization of the 3-D acoustic domain, it is not a favorite choice for 
radiation analysis where the domain is infinite. For the high frequency radiation problem, Wang et al. [26] 
developed an energy boundary element formulation using an acoustic energy corollary. The boundary condition of 
the Energy Boundary Element Method (EBEM), which is energy intensity on the structural surface, can be obtained 
either from a structural energy finite element analysis, or by being measured through experiments. This method is 
applied in the analysis of the radiation of an undersea ship in water [26]. The EFEM and EBEM constitute a 
sequential procedure: a structural EFEM solves the structural energy density and the power radiation from the 
structure, which will be used as a boundary condition of EBEM to compute the radiated far-file noise.  

In contrast to the many research efforts in the design sensitivity analysis (DSA) of low frequency structural-
acoustic problems using FEM and BEM [27-38], DSA of high frequency structural-acoustic problems has not been 
touched until Kim et al. [39] proposed a design sensitivity formulation for structural systems using EFEM. In Kim’s 
research, the structural-acoustic relationship was not addressed until Choi and Dong developed detailed derivations 
of the parametric design sensitivity formulation for the structural-acoustic coupled problem [40,41].  

Using the DSA formulation developed by Choi and Dong for EFEM [40,41], the high frequency radiation noise 
calculated by a sequential EFEM-EBEM procedure can be obtained from either a direct differentiation or an adjoint 
variable method: the direct differentiation method calculates the sensitivity of the radiation noise through the 
sensitivity of the structural energy density obtained from EFEM.  The adjoint variable method calculates the adjoint 
load from an acoustic EBEM re-analysis, and the adjoint response is obtained from a structural EFEM re-analysis.  
The sensitivity information is obtained by carrying out numerical integration only on the structural FE part. Both 
methods present excellent numerical accuracy as well as computational efficiency compared with the finite 
difference approaches. 

II. Theoretical Background 

1. Energy Finite Element Method 
The governing equation of EFEM is derived for the time- and space- averaged energy density e as [11-20] 

 
2

2gc
e e− ∇ + =ηω π

ηω
 (1) 

In the governing equation (1), η is the local material hysteresis damping factor, cg is the group speed, and ω is 
the excitation radian frequency. On the right side of the equation, π is the power density input to the system. The 
first term on the left side represents the transmitted power from the local system to the outside and adjacent systems, 
whereas the second term on the left side represents the time- and space- averaged dissipated power inside the local 
system. Equation (1) explains energy conservation in a local system: energy flow into the structure is equal to the 
energy that dissipates in the structure plus the energy flow across the boundaries. This formula can be applied to 
both structural and acoustic wave motion in similar forms. For a complex structural-acoustic system, the energy 
density e is not continuous on the geometric and material discontinuities. However, the energy flow remains 
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continuous on the structural-structural junctions and structural-acoustic interfaces. If the interior acoustic domain is 
ignored in a radiation analysis, a variational equation can be derived for the structural part from governing Eq. (1) 
using the energy conservation law as 

 ( ) ( ) ( ), ,s s s sa b+ =u u ue e e e eA s  ,           s sZ∀ ∈e  (2) 

In Eq. (2), the subscript “s” is used to indicate the energy density on the structural domain, Zs is the 
kinematically admissible energy space, and the subscript “u” indicates the design dependency of the energy terms. 
Among the energy terms, au(•,•) is the energy bilinear form, ℓu(•) is the load linear form, and bu(•,•) is the coupling 
term between structural sub-domains.  The coupling term is difficult to express in continuum form, but a structural-
structural coupling matrix Jss can be constructed to express b(•,•) in discrete form as 

 ( ) { } [ ]{ },
T

u s s s ss sb =e e E J E  (3) 

Discretization of the variational Eq. (2) leads to the system equation of EFEM as 

 [ ]{ } { }s ss s s+ =K J E F  (4) 

Solution of Eq. (4) yields Es, the nodal energy density vector on the structure. Since the coupling matrices Jss is 
constructed from structural-structural power transfer coefficients, which are un-symmetric due to the power transfer 
natures between structural components, the system equation is un-symmetric. The expressions of the energy bilinear 
form au(•,•), coupling term bu(•,•), the load linear form ℓu(•) and the expressions of the structural stiffness matrices 
Ks and structural-structural coupling matrix Jss can be found in Choi and Dong [40, 41]. 

2. Energy Boundary Element Method 
The basic integral equation of the EBEM formulation is derived from the acoustic energy corollary [26]. 

Consider an acoustic medium with volume V which encloses some acoustic energy sources, the area surrounding the 
volume V is S as shown in Fig. 1, and I is the acoustic energy intensity on the boundary S in the acoustic medium, 
then the total time-averaged acoustic power P radiated by the energy sources can be obtained by the following 
integral equation:  

   (5) 
S

P d= ⋅∫ I n S

where n is the unit normal vector pointing out of the volume.  
Consider a spherical energy source with strength σ located at a field point x, the time-averaged energy density 

and the time-averaged energy intensity at an arbitrary field point x0 due to this acoustic energy source can be 
calculated by the following equation 

 ( ) ( )0 ,e G=x x x0 σ  (6) 

( ) ( ) ( )0, ,H=I x x x u x x 0 0 σ  (7) 

where u(x,x0) is the unit normal vector pointing from point x to x0; G(x,x0) and H(x,x0) are the corresponding 
Green’s functions for the time-averaged acoustic energy density and the time-averaged acoustic energy intensity in 
the free field, and 

 ( ) ( ) ( )
2

0
0 2 4 2 2

0 0

,
64 , 32 ,

k
G

r r
= +x x

x x x x
ρ

π π
0ρ

 (8) 
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 ( ) ( )
2k cρ0 0

0 2 2
0

,
32 ,

H
r

=x x
x xπ

 (9) 

where c0 is the air speed in the acoustic medium, ρ0 is the acoustic mass density, k is the acoustic wave number, and 
r(x,x0) is the distance from the acoustic energy source to the field point.  
 
 

 

 

x 
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 Figure 1 Arbitrary Volume V Bounded by Surface S 
 
 
The above equation can be extended from a single energy source to a group of incoherent acoustic energy 

sources, which then constitutes the governing equation of EBEM. For an arbitrary structure bounded by a surface S 
in an infinite acoustic medium, if the surface can be divided into quadrilateral and triangular elements and each 
element acts as an incoherent acoustic energy source with strength σj (j=1,2,3,NBE), then the time-averaged acoustic 
energy density and acoustic energy intensity at a general field point x0 in the space outside of the structure can be 
calculated by the superposition of the Eqs. (8) and (9) for each energy source as 

 ( ) ( ) ( )0 0
1 1

,
j j

NBE NBE
j j

S S
j jj j

e G dS G
A A
σ σ

= =

= =∑ ∑∫ ∫x y x y 0, dSx  (10) 

 ( ) ( ) ( ) ( ) ( )0 0 0 0
1 1

, , , ,
j j

j j

S S
j jj j

0

NBE NBE

H dS H dS
A A= =

= =∑ ∑∫ ∫I x y x u y x y x u y x
σ σ

 (11) 

In above equations, NBE is the number of elements on the surface, Aj is the area of the j-th element, y is an 
arbitrary point on the j-th element, u(y,x0) is the unit normal vector pointing from point y to the field point x0. Since 
the energy strength σj is supposed to be constant on a given element, it can be brought outside of the integral with 
the area Aj. The above equations can be written in continuum forms as 

 ( ) ( )0 0 ;e s=x x σ  (12) 

( ) ( );=I x m x σ 0 0  (13) 
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where s(•) and m(•) are linear scalar and vector integral forms in terms of the acoustic energy strength respectively.   

If the field point x0 is located on the surface, then Eq. (11) can be used to calculate the acoustic energy intensity 
of each element on the surface. For example, if the field point x0 is evaluated at an arbitrary point z inside the i-th 
element, the energy intensity at this point z can be calculated by substituting x0 in Eq. (11) by z as  

 ( ) ( ) ( )
1

, ,
j

NBE
j

S
j j

H dS
A
σ

=

= ∑ ∫I z y z u y z  (14) 

Once the energy intensity of an acoustic energy source σi of the i-th element on the surface is known, the 
acoustic power radiated from this energy source into the acoustic medium can be obtained from Eq. (5) as 

 
i

i i iS
dS P⋅ =∫ I n  ,      ( )1,2, ,i N= " BE  (15) 

where Pi is the acoustic power radiated by the i-th element. Substitution of Eq. (14) into Eq. (15) leads to  

 ( ) ( )
1

, ,
i j

NBE
j

iS S
j j

iH dS dS P
A
σ

=

⎡ ⎤
⋅ =⎢ ⎥

⎢ ⎥⎣ ⎦
∑∫ ∫ y z u y z n  ,          ( )1,2, ,i N= " BE

}

}T

 (16) 

If we write the acoustic power P radiated from each element and the acoustic energy strength σ of each element 
in vector forms as 

  (17) { 1 2
T

NBEP P P=P "

  (18) { 1 2 NBE=σ "σ σ σ

then Eq. (16) can be rewritten in matrix form as 

 =Hσ P  (19) 

where matrix H is defined as the stiffness matrix of EBEM, and its component is derived from Eq. (16) as 

 
( ) ( ), ,

i j
ij iS S

j

H
H dS dS

A
⎡ ⎤

= ⎢
⎢ ⎥⎣ ⎦

∫ ∫
y z u y z

n⋅⎥  (20) 

The numerical evaluation of Hij can be obtained by applying Gaussian Quadrature in Eq. (20). However, the 
diagonal terms of matrix H when i=j can not be computed by the above equation since there is a singularity 
occurring in the Green’s function in Eq. (9) when r(x,x0) = 0. In order to overcome this singularity, Wang [26] 
pointed out that for a spherical energy source with strength σ, the power radiated by the energy source could be 
calculated by 

 
2

0 0

8 i
k c

Π =
ρ

σ
π

 (21) 

The power associated with the acoustic energy source distributed over an element through one side of the 
element surface is one-half of the total power Π. Therefore, Eq. (15) can be rewritten as  

 
2

0 0

16i
i i iS

k c
dS⋅ =∫ I n

ρ
σ

π
 (22) 
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As a result, the diagonal term of the stiffness matrix can be calculated by 

 
2

0 0

16ii
k c

H =
ρ
π

 (23) 

In order to solve the acoustic energy strength in Eq. (19), the acoustic power radiated from each element needs to 
be identified from EFEM analysis. As discussed in the previous chapters, the solution of the EFEM will yield the 
energy density on the structural domain. Therefore, the acoustic power radiated from the structure to the acoustic 
medium can be obtained by 

   (24) 
i

i rad sBS
P e= ∫ η ω hdS

where ηrad is the radiation damping, which is a function of the structural mass density, panel thickness and geometry 
and the acoustic wave number k, and can be calculated by 

 0 1
rad rad

s kh
=

ρ
η σ

ρ α
  (25) 

The parameter α is added to the structural mass density ρs to represent the effective mass density effect, which 
can be calculated as [22] 

 0

2 2

1

1
s sBh k k

⎧
⎪= ⎨ +⎪ −⎩

ρα
ρ

 ,              
c

c

f f

f f

>

<
 (26) 

where fc is defined as the coincidence frequency at which the structural bending wave number ksB coincides with the 
acoustic wave number k. In Eq. (25), σrad  is the radiation efficiency, which quantifies the interaction between the 
structural bending wave and the acoustic wave, and can be calculated by [42]: 

 

( )
1 2

2 2

1
2

1 2ln
1 11

11

1

rad
c

c

a b

kab

a
r

f
f

−

⎧ ⎧ ⎫⎛ ⎞+ +⎪ ⎪+⎪ ⎨ ⎬⎜ ⎟− −⎪ ⎪⎝ ⎠⎪ ⎩ ⎭−⎪
⎪ ⎛ ⎞⎪= +⎨ ⎜ ⎟

⎝ ⎠⎪
⎪
⎪⎛ ⎞

−⎪⎜ ⎟
⎝ ⎠⎪⎩

µ µ
µ µπµ µ

σ
λ

c

c

c

f f

f f

f f

,     

<

≈

>

 (27) 

where r=a/b is the ratio between the characteristic length a and b of the plate, H=kf/k is the wave number ratio, and 
λc=c/fc is the acoustic wavelength at the coincidence frequency.   

A conversion matrix W between the nodal bending energy density EsB on the structure and the acoustic power P 
radiated on each structural element can be established as 

 sB=P WE  (28) 

where the component of the conversion matrix is calculated by 

  (29) 
i

i
ij ij radS

W hdS= ∆∫ η ω
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with ∆ij=1 when node j is located on the i-th boundary element, and ∆ij=0 when node j is not on the i-th boundary 
element. 

Combining Eq. (19) with Eq. (28), the governing equation of EBEM can be set up as 

 sB=Hσ WE  (30) 

or in continuum form as 

 ( ) ( ); ; sBh w=x σ x e  (31) 

where h(•) and w(•) are linear integral form in terms of the acoustic energy strength and the structural bending 
energy density respectively. The solution of Eqs. (30) or (31) then leads to the acoustic source strength for each 
element on the surface. Therefore, Eqs. (10) and (11) can be readily applied to compute the time-averaged energy 
density and energy intensity for an arbitrary field point in the free field. Finally, the time-averaged acoustic energy 
density and energy intensity can be expressed in discrete forms, respectively, as 

 ( )0
Te =x S σ  (32) 

( ) =I x Mσ0  (33)  

and the components of vector S and matrix M are derived from Eqs. (10) and (11) as 

  ( )0
1 ,

i
i S

i

S G
A

= ∫ y x dS  (34) 

 ( ) ( )0 0, ,
i

ij jS
i

1M H u
A

= ∫ y x y x dS              ( )1, 2,3j =  (35) 

It is shown that the EFEM-EBEM constitutes a sequential numerical procedure, where the output of EFEM is 
used to compute the boundary condition for the EBEM. The EBEM is divided into two steps: the first step is to 
construct the boundary condition using the results from EFEM and solve the acoustic energy strength on the surface; 
the second step is to calculate the acoustic energy density and acoustic energy intensity in the far-field point in the 
infinite acoustic domain.  

III. Design Sensitivity Analysis  

3. Direct Differentiation Method 
For a given structural-acoustic performance measure which can be written in a integral form of the time-

averaged acoustic energy density e and acoustic energy intensity I in the far-field point as the following 

 ( ), , , ,g e e d
Ω

= ∇ ∇ Ω∫ u I Iψ  (36) 

its variation with respect to the design variable u can be obtained as 

 , , , , , :e eg g e g e g g d∇ ∇Ω
′ ′ ′ ′⎡= + + ⋅∇ + ⋅ + ∇⎣∫ u Iu Iψ δ ′⎤ Ω⎦I I  (37) 

where the first-order variation of the energy density e is defined as 

 ( ) ( )
0

; ;
Tde e e

d ε

eδ εδ δ
ε =

∂′ ′= = + =
∂

x u, u x u u u
u

 (38) 
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when the design variable u is perturbed in the direction δu with the amount εδu. For the structural EFEM, the first-
order variation of the structural energy density es can be obtained directly from differentiating the variational Eq. (2) 
with respect to the parametric design variables as 

 ( ) ( ) ( ) ( ) ( )δ δ δ, , , ,s s s s s s s s sa b a b′ ′ ′ ′ ′+ = − −u u u u ue e e e e e e e eA   ,   s sZ∀ ∈e   (39) 

where the first-order variation of the energy bilinear form au(•,•), coupling term bu(•,•) and the load linear form ℓu(•) 
are provided in detail in Choi and Dong [40,41]. 

Since the integral forms s(•) and m(•) in Eqs. (12) and (13) do not explicitly depend on the structural design, the 
design sensitivity of the energy density and energy intensity at the exterior field point can be obtained by directly 
differentiating Eqs. (12) and (13) as 

 ( ) ( )0 0 ;e s′ ′=x x σ  (40) 

( ) ( ); 0 0′ ′=I x m x σ  (41) 

where σ′ is the derivative of the acoustic energy strength on the structural boundary elements, and it can be obtained 
from the differentiation of the governing equation  (31) of EBEM as 

 ( ) ( )1 1; ;sBh w h w− −′ ′ ′= ⋅ + ⋅ uσ x e x eδ sB  (42) 

where is the variation of the integral form w(•) with respect to the design variable u. For the structural 

damping design variable,  vanishes, whereas for the structural thickness design variable, is 
( )uw′ iδ

( )uw′ iδ ( )uw′ iδ

 ( )u rad radS
w h h′ = +∫δ η ωδ ω δη dS  (43) 

and the expression of δηrad is derived by Choi and Dong [40-41]. 
Substitute Eqs. (40)-(43) into Eq. (37), the sensitivity of the performance measure can be obtained as 

 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

1 1
, ,

1 1
,

1 1
,

1 1
, :

e sB sB

e sB sB

sB sB

sB sB

g g s h w h w

g s h w h w

g h w h w

g h w h w d

− −

Ω

− −
∇

− −

− −
∇

⎡′ ′= + ⋅ + ⋅⎣
′ ′          + ⋅∇ ⋅ + ⋅

′ ′          + ⋅ ⋅ + ⋅

⎤′ ′          + ∇ ⋅ + ⋅ Ω⎦

∫ u u

u

I u

I u

u e e

e e

m e e

m e e

δ

δ

δ

δ

ψ δ ′

 (44) 

Equation (44) provides the expression to calculate the sensitivity of the performance measure in terms of the 
sensitivity of the structural energy density for the direct differentiation method. The solution of the sensitivity of the 
energy density from EFEM in Eq. (39) then can be substituted into the above equation to get the sensitivity 
information of an arbitrary structural-acoustic performance measure in Eq. (36). 

 

4. Adjoint Variable Method 
While the direct differentiation method calculates the sensitivity information through the sensitivity of the 

structural energy density from EFEM, the adjoint variable method can achieve the same goal by defining an adjoint 
equation with the adjoint load from the right side of Eq. (44) that are implicitly dependent on the design variables 

 
( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

1 1
, ,

1 1
, ,

, ,

:

s s s s e s e s

s s

a b g s h w g s h w

g h w g h w d

− −
∇Ω

− −
∇

⎡+ = ⋅ + ⋅∇ ⋅⎣
⎤                                   + ⋅ ⋅ + ∇ ⋅ Ω⎦

∫u u

I I

λ λ λ λ λ λ

m λ m λ
 ,    s sZ∀ ∈λ   (45) 
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Evaluation of the above equation at s s′=λ e  yields 

 
( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

1 1
, ,

1 1
, ,

, ,

:

s s s s e s e s

s s

a b g s h w g s h w

g h w g h w d

− −
∇Ω

− −
∇

⎡′ ′ ′ ′+ = ⋅ + ⋅∇ ⋅⎣
⎤′ ′                                   + ⋅ ⋅ + ∇ ⋅ Ω⎦

∫u u

I I

e λ e λ e e

m e m e
 (46) 

Similarly, because Eq. (39) holds for arbitrary sZ∈e , it can be evaluated at s s=e λ to obtain 

 ( ) ( ) ( ) ( ) ( )δ δ δ, , , ,s s s s s s s s sa b a b′ ′ ′ ′ ′+ = − −u u u u ue λ e λ λ e λ e λA  (47) 

Since Eqs. (46) and (47) have the same left sides, equating their right sides yields 
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λ e λ e λAδ δ δ
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Since the sensitivity of the performance measure needs the sensitivity of the structural bending energy density, it 
can be extended to the total structural energy density simply using a Boolean operation for all the integral forms. As 
a result, the sensitivity in Eq. (44) can be rewritten as 
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ψ δ ′ e

 (49) 

where the definitions of the integral forms h(•), w(•), s(•) and m(•) are all extended from structural bending energy 
density to the total structural energy density variables.  Substitution of Eq. (48) into Eq. (49) yields 

 

( )( ) ( )( )
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− −
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u e
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δ δ
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 (50) 

In the above equation, the explicitly dependent terms from EFEM such as ( )′ uA iδ , ( ),a′u i iδ  and  have been 
discussed extensively in Choi and Dong [40,41] for analytical design components, such as structural plates.  

( ),b′u i iδ

Since the conversion integral w(•) is also dependent of the structural design parameters, the calculation of the 
variation of the conversion integral will only involve the structural EFEM model, such that the above 
sensitivity equation is shown to be an numerical integration variation on the structural model only. Although the 
adjoint load computation will need the information of the acoustic EBEM model information, the final design 
sensitivity result is carried on the numerical integration only on the structural part. 

( )uw′ iδ

IV. Numerical Implementation 

5. Direct Differentiation Method 
After applying Gaussian quadrature to all integral forms, the matrix equation to solve for the elemental acoustic 

energy strength is obtained as 
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 1

sB
−=σ H WE  (51) 

and the time-averaged acoustic energy density and acoustic energy intensity in the far-field point x0 can be obtained 
using Eqs. (32) and (33).  

The variation of the elemental acoustic energy strength can be obtained by the discretization of Eq. (42) as 

 1 1
sB

− −
sB′ ′= +σ H WE H W E′  (52) 

where the variation of the structural bending energy density vector sB′E  can be obtained by solving Eq. (39) using a 
discrete form as 

 [ ]{ } { }fic
s ss s′+ =K J E F  (53) 

The calculation of the fictitious load vector Ffic can be found in Choi and Dong [40,41] for the parametric design 
variables. Finally, the variation of the acoustic energy density and acoustic energy intensity can be calculated by 
discretization of Eqs. (40) and (41) as 

 ( )0
Te′ ′=x S σ  (54) 

( ) 0′ ′=I x Mσ  (55) 

Substitution of Eqs. (52)-(55) into Eq. (37) and implementing numerical integration give the sensitivity of the 
performance measure.  
 

6. Adjoint Variable Method 
Since the computation of the adjoint load vector for the adjoint variable method depends on the system matrix of 

both structural EFEM and acoustic EBEM, two separate steps can be used to get the adjoint load vector. First, four 
separate acoustic adjoint load vectors are defined on an acoustic adjoint re-analysis as 

 T =                              H ξ S  (56) 

  ,        T
i=H ς Mi ( )1, 2,3i =

T=F W ς

 (57) 

where the acoustic adjoint loads are obtained from the acoustic geometry and the location of the exterior field point 
x0. Vector Mi is extracted from matrix Mij with sub-index i fixed. Once the acoustic adjoint responses ξ and R={R1, 
R2, R3}T are solved from an acoustic re-analysis, the intermediate adjoint load vectors are defined on the product of 
the acoustic adjoint responses with the conversion matrix W as 

  (58) T
e =F W ξ

  (59) I

where Fe is the intermediate adjoint load contributed from the acoustic energy density and FI is the intermediate 
adjoint load contributed from the acoustic energy intensity at the exterior field point. The substitution of the 
intermediate adjoint load vectors into the right side of the adjoint equation (45) will give the expression for the 
structural adjoint load as 

 ( ) ( ) ( ), , , , :adj e e e eg g g g∇= + ⋅∇ + ⋅ + ∇∇I I I IF F F F F  (60) 
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With the adjoint variable method, the adjoint response can be approximated by the finite element shape functions  

 
1

NE
i i T

s s s s s
i

N
=

= =∑ N Λλ λ  (61) 

then the adjoint equation (45) can be eventually discretized as 

 [ ] { } { }T
s ss s adj+ =K J Λ F  (62) 

After solving the structural adjoint response Λs at the nodal points, the finite element approximation of the 
variation of the structural energy bilinear form, structural-structural coupling term and load linear form, the variation 
of the conversion matrix developed in the previous sections can be applied to derive the variation of the performance 
measure in the discrete form as 

 
( )

( ) ( )
, , ,

, , :

T fic T T
s e s e

T T
s s

g d g g

g g

∇Ω

∇

′ ′= ⋅ Ω + + + ⋅∇

′ ′                              + ⋅ + ∇

∫∫ u

I I

u Λ F ξ W E ξ W E

ς W E ς W E

ψ δ s′
 (63) 

From the definition of the acoustic adjoint load vectors in Eqs. (56) and (57), it is shown that as long as the 
geometry of the boundary element model holds fixed, the acoustic adjoint load vectors, thus the acoustic adjoint 
responses remain unchanged. This provides great advantages for the parametric design optimization of the 
structural-acoustic model, since as long as the structural geometry does not change, the parametric design variables 
such as panel thickness and material damping will not influence the computation of the acoustic loads and acoustic 
adjoint responses. However, the structural adjoint loads are denpendent on structural designs through the conversion 
matrix W. As a result, Eqs. (58)-(60) need to be evaluated at each design iteration in a sizing design optimization 
process. 

V. Numerical Examples 

7. Design Sensitivity Analysis of Radiation of Simplified Van Model In Air 
Radiated noise from vibrating structure to the exterior domain is as important as the interior noise since it 

generates noise pollution. The exterior noise radiated from vibrating vehicle structure is one of the most common 
radiation problems to study. To design vehicle structure such that the radiated noise level is controlled under 
regulatory limit is one of the most important tasks for NVH design. A practical application of EFEM-EBEM is to 
design a vehicle structure with optimized NVH performance and ride quality at high frequency. For this purpose, a 
simplified passenger vehicle model is constructed and studied (Fig. 2). The corresponding EFEM model (Fig. 3) is 
comprised of 118 structural plate elements, which are integrated through 56 structural-structural joints. An analytical 
method developed by Langley and Heron [21] is used to compute the power transfer coefficients between plate 
members and the radiation efficiency method is used to compute the power transfer coefficients between plate 
members and acoustic domain. 

The passenger vehicle model is comprised of seven different structural panels, made of aluminum. Those panels 
have the property of Young’s modulus E = 71 Gpa, Poisson’s ratio ν = 0.33, mass density ρs = 2700 kg/m3, and all 
the panels have the same thickness h = 10 mm, the hysteresis damping factor of η = 0.01 is used for each panel. The 
noise is radiated into acoustic space filled with air, of mass density ρ0 = 1.02 kg/m3, hysteresis damping ηa = 0.001 
and wave speed c0 = 343 m/s. 

A structural EFEM analysis is performed first without considering the interior acoustic domain to obtain the 
structural energy density distribution. Since the structural model does not have any inner part, the acoustic energy 
boundary element model is the same as the structural finite element model in Fig. 3. A recovery point P0 is chosen to 
be located in front of the vehicle with a coordinate at (8.0, −0.5, 0.5) as shown in Fig. 2. An acoustic EBEM analysis 
following the structural EFEM analysis predicts the noise level at the recovery point is 70.1 dB in air. The proposed 
adjoint design sensitivity method is carried out to study the sensitivity effect of structural designs on the radiated 
noise. Thickness and damping of each structural panel are selected as design variables and 1% of the initial design is 
perturbed where central finite difference method is used to verify the sensitivity coefficients. The comparisons of the 
results from the proposed design sensitivity method and central finite difference method are shown in Table 1 for 
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thickness and damping design variable respectively. An excellent agreement is observed between these two sets of 
numerical results, which prove the accuracy of the proposed design sensitivity method. 
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Figure 2 Recovery Point in Exterior Domain of Simplified Van Model 

 

he sensitivity information shown in Table1 presents the different effects of the structural designs on the noise 
l at the recovery point P0. All the damping designs have negative contributions to the radiated noise, and most of 
thickness designs also have negative contributions, except panel 2 and 3, which have positive sensitivity 
ficients, which means, the increase of the thickness in panel 2 and 3 will not help reduce the radiated noise at P0, 
nstead increase it.  
o better understand the sensitivity results, the sensitivity coefficients of the noise level at the recovery point P0 

 respect to the element thickness and damping factors are calculated and the results are plotted in Fig. 4 and Fig. 
 clearly explains that the structural damping always has negative effect on the noise radiation, no matter interior 
xterior noise. Increasing structural damping will always help noise reduction. Compared with the damping 
gn, contribution from the thickness design to the noise radiation is significantly different considering the 
tion of the recovery point and the role of each structural panel in the total energy flow in the structure.  
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Table 1 Design Sensitivity Analysis Results for Exterior Noise Radiation from Simplified Van Model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Performance Measure Design Variables 

ψ(u−δu) ψ(u+δu) 

FDM 
δψ/δu 

AVM 
ψ′ 

Ratio 
(%) 

Thickness h1 70.212718 70.005966 -0.103376E+04 -0.103371E+04 100.01 Panel 
1 Damping η1 70.122588 70.108509 -0.703957E+03 -0.703956E+03 100.00 

Thickness h2 70.116585 70.118256 0 .835712E+01  0.835866E+01 99.98 Panel 
2 Damping η2 70.117710 70.113976 -0.186710E+03 -0.186710E+03 100.00 

Thickness h3 70.116369 70.117665  0.648013E+01  0.648394E+01 99.94 Panel 
3 Damping η3 70.119146 70.111944 -0.360090E+03 -0.360090E+03 100.00 

Thickness h4 70.119748 70.109103 -0.532236E+02 -0.532125E+02 100.02 Panel 
4 Damping η4 70.117610 70.113476 -0.206683E+03 -0.206683E+03 100.00 

Thickness h5 70.117944 70.110138 -0.390287E+02 -0.390208E+02 100.02 Panel 
5 Damping η5 70.116552 70.114534 -0.100905E+03 -0.100905E+03 100.00 

Thickness h6 70.119946 70.114788 -0.257887E+02 -0.257789E+02 100.04 Panel 
6 Damping η6 70.120740 70.110355 -0.519246E+03 -0.519245E+03 100.00 

Thickness h7 70.121715 70.104112 -0.880149E+02 -0.880005E+02 100.02 Panel 
7 Damping η7 70.120835 70.110259 -0.528774E+03 -0.528774E+03 100.00 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Energy Finite Element Model of Simplified Van Model 
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a) View 1 

 

b) View 2 

 

 

Figure 4 Design Sensitivity Plot of Radiated Noise With Respect to Element Thickness Design for 
Simplified Van Model 
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a) View 1 

 

b) View 2 

Figure 5 Design Sensitivity Plot of Radiated Noise With Repsect to Element Damping Design for 
Simplified Van Model 

esign Sensitivity Analysis of Underwater Radiation of Undersea Vehicle Model 
igh frequency noise radiation also plays an important role in naval structures as in automotive and aerospace 
tures. For example, how to reduce the noise radiated from a vibrating undersea ship to make it avoid being 
d and identified is an attractive topic in naval structure design. To this end, a small undersea vehicle model is 
tructed and the noise radiation in water is analyzed. The vehicle model is 6.0 m long, and the maximum inner 
eter is 0.522 m. The thickness of the vehicle skin is 10 mm, and all of the 4 bulkheads have the same thickness 
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of 25.4 mm. The energy finite element model (Fig. 6) is comprised of 1744 nodes and 1060 elements. There are 
totally 590 structural joints in the model. The structural parts have the material properties with Young’s modulus E 
= 70 GPa, Poisson’s ratio ν = 0.3, mass density ρ = 2,700 kg/m3, and hysteresis damping factor η = 0.01. Water is 
the fluid with which the undersea model interacts, which has mass density ρ0 = 1,000 kg/m3, wave speed c0 = 1,500 
m/s and hysteresis damping factor η = 0.001.  
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 Figure 6 Energy Finite Element Model of Small Undersea Vehicle Model 
 
 
 

 the differences of the acoustic wave numbers and the effective structural mass density of the 
 in light fluid (air) and dense fluid (water), the radiation damping, which represents the capacity of 
lates to radiate acoustic energy, will be different in dense fluid compared to that in light fluid. For 
 aluminum plate with the dimension of 1m×1m×0.001m, its radiation damping in both air and water 

ed using Eq. (25) and the Leppington method (Eq. 27) for radiation efficiency in the frequency range 
z to 10000 Hz and compared in Fig. 7. Since the radiation damping is included in the governing 
 structural bending power flow [22], the difference in the radiation damping could have large effect 
ng equation of the structural vibration. For example, the radiation damping of the aluminum plate is 
.002~0.0025 in water, which is about 20~25% of its original hysteresis damping of the bending 
er, the radiation damping in air is less than 0.00025, which is not comparable to the original damping 
nding motion, and its contribution will be much smaller than that in water. 
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7 Radiation Damping of Aluminum Plate in Air and Water 

mping, the existence of the dense fluid could affect the power transfer coefficients 
nificantly. The effective structural mass density ρs, the bending wave number ksB 
 for the structural plates in dense fluid, which are characterized by parameter α in 
alytical method proposed by Langley and Heron [21] to compute power transfer 
n dense fluid [22]. Figure 8 compares the power transfer coefficients between two 
aterial properties (E = 209 GPa, ν = 0.3, ρ = 7,800 kg/m3) in vacuum, light fluid 
e two plates have the same dimension of 1m×1m×0.001m and the power transfer 
mpared for different junction angle from 0˚ to 180˚. In Fig.8, 12

BBτ  represents the the 
 bending energy in plate 1 to the bending energy in plate 2, and 11

BBτ  stand for the 
 bending energy in plate 1 to the bending energy in plate 1 itself. It is shown that 

e any difference in the power transfer properties compared to those in vacuum. On 
se fluid (water) on the power transfer coefficients is clear, since the power transfer 
d 140˚ to 170˚ are significantly different in water compared with those in vacuum 
ution of fluid effect on high frequency power flow between structural components.  
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Figure 8 Power Transfer Coefficients of Two Angled Plates in Vacuum, Air and Water 

 
 
 
 
 
 
The undersea vehicle model can be divided into 11 substructures as shown in Fig. 6. Axi-symmetric excitation is 

applied in the middle of substructure 5. The structural energy distribution at frequency f = 2000 Hz is plotted in Fig. 
9, from which we can see that most of the energy gather around substructure 5, and the 4 bulkheads can be used to 
isolate the energy flow between the substructures. 
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Figure 9 Structural Energy Density Distribution of Small Undersea Vehicle Model 
 

 

Figure 10 Energy Boundary Element Model of Small Undersea Vehicle Model 
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a) View 1 b) View 2 

Figure 11 Exterior Noise Recovery Position of Small Undersea Vehicle Model 

 
 
 
 
While the energy finite element model consists both inner parts and outer parts, the energy boundary element 
del only consists the outer parts of the structural model (Fig. 10). The structural energy density is converted to the 

wer flow on each structural element, which is then used as the boundary condition to solve for the acoustic energy 
ngth for each boundary element. At the end, the radiated noise at an arbitrary exterior point can be computed by 

ng Green’s function. To predict the exterior radiation noise by the vibrating vehicle model, a series of points with 
tance 100 m from the center of the vehicle model is selected as recovery points as shown in Fig. 11. Since the 
del and excitation are axi-symmetric, all the points on the circle in Fig. 11 will have the same noise level. 
erefore, the noise level on the entire circle can be represented by only one point, for example, point P0. 
rthermore, if each substructure of the vehicle model can be considered as a design component, the design 
sitivity coefficients of the noise level on the entire circle will also be equivalent to the design sensitivity 
fficients of the noise level on point P0. As a result of the radiation analysis using EFEM-EBEM, the noise level 
the circle is predicted at 118.87 dB when f = 2000 Hz. Following the design sensitivity analysis procedure 
cussed above, the sensitivity coefficients of the noise level with respect to the thickness and damping factor of 
h substructure are calculated and summarized in Table 2. Without exception, all the damping factors have 
ative sensitivity coefficients. For the thickness design, thicknesses of substructure 1 through 7 have positive 
fficients. Among the 4 bulkheads, substructure 9 has positive sensitivity coefficients while all the other three 
e negative sensitivity coefficients. It shows that at the current design, increase damping of each structural panel 
 increase thickness of substructure 1 through 7 and 9, while decrease thickness of other substructures is the 
ropriate way to reduce the noise radiated at the points of interest.  
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Table 2 Design Sensitivity Analysis Results for Exterior Noise Radiation from Small Undersea Vehicle Model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thickness h4 118.871137 118.873288 0.107525E+02 0.107523E+02 100.00 Substructure 
4 Damping η4 118.873321 118.871244 -0.103865E+02 -0.103864E+02 100.00 

Thickness h5 118.862150 118.882652 0.102510E+03 0.102501E+03 100.00 Substructure 
5 Damping η5 118.884215 118.860378 -0.119186E+03 -0.119185E+03 100.00 

Thickness h6 118.871270 118.872900 0.815108E+01 0.815076E+01 100.00 Substructure 
6 Damping η6 118.873007 118.871556 -0.725600E+01 -0.725598E+01 100.00 

Thickness h7 118.872034 118.872495 0.230714E+01 0.230695E+01 100.00 Substructure 
7 Damping η7 118.872536 118.872025 -0.255530E+01 -0.255529E+01 100.00 

Thickness h8 118.872356 118.872233 -0.242408E+00 -0.242408E+00 100.00 Substructure 
8 Damping η8 118.872303 118.872258 -0.220730E+00 -0.220730E+00 100.00 

Thickness h9 118.872161 118.872377 0.424456E+00 0.424435E+00 100.00 Substructure 
9 Damping η9 118.872430 118.872130 -0.149853E+01 -0.149853E+01 100.00 

Thickness h10 118.872409 118.872148 -0.513201E+00 -0.513172E+00 100.00 Substructure 
10 Damping η10 118.872385 118.872175 -0.104580E+01 -0.104580E+01 100.00 

Thickness h11 118.872288 118.872193 -0.188094E+00 -0.188102E+00 100.00 Substructure 
11 Damping η11 118.872319 118.872241 -0.387373E+00 -0.387372E+00 100.00 

 

Performance Measure Design Variables 

ψ(u-δu) ψ(u+δu) 

FDM 
δψ/δu 

AVM 
ψ′ 

Ratio 
(%) 

Thickness h1 118.872284 118.872290 0.325359E-01 0.325213E01 100.04 Substructure 
1 Damping η1 118.872286 118.872274 -0.594010E01 -0.594010E01 100.00 

Thickness h2 118.871904 118.872498 0.296974E+01 0.296954E+01 100.01 Substructure 
2 Damping η2 118.872627 118.871934 -0.346370E+01 -0.346369E+01 100.00 

Thickness h3 118.872107 118.872469 0.181275E+01 0.181259E+01 100.00 Substructure 
3 Damping η3 118.872448 118.872112 -0.168031E+01 -0.168031E+01 100.00 

 
Figures 12 and 13 plot the design sensitivity coefficients of the exterior noise level with respect to the element 

thickness and damping design variables respectively. In Fig. 12, black color stands for maximum positive sensitivity 
coefficients, while white color stands for negative sensitivity coefficients. Substructure 5 has the highest positive 
sensitivity coefficients, and substructures 8, 10, 11 have negative sensitivity coefficients. The results are consistent 
with the numerical results in Table 2. In Fig. 13, all the sensitivity coefficients are negative, with black color stands 
for larger sensitivity value, white color stands for smaller sensitivity value. It is shown that the substructure 5 has the 
highest negative contribution to the exterior noise level, which is followed by the other substructures and bulkheads. 
With the graphic information in Figs. 12 and 13 along with the tabular results in Table 2, a design engineer will be 
able to know how to perturb the initial design to achieve a better and eventually an optimum design for best NVH 
performance with least usage of material. 
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Figure 12 D

Figure 13 D

 
 
 
 
 

 

 

esign Sensitivity Plot of Radiated Noise With Respect to Element Thickness Design for Undersea 
Vehicle Model 
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sign Sensitivity Plot of Radiated Noise Versus Element Damping Design for Undersea Vehicle 
Model 
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9. Multi-Objective Design Optimization of Underwater Noise Reduction 

In this section, a design optimization problem is formulated and solved for the undersea vehicle model. The DSA 
formulation derived in the previous sections will be integrated into the design optimization program to carry out 
design optimization process. 

The design optimization process is illustrated in Fig. 14. The EFEM is used to compute the structural energy 
distribution and power radiated from the structural plate, which will be used as boundary conditions for EBEM to 
predict the noise radiation at far-field points. Using the sequential adjoint variable method, the DSA calculates the 
derivative of the far-field radiation noise with respect to the design variables, and all the information are utilized by 
the design optimization algorithm (such as SLP and SQP, etc) to search for the optimum design. 
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igure 14 Design Optimization Procedure for High Frequency Radiation Problem Using Energy Finite 
Element Method and Energy Boundary Element Method 
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The purpose of the design optimization is to reduce the noise level at far-field points at a high frequency range 

from 1600 to 2500 Hz with the minimum vehicle mass. The first performance measure will be selected as the far-
field noise level at point P0. Meanwhile, since the potential optimum design could cause the increase in energy 
density distribution on the structural model, which on the other hand, explains the increase in structural stress level. 
To avoid the structural energy density increase, another performance measure should be selected to represent the 
highest energy density on the structural model. The computational results show that the highest energy density 
occurs at Node 752 of the structural energy finite element model, which will be used as the structural performance 
measure. As a result, the acoustic performance measure at P0 and the structural performance measure at Node 752 
are obtained at the center frequencies of the 1/3 octave bands in the range from 1600 to 2500 Hz and are listed in the 
Table 3. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since the mass cost 
as design constraints. T
2.0E-5 Pa, so one of the 
12 J/m2, which means 
structural energy density
structural energy density
between 1600 to 2500 H

The design objectiv
variables. First of all, th
by 

 

with NE as the total num
of the i-th finite element
Table 3 Performance Measures at Initial design 

Frequency 
(Hz) 

Acoustic Pressure 
(dB, RE2.0E-5) 

Structural Energy 
Density 

(dB, RE1.0E-12) 

1600 118.92 126.02 

1692 118.91 125.84 

1789 118.90 125.58 

1891 118.89 125.37 

2000 118.87 125.17 

2115 118.86 125.06 

2236 118.84 124.79 

2364 118.83 124.52 

2500 118.82 124.32 
will serve as design objective, the above noise level and structural energy density will serve 
he maximum noise level occurs at f = 1600 Hz, which is 118.9 dB with reference value of 
constraints is to reduce the highest pressure level to 116.00 dB with reference value of 1.0E-
2.9 dB reduction, equivalent to 28.4 % noise reduction. At the same time, the highest 
 occurs at f = 1600 Hz, which is 126.0 dB, the design optimization needs to keep the highest 
 level under 126.0 dB. As a result, the design constraints are to reduce the noise level at P0 
z to below 116.00 dB and keep the highest structural energy density level below 126.0 dB. 
e is to minimize the mass cost, which is related to both thickness and damping design 
e vehicle mass cost is directly contributed by the thickness design variables and is expressed 

1
i

i i
NE

f hρ
Ω

d= Ω∑∫  (64) 

ber of the finite elements, ρi the mass density of the i-th finite element and hi the thickness 
.  
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The mass cost related to damping design variables is determined by the ways of damping adjustment: Free Layer 
Damping or Constrained Layer Damping treatment [43]. The former is also called surface damping treatment in 
which a “high-loss” material (usually rubbery, asphalt, vinyl) is sprayed on, brushed on, or adhesively bonded to the 
panel surface as shown in Fig. 15(a). The latter is a treatment that a relatively thin layer of damping material is 
sandwiched between the structure and a stiff but thin cover plate as retaining layer, such as aluminum, steel or sheet 
metal (Fig. 15(b)). While the constrained layer damping treatment has better damping enhancement than the free 
layer damping, the free layer damping is much easier and more practical in engineering applications. For example, 
the asphalt sheets have been used for over 50 years in automotive, naval and aerospace industry and are still widely 
used because of the low material cost. On the other hand, the constrained layer damping needs additional aluminum 
layer for the damping treatment, and it needs to be extruded, slit and cut into preferred shapes, which requires more 
material and labor cost involved than the free layer damping treatment. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
So

dampi
proper
the da
adjusta
Young
result,
the ma
on wh
adjustm

 

where
optimi

Du
optimi
object
Weigh
weigh

 

where

 

 

Base Structure 

Damping Material 

 

Base Structure 

Damping Material 
Constrained Layer 
(a) Free Layer Damping         (b) Constrained Layr Damping 

Figure 15  Damping Treatments 

me researches have been carried out in the prediction of the mechanical properties of different surface 
ng treatments, such as the RKU analysis developed by Ross, Ungar and Kerwin [44]. It is shown that the 
ties of the laminated material are functions of the thickness and material properties of each layer. However, 
mping materials are usually provided in standard products from manufacturers, whose thicknesses are not 
ble. Moreover, the material properties of the mostly used damping materials, including the mass density, 
’s modulus, Poisson’s ratio and hysteresis damping factor are unknown or largely variant in most cases. As a 
 it is difficult to analytically model the damping mass directly related to the total vehicle mass cost. However, 
ss contributed by the damping adjustment is proportional to the amount of damping adjustment and the area 
ich the adjustment is applied.  To simplify the problem in this study, the mass of the damping material 

ent is assumed to be linear in terms of the damping increment and the surface area as 

( )2
i

ori
i i

NE

f dη η
Ω

= − Ω∑∫   (65) 

 ηi
ori is the original damping on the i-th finite element, and ηi is the proposed damping computed by the design 

zation algorithm. 
e to the existence of two different objective functions in Eqs. (64) and (65), a multi-objective design 
zation needs to be carried out instead of a single-objective design optimization. In this paper, the multi-
ive design optimization problem is transformed into a single-objective design optimization problem, where the 
ted Objective Method is used to convert the multi-objective functions into a single-objective function by a 
ted sum as 

1 1 2 2f w f w f= +  (66) 

 w1 and w2 are called “weighting coefficients” and they have the following relationship 

1 2 1w w+ =  (67) 
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The optimization results of Eq. (66) are infinite subject to the different combination of weighting coefficients. If 
the coefficients are selected at discrete set of points, a corresponding discrete set of optimization results will be 
obtained, which is called the Pareto Optimal set. The design engineers are expected to pick the values of the results 
from the Pareto Optimal set, based on different design situations. For example, if the contribution of material 
damping to vehicle mass can be ignored as in Chapter 6, i.e., w1 = 1, and w2 = 0, the optimization will be simply 
carried out to reduce the vehicle mass using thickness design variables; On the contrary, if the damping adjustment 
is not preferred compared to the thickness adjustment, i.e., w1 = 0, and w2 = 1, the design optimization will be carried 
out to reduce the damping material adjustment without considering the contribution of thickness adjustment to 
vehicle mass. If the contribution of material damping to vehicle mass is considered as important as the contribution 
of metal thickness to vehicle mass, i.e., w1 = w2 = 0.5, the design optimization will be carried out to search optimum 
to reduce both the damping and thickness adjustment under certain constraints. 

Using the Weighted Objective Method, the design optimization can be carried out on the parametric design 
variables, including the material thickness and hysteresis damping factor of all the 11 substructures of the undersea 
vehicle morel. As a result, the design optimization problem is formulated as 

 
Objective: Minimize the weighted objective function  

 1
1 2

1 2

f
f w w 2f

F F
= +            (0.5 < f1 /F1 < 1.5, 0 < f2 /F2 <1, 0 < w1 < 1, 0 < w2 < 1)  (68) 

Constraints: Subject to two sets of constraints 
 (1) Reduce Noise Level at far-field point P0 in 1600-2500 Hz to 116.0dB  
 (2) Keep the highest structural energy density level in 1600-2500 Hz below 126.0 dB 
Parametric Design Variables:  
 11 Panel Thickness (±50% Design Change Allowed) 
 11 Panel Damping (200% Design Change Allowed) 
 

where in Eq. (68), the objective functions f1 and f2 are normalized with respect to the maximum allowable mass and 
damping cost changes F1 and F2, which are distances between the upper and lower limits of the thickness and 
damping design space.  

The design optimization is carried out for the different combination of weighting coefficients w1 and w2 as 
shown in Table 4 and DOT (Design Optimization Tool) is used as optimization program where SQP (Sequential 
Quadratic Programming) is chosen as the optimization algorithm. The Pareto Optimal results are obtained and listed 
in Table 4, while the Pareto Optimal set is plotted in Fig. 16, which shows that the weighted objection function is 
convex, and the reduction of one objective function needs to compromise the other. 
 

Tab fficients 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

le 4 Pareto Optimal Results for Different Weighting Coe

w1 1.0 0.75 0.5 0.25 0.0 

w2 0.0 0.25 0.5 0.75 1.0 

f1/F1 0.573 0.590 0.608 0.633 0.665 

f1 (Kg) 181.3 186.5 192.4 200.3 210.5 

f2/F2 1.000 0.714 0.642 0.604 0.575 
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o illustrate the optimization results, the history of the vehicle mass cost for the case when w1 = 1 and w2 = 0 is 
d in Fig. 17, from which we can see that the optimization is converged after 4 iterations, and at the end of the 
ization, the vehicle mass is reduced from 306 Kg to 172 Kg, a 134 Kg reduction. Such large amount of mass 
tion is achieved by maximizing use of damping material, which is shown in Fig. 18 where all the damping 
n variables increase to the maximum allowable value. Compared with the damping design variables, the history 
 thickness design variables illustrated in Fig. 19 shows that all the thickness design variables decrease to the 
um allowable value to reduce the mass, except the thickness of substructure 5, which reduces by a certain 

nt but does not hit the lower boundary of the design space to help keep the design constraints satisfied. 
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f the design constraints for the far-field acoustic pressure at the original and optimum design is 
hich shows that the highest radiation noise is reduced from 118.9 dB to 116.0 dB, equivalent to 
agnitude. At the same time, Figure 21 compares the design constraints on the highest structural 

riginal and optimum design, which shows that although the design changes causes reduction of 
 noise, the highest structural energy level is still kept below 126.0 dB, the level of the original 
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Figure 21 History of Structural Design Constraints  
 
 

The optimum design results of the thickness and damping design variables are listed in Table 5, which provides 
design engineers guidance for design modification under different requirements. If the contribution of damping 
material to vehicle mass is ignored, then all the damping design variables will increase to the upper bound in the 
design space and the thickness design variables will reduce correspondingly to reduce the vehicle mass without 
violating the design constraints. Once the contribution of damping material to vehicle mass is considered in the total 
vehicle mass function, and with the increase of the weighting coefficient w2, most of the damping design variables 
need to decrease to reduce the mass contribution from damping adjustment, while the thickness design variables 
needs to increase correspondingly to meet the design constraints. If the contribution of metal thickness to vehicle 
mass is ignored, most of the damping design variables will reduce to the lower bound in the design space except the 
damping in substructures 5 and 6, which stays at the upper bound to satisfy the design constraints. On the contrary, 
all the thickness decreases to the lower bound in the design space, except that the thickness of substructures 8 and 11 
increases to the upper bound in the design space and the thickness of substructure 5 decreases to a certain level 
above the lower bound in the design space to help satisfy the design constraints. 
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Table 5 Thickness and Damping Design Results for Pareto Optimal Set 

 

 
Original 
Design 

Optimum 
Design 

  
w1=1.0 
w2=0.0 

w1=0.75 
w2=0.25 

w1=0.5 
w2=0.5 

w1=0.25 
w2=0.75 

w1=0.0 
w2=1.0 

h1 1.00E-02 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 

h2 1.00E-02 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 

h3 1.00E-02 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 

h4 1.00E-02 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 

h5 1.00E-02 7.85E-03 7.93E-03 7.88E-03 7.87E-03 7.89E-03 

h6 1.00E-02 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 

h7 1.00E-02 5.00E-03 5.00E-03 5.00E-03 5.00E-03 5.00E-03 

h8 2.54E-02 1.27E-02 2.09E-02 3.21E-02 2.93E-02 3.81E-02 

h9 2.54E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 

h10 2.54E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 

h11 2.54E-02 1.27E-02 1.27E-02 1.27E-02 2.88E-02 3.81E-02 

η1 1.00E-02 3.00E-02 1.46E-02 1.02E-02 1.00E-02 1.00E-02 

η2 1.00E-02 3.00E-02 1.80E-02 1.02E-02 1.00E-02 1.00E-02 

η3 1.00E-02 3.00E-02 1.95E-02 1.03E-02 1.00E-02 1.00E-02 

η4 1.00E-02 3.00E-02 2.04E-02 2.44E-02 2.39E-02 2.64E-02 

η5 1.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 

η6 1.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 

η7 1.00E-02 3.00E-02 3.00E-02 2.78E-02 1.65E-02 1.16E-02 

η8 1.00E-02 3.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 

η9 1.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 1.06E-02 

η10 1.00E-02 3.00E-02 3.00E-02 3.00E-02 3.00E-02 2.32E-02 

η11 1.00E-02 3.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 
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VI. Conclusion 
 
A continuum DSA of high frequency radiation problems using EFEM and EBEM is formulated and presented. It 

is successfully applied in the design of automotive and naval structures to search for the best material layout to 
achieve lowest noise level at high frequency. The DSA method presents excellent numerical accuracy compared 
with the finite difference results in the numerical examples of the noise radiation of automotive and naval structures 
in light and dense fluids, and the DSA information has been used in a multi-objective optimization of naval structure 
to achieve the optimum design where the structural mass is minimized and the high frequency underwater noise 
radiation is reduced.  
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