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This paper focuses on the characterization of the response of a very flexible aircraft in flight. The six-degree-of-

freedom equations of motion of a reference point on the aircraft are coupled with the aeroelastic equations that

govern the geometrically nonlinear structural response of the vehicle. A low-order strain-based nonlinear structural

analysis coupled with unsteady finite state potential-flow aerodynamics form the basis for the aeroelastic model. The

nonlinear beam structural model assumes constant strain over an element in extension, twist, and in/out-of-plane

bending. The geometrically nonlinear structural formulation, the finite state aerodynamic model, and the nonlinear

rigid-body equations together provide a low-order complete nonlinear aircraft analysis tool. The equations ofmotion

are integrated using an implicit modified Newmark method. The method incorporates both first- and second-order

nonlinear equations without the necessity of transforming the equations to first order and incorporates a Newton–

Raphson subiteration scheme at each time step. Using the developed tool, analyses and simulations can be conducted

that encompass nonlinear rigid-body, nonlinear rigid-body coupled with linearized structural solutions, and full

nonlinear rigid-body and structural solutions. Simulations are presented that highlight the importance of nonlinear

structural modeling compared with rigid-body and linearized structural analyses in a representative high-altitude

long-endurance vehicle. Results show significant differences in the three reference point axes (pitch, roll, and yaw)

not previously capturedby linearized or rigid-body approaches. The simulations using both full and empty fuel states

include level gliding descent, low-pass-filtered square aileron, input rolling/gliding descent, and low-pass square

elevator input gliding descent. Results are compared for rigid-body, linearized structural, and nonlinear structural

response.

Nomenclature

A = cross-sectional area
B = fixed-body reference frame
b = displacements and rotations as time integral of

�; semichord length
CGB = rotation matrix from the B and G frames
cij = direction cosine between elements i and j
cm = center of mass
Dij = connecting matrix between elements i and j
d = distance from midchord to the beam reference

line
FB = linear force vector applied at the B reference

frame
f��� = generic function
fdst, fpt = distributed and point forces
fLcorr = tip-loss correction function
G = inertial frame
�G�e� = spatial-dependent matrix of strains for element e
g0 = gravity column vector
H = modified Jacobian matrix
h = position and orientation vector of the flexible

structure
I = identity matrix
IB = inertia dyadic with respect to the B reference

frame
IB = inertia matrix

J = Jacobian matrix
Jtrim = trim cost function
�K� = matrix of strains
Laero, L� = airfoil lift force and lift force due to control

surface deflection, respectively
Maero,M� = airfoil pitching moment and pitching moment

due to control surface deflection, respectively
m = mass per unit span
M, C, K = generalized mass, damping, and stiffness

matrices
MB = moment vector applied at the B reference frame
Mdst,Mpt = distributed and point moments
O = origin of the B reference frame
p = position of the origin of the w frame with

respect to the origin of the inertial frame
pa = position of an arbitrary point in the vehicle with

respect to the origin of the inertial frame
pB = inertial position of the B reference frame
pB = inertial position vector of the B reference frame
pr = position from the B reference frame origin to the

local w reference frame
prcm = vector from the B reference frame origin to the

center of mass
q = generalized displacement column vector
R = generalized force column vector
RB = generalized force applied to the B reference

frame states
RF = generalized force applied to elastic states
S = search variable column vector
s = undeformed beam spatial dimension
t = time
vB = linear velocity of the B reference frame
w = local elastic reference frame
wx, wy, wz = column vectors of unit vector components of the

local elastic reference frame
� = angle of attack
� = column vector of the B reference frame linear

and angular velocities
�u = control surface angle deflection
� = column vector of the elastic strain state
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�x, �x, �y, �z = element strains corresponding to extension,
twist, and in- and out-of-plane bending

� = quaternion column vector used for the B
reference frame orientation

�B = generalized B reference frame rotation vector
� = column vector of inflow states
�0 = inflow velocity
� = density
	 = user-defined tip-loss parameter

�e�;�e�1� = discrete rotation angle between elements e and

e � 1
~� = matrix of angular velocities !B
!B = angular velocity vector of the B reference frame
!B = angular velocity of the B reference frame
�~�� = skew-symmetric matrix operator
�~~�� = transpose of skew-symmetric matrix operator
�_�� = derivative with respect to time
���� = finite element discretization of the quantity ���

Subscripts

B = reference to the fixed-body reference frame
BB, BF = contributions of a particular matrix to the body

and body/flexible differential equations of
motion

bc = boundary condition
cm = center of mass
cs = cross-sectional quantity
d = wing dihedral
d’Alm = D’Almbert’s
(e) = element number, elevator
end = end of element
ext = external
F = reference to the flexible degree of freedom
FF, FB = contributions of a particular matrix to the

flexible/body differential equations of motion
G = global matrix
h�, hb = h vector with respect to strain � or displacement/

rotation of the B reference frame, respectively
r = relative, rudder
s = wing sweep
t = wing twist, thrust
u = control input
x, y, z = reference to x, y, and z directions
0 = beginning of element
1D = per unit length
3D = per unit volume

Superscripts

aero = related to aerodynamic effects
k = member index, a member is a collection of

elements
s = undeformed beam spatial dimension
T = transpose operator
* = reordered rows and/or columns of the entity

I. Introduction

O N17DECEMBER1903, theWright brothers set about the task
of launching an airplane into the sky. Their multiple successes

that day have been hailed as the start of heavier-than-air, powered
flight. One of the key features of their aircraft was the use of wing
flexibility for roll control. Because of the low dynamic pressure seen
on that flight and the relatively high stiffness-to-mass ratio of the
aircraft, theWrights were able to develop the required control power
without any detrimental aeroelastic effects. However, almost 100
years later on 26 June 2003, NASA’s Helios aircraft [1]

HP03-2 took off at 10:06 a.m. local time from the Navy Pacific
Missile Range Facility (PMRF) located on the island of Kauai,
Hawaii. . . . At 10:22 a.m. and 10:24 a.m., the aircraft encountered

turbulence and the wing dihedral became much larger than normal
and mild pitch oscillations began but quickly damped out. At
about 30 min into the flight, the aircraft encountered turbulence
and morphed into an unexpected, persistent, high dihedral
configuration. As a result of the persistent high dihedral, the
aircraft became unstable in a very divergent pitch mode in which
the airspeed excursions from the nominal flight speed about
doubled every cycle of the oscillation. The aircraft design airspeed
was subsequently exceeded and the resulting high dynamic
pressures caused the wing leading-edge secondary structure on the
outer wing panels to fail and the solar cells and skin on the upper
surface of the wing to rip off. The aircraft impacted the ocean
within the confines of the PMRF test range and was destroyed. . . .
The root causes of the mishap include: [A] lack of adequate
analysis methods led to an inaccurate risk assessment of the
effects of configuration changes leading to an inappropriate
decision to fly an aircraft configuration highly sensitive to
disturbances . . . [and] configuration changes to the aircraft, driven
by programmatic and technological constraints, altered the aircraft
from a spanloader to a highly point-loaded mass distribution on
the same structure significantly reducing design robustness and
margins of safety.

The Helios accident highlighted our limited understanding and
limited analytical tools necessary for designing very flexible aircraft
and to potentially exploit aircraft flexibility. The number one root
cause/recommendation from NASA [1] was “[that] more advanced,
multidisciplinary (structures, aeroelastic, aerodynamics, atmospher-
ic, materials, propulsion, controls, etc.) time-domain analysis
methods appropriate to highly flexible, morphing vehicles [be
developed].”

Despite the lack of fundamental understanding on the behavior of
these vehicles, recent advances in airborne sensors and
communication packages have brought the need for high-altitude
long-endurance (HALE) aircraft. These platforms can be categorized
under three broad missions, supporting either the military or civilian
communities. The missions include airborne intelligence,
surveillance, and reconnaissance (ISR) for the military [2]; network
communication nodes for themilitary and civilian usage; and general
atmospheric research [3]. Because of the mission requirements, the
desired vehicles are characterized by high-aspect-ratio wings and
slender fuselages, resulting in very flexible vehicles. Examples of
mission optimization studies for this class of vehicle can be found in
[2], in which it is shown the aircraft are required to have a fuel
fraction greater than 66%. This results in a very small structural
weight fraction. The combination of high aerodynamic efficiency
and low structural weight fraction yields inherently flexible wings
and nonlinear structural and flight dynamics. The HALE vehicle will
then be susceptible to large dynamic wing deformations at low
frequencies, presenting a direct impact into the flight dynamic
characteristics of the vehicle, as was seen in theHelios flight tests [1].

The mission of the HALE aircraft is planned to be unmanned due
to its “dull, dirty, or dangerous” [4] nature, that is,

the attributes that make the use of unmanned preferable to
manned aircraft . . . [are] in the case of the dull, the better sustained
alertness of machines over that of humans and, for the dirty and the
dangerous, the lower political and human cost if the mission is lost,
and greater probability that the mission will be successful. Lower
downside risk and higher confidence in mission success are two
strong motivators for continued expansion of unmanned aircraft
systems.

For all of the reasons stated, a better understanding of the flight
dynamics of these vehicles is required. This research addresses
several of the key areas required to aid in understanding the flight
dynamics and trajectory control of HALE aircraft; specifically, the
development of nonlinear structurally coupled aeroelastic equations
of motion (EOM), long-term numerical integration of the governing
differential algebraic equations, and stabilizing and trajectory
following control architecture. Although there are commercial
software tools capable of dealing with pieces of the problem, there is
no commercially available software that integrates all of the
disciplines needed for such investigation as discussed here.
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A. Previous Work, Coupled Flight Dynamics, and Aeroelasticity

Aircraft elasticflight dynamics have been studied and analyzed for
more than three quarters of a century. However, research and
applications of flexible aircraft dynamics have been based primarily
on linear models or, at best, nonlinear rigid-body vehicle dynamics
coupled with linear structural dynamics. For the majority of
conventional aircraft, linear analysis has been very successful in
providing sound aircraft designs. Recent comprehensive reviews of
aeroelasticity’s past, present, and future are given by Friedmann [5],
Livne and Weisshaar [6], and Livne [7]. Some of the areas that
Friedmann focused his review on (mid 1980s to late 1990s) were
aeroservoelasticity, computational and nonlinear aeroelasticity,
rotary-wing aeroelasticity, imbedded structural actuation and
aeroelasticity, and the future challenges of aeroelastic research. In
the area of future challenges, Friedmann pointed to the importance of
the aeroservoelastic problem facing HALE-type aircraft; spec-
ifically, the “autonomous nature of these vehicles requires a high-
gain control system, which will interact with flexible and rigid-body
dynamics.” Livne and Weishaar gave a detailed overview of the
unconventional designs over the past 100 years that have invigorated
the development of aeroelastic theory and tools to date. Livne then
looked to the future and highlighted several of the challenges to the
field of aeroelasticity.

1. Linear Aeroelasticity

In the past decade, several researchers have investigated different
aspects of flexible aircraft structural dynamics. Researchers have
typically focused on various forms of the rigid-body dynamics
augmented with linear structural modeling.

Schmidt and Raney [8] developed a flexible modeling approach to
be used with existing rigid-body simulations. The modeling requires
aerodynamic stability derivatives, aerodynamic influence coeffi-
cients, elastic mode shapes, modal frequencies and damping, and
generalized masses. The authors presented the importance of
coupled flight dynamics and aeroelasticity by showing degraded
Cooper–Harper pilot rating for a simulated B-1 aircraft model with
both longitudinal and lateral rigid-body dynamics coupled with
flexible structures. Pedro and Bigg [9] developed a simulation
environment using normal mode approximation for structural
modeling. The environment incorporates pilot and gust modeling so
that flexibility effects can be studied on piloted aircraft response.
Reschke [10] developed a full nonlinear rigid-body set of equations
of motion coupled with linearized structural dynamics for the
recovery of aircraft loads.Kier [11] usedReschke’swork and applied
different aerodynamic theories to compare load recovery and
computational time. Both authors applied their work to a large
transport aircraft. Crimaldi et al. [12] compared symmetric and
asymmetric gust loading for load recovery for a B-2 flying wing
model using linear elastic modes. Their research shows that for a
flying wing aircraft, symmetric gusts provide the highest loads.
Although these approaches are applicable to a wide class of high-
performance flight vehicles and provide valuable insight into
aeroelastic problem areas, they are not sufficient to deal with the
changing mass properties and low stiffness characteristics of very
flexible aircraft.

2. Nonlinear Aeroelasticity

Early nonlinear aeroelastic work in very flexible aircraft was
conducted by van Schoor and von Flotow [13]. Their work
demonstrated the critical importance of including aircraft structural
dynamics when analyzing aircraft flight dynamics of very flexible
aircraft. They showed, using linearized analysis about nonlinear
equilibrium points, a significant change in the classic rigid-body
modes when flexible structural modeling is included.

More recently, Patil et al. [14] developed a formulation for the
complete modeling of a HALE-type vehicle. The formulation has
been validated against the Goland wing [15]. Patil et al. [16]
continued the work, showing a significant change in flight dynamic
characteristics due towing flexibility. Their work shows a significant
difference between the short period and phugoid modes of a very

flexible aircraft when comparing rigid-body, linear aeroelastic, and
nonlinear aeroelastic dynamics. The short period and phugoidmodes
were obtained by linearizing the nonlinear dynamics about a
nonlinear equilibrium. In a parallel effort, Drela [17] developed an
integrated analysis tool for conceptual aerodynamic, structural, and
control-law design of an aircraft implemented inASWING.The code
provides rapid analysis during the early phases of aircraft design. The
formulation is based on geometrically nonlinear isotropic beam
analysis and lifting-line aerodynamics with a one-lag term for
unsteadiness corrections.

Furthering the development of nonlinear structural analysis tools,
Cesnik and Brown [18,19] introduced the strain-based approach for
the modeling of highly flexible aircraft. In [19], HALE aircraft were
modeled using a rigid fuselage and a highlyflexible high-aspect-ratio
composite wing. The nonlinear structural dynamic analysis is a
strain-based approach solved in the time domain, which has been
validated against theGolandwing [20]. The authors studied the time-
marching aeroelastic and aeroservoelastic behavior of cantilevered
wings and HALE aircraft under constrained reference frame motion
with imbedded actuation. For unsteady aerodynamics, the finite state
two-dimensional strip theory of Peters et al. [21,22] is used. Time
marching is accomplished using a trapezoidal integration scheme.
Their work using the finite strain formulation and finite state
aerodynamics provides the basis for the structural and aerodynamic
formulation of this paper.

Cesnik and Su [23] extended the work of [19] by adding a flexible
fuselage and developing a split beam formulation. The work focused
on a full aircraft constrained to roll and comparing different
configurations for roll performance and nonlinear flutter.

Patil and Hodges [24], Su and Cesnik [25], and Patil and Taylor
[26] studied the nonlinear structural flight dynamics of a flying wing
configuration using 1-D beammodeling for slender structures. All of
these papers use the Peters et al. [21,22] unsteady aerodynamics
model. Additionally, Su and Cesnik addressed torsional stiffness
changes due towrinkling of the skin.Wang et al. [27] studied a flying
wing using the geometrically exact beam modeling coupled with an
aerodynamic model using an unsteady vortex lattice method. Their
work highlights the importance of including nonlinear structural
dynamics for asymmetric maneuvering.

Palacios and Cesnik [28] developed nonlinear aeroelastic tools.
They developed a high-fidelity modeling framework in which the
flow ismodeled using the 3-DEuler equations, and the 3-D structural
deformation ismodeled using split 1-D and 2-D framework. The 1-D
structural deformation follows traditional 1-D beam theory, in which
the cross section perpendicular to the beam reference line is assumed
to be undeformed during bending. The 2-D framework allows for
changes to the cross section based upon internal and external loading.
Because of the computational size of the coupled structure/CFD
solution, results have only been developed for steady-state solutions.
Garcia [29] also incorporated a nonlinear finite element model
coupled with the full Euler/Navier–Stokes. Garcia’s results show
significant difference between linear and nonlinear structural
modeling for a cantilevered swept wing model.

Blair and Canfield [30] developed an integrated design process for
evaluating weight estimates of the joined-wing HALE aircraft
concept, incorporating the disciplines of structures, aerodynamics,
and aeroelasticity. Their work focuses on weight determination
given structural constraints and using nonlinear static aeroelastic
formulations. Additionally, static aerodynamics weremodeled using
vortex lattice formulations. In a similar manner, Weishaar and Lee
[31] also studied the weight effects due to high-aspect-ratio joined-
wing concepts. Their research showed the importance of weight and
c.g. location on the effect of body-freedom flutter.

Tang et al. [32] provided experimental validation of linear
structural modeling coupled with nonlinear trailing-edge flap
deflections using the finite state aerodynamic model. Results show
good correlation between the theory and experimental results. Tang
and Dowell [33,34] provided experimental validation of an ONERA
unsteady aerodynamic model coupled with nonlinear structural
modeling. They have shown good agreement between theory and
experimental results for cantilevered HALE-like wings during limit-
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cycle oscillations. A review of cantilevered structures with nonlinear
aeroelasticity is provided by Dowell and Tang [35], in which they
discuss several different types of aeroelastic nonlinearities, with a
section devoted to HALE-type structures.

All of these studies have contributed in different ways toward the
understanding of the nonlinear response and stability of highly
flexible aircraft. However, due to its complex coupled nature, the
problem is still far from being understood. For that, one needs to fully
couple the six-degree-of-freedom (6-DOF) dynamics of the vehicle
with its geometrically nonlinear aeroelasticity properties. As
discussed previously, the mishap of NASA’s Helios aircraft [1] has
highlighted the importance of nonlinear analysis of very flexible
aircraft. One of the key recommendations of the report was to
“develop multidisciplinary (structures, aerodynamic, controls, etc.)
models, which can describe the nonlinear dynamic behavior of
aircraft modifications or perform incremental flight-testing.”
Nonlinear analysis tools are highly desirable and are certainly the
first step in the development of future highly flexible vehicles.

B. Objective of the Paper

The objective of this paper is to present coupled 6-DOF vehicle
dynamics with a modified version of the nonlinear strain-based
structural formulation [19] for high-aspect-ratio lifting surfaces. The
proposed formulation is used to analyze the differences between
rigid-body, linearized aeroelastic, and nonlinear aeroelastic aircraft
dynamic responses in gliding, roll-commanded, and pitch-
commanded flight. This formulation will be used in the future as
the basis for control design of highly flexible vehicles.

II. Theoretical Development

The development of the governing differential equations of a very
flexible aircraft are presented. The resulting set of differential
equations govern the geometrically nonlinear aeroelastic structural
response of the vehicle. Rigid-body equations are summarized for an
arbitraryB reference frame that, in general, is not located at the center
of mass. A low-order strain-based nonlinear structural analysis
coupled with unsteady finite state potential-flow aerodynamics form
the basis for the aeroelastic model. The nonlinear beam structural
model assumes constant strain over an element in extension, twist,
and in/out-of-plane bending. The geometrically nonlinear structural
formulation, the finite state aerodynamic model, and the nonlinear
rigid-body equations together provide a low-order complete
nonlinear aircraft analysis formulation.

A. Overview of Rigid-Body Coupled Aeroelastic Equations of Motion

The primary goal in any analysis of aircraft flight dynamics and
control is to understand the trajectory and orientation of a fixed-body
reference frame B at point O, which, in general, is not the aircraft’s
center of mass (Fig. 1). The means for propagating the reference
frameB forward in time is done byderiving and integrating a series of
first-order differential equations of the form

_x� f�x; u� (1)

where x represents the states of the reference frame B, and u
represents control surface and external inputs. Depending on the
fidelity of the analysis, these first-order differential equations vary in
their complexity, from simple linear time-invariant to nonlinear
time-varying differential equations. For the classic rigid-body
analysis [36], the first-order differential equations take the form

_vB � fvB�vB; !B; �; pB; g0; m; Fext�

_!B � f!B�!B; IB; �; pB;Mext�; _�� f��!B; ��
_pB � fpB��; vB�

(2)

where theB reference frame linear and angular velocity variables are
represented by vB and !B; Fext and Mext are, in general, state-
dependent external forces and moments; m is the aircraft mass; and
IB is the aircraft’s inertia matrix about the origin of the B reference

frame. The orientation of the B reference frame is accomplished in a
variety of ways, from a minimum representation using three
nonorthogonal Euler angles, to nonminimum four-parameter
quaternion representation, to a nine-parameter set corresponding to
the nine components of the set of unit vectors defining the triad at B.
Reference [37] provides a summary of different methods used in the
aerospace industry. In this paper, all three techniques are used to
simplify the equations when necessary. In Eq. (2), � is the vector of
four quaternion elements used to determine the orientation of the B
reference frame. The gravitational field effects are represented by g0.

The classic rigid-body formulation has three key assumptions that
become invalid when dealing with very flexible vehicles:

1) Inertia properties are slowly time-varying and may be assumed
constant for short time simulations.

2) The coupling inertial force due to a rotating coordinate frame
and relative velocity of flexible members is negligible.

3) External forces and moments, Fext andMext, which come from
aerodynamic loading, are based upon afixed aircraft geometry. In the
rigid-body case, Eq. (2) presents only inertial and external forces and
moments. For the flexible aircraft, a set of elastic EOM is also
introduced that, in the context of this study, results in

M �q� C _q� Kq� �q; _q; �� (3)

q�
(

�
pB
�B

)
; _q�

8<
:

_�
vB
!B

9=
;; �q�

8<
:

��
_vB
_!B

9=
; (4)

where M represents generalized mass properties, q is a set of
generalized coordinates containing both strain � (associated with the
flexible vehicle) and the inertial position pB and an arbitrary
orientation vector �B of the B reference frame. The matrix C
contains both structural damping and nonlinear terms associatedwith
relative position and velocity terms associated with a rotating
coordinate frame (!B � vB, etc.), K is the stiffness matrix, and
R�q; _q; �� represents generalized forces (including aerodynamic
forces) that are a function of the finite state inflow � [21,22].
Coupling of the rigid-body and flexible dynamics occurs through the
dependency ofM, C, and R. Typically, the B reference frame linear
and angular velocities are represented by

��
�
vB
!B

�
(5)

The present work uses a constant strain-based formulation [19,20]
that allows for airframe nonlinear geometric deformation and
accounts for geometry-dependent inertia properties of the aircraft.

Bx

Bz

By

VB

O

PB

ω
B

Inertial Frame (G)

Fig. 1 Basic body reference frame and vehicle coordinates.

SHEARER AND CESNIK 1531



To develop the nonlinear governing differential equations for
slender elastic structures, a systematic approach is used in which the
rigid body and elastic EOM are developed about the B reference
frame. The differential equations for the orientation and displace-
ment of the B reference frame are appended based upon a four-state
quaternion representation. Unsteady aerodynamic modeling is
included and, if required, algebraic equations for absolute or relative
constraints are appended (an example of which is a joined-wing
aircraft, as shown in Fig. 2, inwhich relative constraints are needed at
the joint of the two wings).

B. Derivation of the Equations of Motion

The derivation of the EOM is based upon the principle of virtual
work. Themethod accounts for the virtualwork associatedwith theB
reference system, flexible aircraft slender (beam) structural
members, and rigid bodies attached to the flexible structures. The
virtual work of a beam and rigid bodies attached to a beam are
initiallywritten in terms of dependent displacement vectors. Then the
kinematic relationship between beam-dependent position vectors
and the associated strains is developed. The components of virtual
work are summed and the resulting set of equations is transformed
from a set of dependent position vectors and a nonminimum set of B
reference frame components to an independent set of strain variables
and body linear and angular velocities.

1. B Reference Frame Fuselage Contribution to the Virtual Work

Because of the possible large deformations of the aircraft’sflexible
members, its center of mass is not a fixed point with respect to the
fuselage. Therefore, the typical representation of the B reference
frame attached to the cm becomesmeaningless. Because the origin of
the B frame is not taken to be the center of mass, the complete set of
rigid-body EOM, which include coupling between the angular and
linear velocity, must first be obtained. The complete derivation is
given in [38]. To determine the rigid-body contribution to the virtual
work of the entire system, a Newtonian approach based upon
Greenwood [39] is used. For both the translational and rotational
EOM, Fig. 3 will be used. Here,G is an inertial reference frame fixed
on a flat nonrotating Earth, pB is the vector from the origin of the G
reference frame to the B reference frame, prcm is from the cm of the
rigid element atO (representing a piece of a rigid fuselage). Although
arbitrary, the B reference frame is chosen to be at a convenient

location on the elastic aircraft in which linear and angular velocities
are tracked (e.g., the location of an inertial measuring unit). Elastic
members are then modeled as beams that propagate from the B
reference frame origin or with rigid offsets from the origin.
Typically, the y axis is chosen to be tangent to the undeformed
longitudinal axis of the fuselage. The x axis is chosen to be positive
out of the right wing. In this way, the undeformed aircraft planform
will be on a plane parallel to the x-y plane defined by the inertial
frameG. Finally, the z axis is simply the cross product of the x and y
axes. The final vectorial EOM have the form

�pB�m �pB �m �prcm � FB� � 0 (6)

��B�IB � _!�!B � IB � !B � prcm �m �pB �MB� � 0 (7)

wherem is the total mass of the rigid fuselage element atO, IB is the
inertia dyadic about the origin ofB,�B is a rotation of theB reference
frame, FB is the total external applied forces, and MB is the total
external appliedmoment at pointO. Written in theB reference frame
vector component notation, the virtual work associated with the B
triad is

�Wr �
�
�pB

��B

�
T

0
@ m m ~~prcm

m ~~p
T
rcm

IB

" #�
_vB

_!B

�

�
m ~!B m ~!B ~~prcm

m ~prcm ~!B ~!BIB

" #�
vB

!B

�
�
�
FB

MB

�1A (8)

where the operator �~�� is the skew-symmetric matrix, such that if
a � 	 a1 a2 a3 
T , then

~a �
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
4

3
5 (9)

and �~~�� is the transpose or negative of �~��, such that

~~a �
0 a3 �a2
�a3 0 a1
a2 �a1 0

2
4

3
5 (10)

2. Flexible Slender Structure Contribution to the Virtual Work

To develop the flexible EOM, an arbitrary point in the flexible
body is defined as

pa � p� xwx � ywy � zwz (11)

and

p� pB � pr (12)

where pr is the vector from theB reference frame to a local reference
frame w, and the constant scalars x, y, and z are values along the
corresponding w frame orthogonal vectors wx, wy, and wz, as
illustrated in Fig. 4. All of the vectors are written in terms of the B
reference frame. The first and second time derivatives of pa can be
written as

_pa � _pB � _pr � x _wx � y _wy � z _wz � ~!B�pr � xwx � ywy
� zwz� (13)

and

�pa � �pB � � �pr � x �wx � y �wy � z �wz� � _~!B�pr � xwx � ywy
� zwz� � 2 ~!B� _pr � x _wx � y _wy � z _wz� � ~!B	 _pB � ~!B�pr
� xwx � ywy � zwz�
 (14)

Using the commutative property of the �~�� operator, Eq. (14) can be

Fig. 2 Joined-wing aircraft concept.

prcm

pB

O
B, Body Fixed
Reference Frame

Center of  Mass
  Rigid Fuselage

G, Inertial Reference Frame

Rigid Fuselage

Fig. 3 Rigid-body reference frames and vectors.

1532 SHEARER AND CESNIK



rewritten as

�pa � �pB � � ~~pr � x ~~wx � y ~~wy � z ~~wz� _!B � � �pr � x �wx � y �wy

� z �wz� � 2� _~~pr � x
_~~wx � y

_~~wy � z
_~~wz�!B � ~!B	 _pB � � ~~pr

� x ~~wx � y ~~wy � z ~~wz�!B
 (15)

Using d’Almbert’s principle, the inertial force per unit volume is

dFd0Alm ��� �padAds (16)

where � is the volumetric density, dA is the elemental area, and ds is
the elemental length along the scalar arc length s (Fig. 4). Then the
virtual work per unit volume �W3D and its associated virtual
displacements are

�W3D ���pTa� �pa (17)

where

�pa �
h
�pT x�TwTx y�TwTy z�TwTz

i
T

(18)

and � is considered to be prescribed over the elemental area and
length. Integrating Eq. (17) over the cross-sectional area dA and
defining the cross-sectional mass matrix,

Mcs �
Z
A

�

1 x y z
x x2 xy xz
y xy y2 yz
z xz yz z2

2
664

3
775dA (19)

where �pT , ~!B, and �~~�� are independent of dA, the virtual work per
unit length �W1D is written as

�W1D ��

8>><
>>:�p

T
aMcs

I ~~pr
0 ~~wx
0 ~~wy
0 ~~wz

2
664

3
775 _�� �pTaMcs

�p
�wx
�wy
�wz

2
664

3
775

� 2�pTaMcs

0
_~~pr

0
_~~wx

0
_~~wy

0
_~~wz

2
66664

3
77775�

� �pTaMcs

~!B 0 0 0

0 ~!B 0 0

0 0 ~!B 0

0 0 0 ~!B

2
664

3
775

I ~~pr
0 ~~wx
0 ~~wy
0 ~~wz

2
664

3
775�
9>>=
>>; (20)

Defining the vector h as the position and orientation at a point in the
flexible body,

h�
n
pT wTx wTy wTz

o
T

(21)

which is a vector function of only � and b (as shown next), then the
total derivative and variation of h with respect to the independent
coordinates � and b are

�h� Jh���� Jhb�b; dh� Jh�d�� Jhbdb (22)

where

Jh� �
@h

@�
; Jhb �

@h

@b
(23)

and _h is

_h� Jh� _�� Jhb _b� Jh� _�� Jhb� (24)

The relative velocity of h with respect to the B reference frame is
Jh� _�, and the velocity of h due to the motion of theB reference frame
is Jhb�, where

Jhb �

I ~~pr
0 ~~wx
0 ~~wy
0 ~~wz

2
664

3
775 (25)

Additional Jacobians used in the formulation, along with Jh�, are
derived in [38]. The relative acceleration of h due to �, _�, and �� can be
written as

�p a � �p� x �wx � y �wy � z �wz �

8>><
>>:
1

x
y
z

9>>=
>>;
T

	 _Jh� _�� Jh� ��
 (26)

where

_J h� �
@�Jh��
@�

_� (27)

Note that @�Jh��=@� is a three-dimensional matrix. Finally, the virtual
work per unit length is

�W1D �
�
��
�b

�
T
�

JTh�McsJh� JTh�McsJhb
JThbMcsJh� JThbMcsJhb

� ��
��
��

�

� JTh�Mcs
_Jh� JTh�McsHhb

JThbMcs
_Jh� JThbMcsHhb

� ��
_�
�

�

� 2
0 JTh�McsHh _� _�

0 JThbMcsHhb

� ��
_�
�

�
� Ccs 0

0 0

� ��
_�
�

�

� Kcs 0

0 0

� ��
�
b

�
� R

�
(28)

where Ccs and Kcs are the generalized structural damping and
stiffness matrices, respectively. Also, the following new definitions
are introduced:

Hh _� _� �

0
_~~pr

0
_~~wx

0
_~~wy

0
_~~wz

2
66664

3
77775; Hhb � ~�Jhb

~� �

~!B 0 0 0

0 ~!B 0 0

0 0 ~!B 0

0 0 0 ~!B

2
664

3
775

(29)

Note that the entries for Hh _� _� come from the relative velocity of h

with respect to the strain DOF:

VB

O

B x

B z

B y

ω B

s

w z (s,t)
w x (s,t)

w y (s,t)

w z (0,t)

w x (0,t)w y (0,t)

a (s,t)

a (s,0)

Deformed Wing

pr (s,t)

w z (s,0)
w x (s,0)

w y (s,0 )

Undeformed Wing

G

p
B

pa (s,0 )

pa (s,t)

Fig. 4 Basic body reference frame and vehicle coordinates.
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Jh� _��
n
_prx _pry _prz _wxx � � � _wzz

o
T

�
n
_pTr _wTx _wTy _wTz

o
T

(30)

Before the virtual work per unit length is integrated to yield the total
virtual work, the kinematic relationship and subsequent discretiza-
tion of hwith respect to �,pB, and theB reference frame is presented.

3. Kinematic Relationship: Constant Strain Formulation

The constant strain formulation developed by Cesnik and Brown
[18,19] is adopted and summarized next. To facilitate the solution of
the EOM, a spatial finite element discretization of the flexible
equations is introduced here. The basic assumption is that the strain
vector within a discrete beam element e, given by

��e��t� � f �x�e��t� �x�e��t� �y�e��t� �z�e��t� gT (31)

is spatially constant and time-dependent. The strain vector comprises
the beam extension �x�e��t�, twist �x�e��t�, and the two bending
curvatures �y�e��t� and �z�e��t� within the element e. The gradient of
the position vector h along the one-dimensional beam coordinate s is
given by

@h�s; t�
@s

� �K��s; t�h�s; t� (32)

where

�K ��s; t� �
0 �"x�s; t� 0 0
0 0 ��z�s; t� � ��y�s; t�
0 � ��z�s; t� 0 ��x�s; t�
0 ��y�s; t� � ��x�s; t� 0

2
64

3
75 (33)

and individual elements of �K� are 3 � 3 diagonal matrices, such that

�" x�s; t� �
1� �x�s; t� 0 0

0 1� �x�s; t� 0
0 0 1� �x�s; t�

" #
(34)

�� z�s; t� �
�z�s; t� 0 0

0 �z�s; t� 0
0 0 �z�s; t�

" #
(35)

�� y�s; t� �
�y�s; t� 0 0

0 �y�s; t� 0
0 0 �y�s; t�

2
4

3
5 (36)

and

�� x�s; t� �
�x�s; t� 0 0

0 �x�s; t� 0
0 0 �x�s; t�

" #
(37)

Because the strain vector is assumed constant over an element,
Eq. (32) is simply a spatially varying linear ordinary differential
equation with constant coefficients with respect to s within the
element e. Then the relation between h and � can be stated as

h�e��s; t� � e�s�e;end��s�e;0�� �K�e��h�e;0� (38)

where h�e;0� is the displacement h value at s�e;0�, the starting location
along the element e. The individual components of an element
position vector h are the three position components ofpr and the nine
components of the element reference framew, all expressed in the B
reference system, as illustrated in Fig. 4, that is,

h�s; t�
� prx pry prz wxx wxy wxz wyx wyy wyz wzx wzy wzz
� �

T

(39)

Note that h is a nonminimum representation due to the nine
components of the element reference framew. This representation is
chosen for convenience of the finite strain formulation.

4. Discrete Nodal Positions and the Position Vector h

In the present formulation, each element e comprises three equally
spaced nodes, with corresponding position vectors h�e;1�, h�e;2�, and
h�e;3�, as illustrated in Fig. 5. Defining the unstrained local length of
an element as �s�e� � s�e;end� � s�e;0� and

�G �e� �
�s�e�
2

�K�e�� (40)

the kinematic relationship of the first three position vectors is

h�e;1� � h�e;0�; h�e;2� � e �G�e�h�e;0�; h�e;3� � e2 �G�e�h�e;0�

(41)

5. Structural Members

A collection of contiguous elements is arranged as a member
(denoted by a superscript k). It has the boundary condition defined as
the position and orientation of the B reference frame (Fig. 4) or the
position and orientation of the element’s w reference frame of the
previousmember connection to this reference frame. To illustrate the
concept, onlymembers that start at pointO are discussed here. Su and
Cesnik [23,25] developed a split beam formulation that has been
subsequently modified to have a closed-form analytical solution for
h, shown next.Members are composed of an arbitrary number of key
points and elements. Although Fig. 6 only illustrates a single element
between each key point (KP), the formulation allows a user-defined
number of elements between KPs. In general, KPs are used to
distinguish slope discontinuities in the beam reference line.
Additionally, the beam reference line is allowed to have a linear
variation in twist between KPs, but is otherwise a straight line when
unstrained.

In Fig. 6, KP1 is taken to have the boundary condition hbc, that is,

hbc� pBx pBy pBz Bxx Bxy Bxz Byx Byy Byz Bzx Bzy Bzz
� �

T

(42)

The column vector hbc contains the position and orientation
components of the B reference frame expressed in an inertial

1 2 3

2

∆s(e)

2

∆s(e)

h(e,1)

h(e,2)

h(e,3)

B Reference Frame
O

Fig. 5 Three nodal element with corresponding h vectors.

Key Point 1 (KP1)

Element 1

KP2

Element 3
Element 4

KP5

KP6

KP4

Element 5
KP3

Element 2

Fig. 6 Member k discretization showing key points.
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coordinate system (Fig. 4). Given the arrangement in Fig. 6, the
kinematic relationship between the element position and strain
vectors for member k is

hk�1;1� � hbc
hk�1;2� � e

�G
�k�
1 hbc

hk�1;3� � e2
�Gk
1hbc

hk�2;1� �D21e
2 �G
�k�
1 hbc

hk�2;2� � e
�G
�k�
2 D21e

2 �G
�k�
1 hbc

..

.

hk�2;2� � e2
�G
�k�
e D�k��e��e�1�e

2 �G
�k�
�e�1� � � �D�k�21 e2

�G
�k�
1 hbc

(43)

whereD�k��e��e�1� is a connecting matrix between elements e and e � 1

and accounts for slope discontinuities. For example,D21, in this case,
is expressed as

D21 �

I 0 0 0

0 cxxI cyxI czxI
0 cyxI cyyI czyI
0 czxI cyzI czzI

2
664

3
775 (44)

where cij are the direction cosines between elements 1 and 2. For
example, the direction cosine matrix for a wing with twist, sweep,
and dihedral is

c�
cos
d�e�;�e�1� 0 sin
d�e�;�e�1�

0 1 0

� sin
d�e�;�e�1� 0 cos
d�e�;�e�1�

2
4

3
5

�
cos
s�e�;�e�1� � sin
s�e�;�e�1� 0

sin
s�e�;�e�1� cos
s�e�;�e�1� 0

0 0 1

2
4

3
5

�
1 0 0

0 cos
t�e�;�e�1� � sin
t�e�;�e�1�
0 sin
t�e�;�e�1� cos
t�e�;�e�1�

2
4

3
5

(45)

where 
t�e�;�e�1�, 
s�e�;�e�1�, and 
d�e�;�e�1� are the corresponding
discrete rotation angles of twist, sweep, and dihedral, respectively,
between elements (e) and (e � 1).

6. Closed-Form Kinematic Relation

Completing the derivation of the dependent position vector h and

the independent strain vector �, a closed-form solution of e�s�s0� �K� is
proposed here. Consider a transformation matrix Th, so that the
original h vector is reordered as h�:

h� � TTh h�
n 	
h�x



T

	
h�y



T

	
h�z



T
o
T

(46)

where

h�x �

8><
>:
prx
wxx
wyx
wzx

9>=
>;; h�y �

8><
>:
pry
wxy
wyy
wzy

9>=
>;; h�z �

8><
>:
prz
wxz
wyz
wzz

9>=
>; (47)

The three corresponding differential equations are

@h�x
@s
� K�h�x ;

@h�y
@s
� K�h�y ;

@h�z
@s
� K�h�z (48)

with

K� �

0 1� �x 0 0

0 0 �z ��y
0 ��z 0 �x
0 �y ��x 0

2
664

3
775 (49)

Using the transformation matrix Th, �K� can be shown to be related to

�K�� by

�K �� � TTh �K�Th �
K� 0 0

0 K� 0

0 0 K�

2
4

3
5

and, finally,

e�s�s0� �K
�
� �

e�s�s0�K� 0 0

0 e�s�s0�K� 0

0 0 e�s�s0�K�

2
4

3
5 (50)

A closed-form solution of the terms e�s�s0�K� was derived using the
Cayley–Hamilton theorem [38]. The solution is given by

e�s�s0�K� �
�
�s� s0�
�2�

� sin	���s� s0�

�3�

� 0 �"x��2z � �2y� "x�y�x "x�z�x
0 0 ��z�2� �y�

2
�

0 �z�
2
� 0 ��x�2�

0 ��y�2� �x�
2
� 0

2
664

3
775

� 1� cos	���s� s0�

�2�

0 0 "x�z �"x�y
0 ���2� � �2x� �y�x �z�x
0 �y�x ���2� � �2y� �z�y
0 �z�x �z�y ���2� � �2z�

2
664

3
775

��s� s0�

0 "x 0 0

0 0 �z ��y
0 ��z 0 �x
0 �y ��x 0

2
664

3
775�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
664

3
775

(51)

where

�� �
���������������������������
�2x � �2y � �2z

q
; "x � 1� �x (52)

7. Element Matrices

Using the assumption of a constant strain over an element, the
matrices Mcs, Ccs, and Kcs are only functions of the undeformed
element length �s. The current formulation uses a three-node
element for which the properties of the generalized mass, damping,
and stiffness are assumed to vary linearly between nodes of an
element. Using this assumption, an element mass matrix is written as

M�e�

� 1

2
�s�e�

1
4
M1� 1

12
M2

1
12
M1� 1

12
M2 0

1
12
M1� 1

12
M2

1
12
M1� 1

2
M2� 1

12
M3

1
12
M2� 1

12
M3

0 1
12
M2� 1

12
M3

1
12
M2� 1

4
M3

2
4

3
5

(53)

where�s�e� is the length of the element, and the subscripts 1, 2, and 3
are related to the mass properties at each nodal position. The
individual generalized cross-sectional mass matrices M1, M2, and
M3 are of the form

Mi

�

mcs mcsrx mcsry mcsrz
mcsrx

1
2
�Iyy� Izz� Ixx� Ixy Ixz

mcsry Iyx
1
2
�Ixx� Izz� Iyy� Iyz

mcsrz Izx Izy
1
2
�Ixx� Iyy� Izz�

2
664

3
775

(54)

wheremcs is the cross-sectionalmass per unit length; rx, ry, and rz are
the vector components of the center of mass in the local reference
system w; and Iij are the cross-sectional inertia properties. In a
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similar manner to Eq. (53), the element structural damping C�e� and
stiffness K�e� matrices are found [20].

C. B Reference Frame Propagation Differential Equations

Although the virtual work associated with the flexible EOM,
Eq. (28), is derived using �b, the B reference frame attitude
propagation is accomplished using the first-order differential
quaternion equation described in [36], that is,8>>><
>>>:

_�0
_�1
_�2
_�3

9>>>=
>>>;
�� 1

2

0 !Bx !By !Bz
�!Bx 0 �!Bz !By
�!By !Bz 0 �!Bx
�!Bz �!By !Bx 0

2
664

3
775
8>>><
>>>:
�0
�1
�2
�3

9>>>=
>>>;
� � 1

2
���

(55)

where!Bi is the ith component of body angular velocity. The inertial
velocity of theB reference frame is given by the differential equation

_p B � CGBvB (56)

TheB reference frame coordinate transformation matrixCGB (which
transforms a vector from the B frame coordinates to the inertial
coordinates, represented in terms of quaternions �) is given by

CGB � 	Bx By Bz 


�
�20 � �21 � �22 � �23 2��1�2 � �0�3� 2��1�3 � �0�2�
2��1�2 � �0�3� �20 � �21 � �22 � �23 2��2�3 � �0�1�
2��1�3 � �0�2� 2��2�3 � �0�1� �20 � �21 � �22 � �23

2
4

3
5

(57)

where Bi is shown in Fig. 1.

D. Unsteady Aerodynamics

For this study, the unsteady aerodynamic forces and moments are
calculated based upon the finite state aerodynamic theory of Peters
and coworkers [21,22]. The theory is derived for a two-dimensional
thin airfoil operating in inviscid and incompressible flow. The state-
space form of the unsteady aerodynamic formulation makes it
particularly suitable for future control studies within this framework.
Although very flexible aircraft (specifically, HALE aircraft) have the
potential to perform missions at high altitudes in which
compressibility and Reynolds number effects are important, those
effects are not considered in this work. The lift Laero and the moment
Maero about the beam reference line, excluding contributions from
trailing-edge control surfaces, are given by

Laero � 2��b

�
� _y _z��b � d� _y _�� _y�0 � 1

2
b�z � 1

2
bd ��

�

Maero � dLaero � 2��b2
�
�1

2
_y _z�1

2
d _y _�� 1

2
_y�0 � 1

16
b2 ��

� (58)

The velocity vector components are _y along the chord and _z
perpendicular to the chord, and � is the local angle of attack. The
velocity components and angle of attack are derived from the beam
nodal h vector. The inflow velocity is given by

�0 �
1

2

XN
n�1

bn�n (59)

where the inflow states �n are governed by the differential equation

_�� E1�� E2 �z� E3 ��� E4 _� (60)

The matrices Ei are given in [21]. The bn coefficients are binomial
expansion coefficients given in Appendix C of [22]. Although �0 is
actually an infinite sum, �0 can be approximated with reasonable
results by letting N be between 4 and 8.

Additional aerodynamic lift L� and momentM� are generated by
discrete trailing-edge surface deflections �u. For the two-dimensional
strip theory used, the additional lift and moment are

L� � 2��b
	
c1 _y

2�u � c2 _y _�u � c3 ��u



(61)

and

M� � 2��b	d�c1 _y2�u � c2 _y _�u � c3 ��u� � b�c4 _y2�u � c5 _y _�u
� c6 ��u�
 (62)

The coefficients c1 through c6 are based upon geometry and
complete details are provided in [20,21]. In practice, the trailing-edge

deflection rate terms _�u and ��u are much smaller in magnitude than
the deflection term �u and are neglected in this study.

To use this two-dimensional theory for a three-dimensional wing,
a spanwise lift distribution function is used to correct for the tip loss
and is assumed to be

fLcorr
� 1 � e�	s (63)

where 	 is a user-defined input that controls the spanwise lift
deficiency correction. In the final form, the generalized force,
moment, and inflow equations take the form

Faero � f�q; _q;0 �; Maero � f�q; _q;0 � (64)

and

_�� F1 �q� F2 _q� F3� (65)

A simplified stall modelwas used such that when the local angle of
attack reached a user-defined angle, lift andmoment generated by the
airfoil was held constant. Additional lift andmoments due to discrete
trailing-edge surfaces were unaffected by this stall model. Further
discussions on stall models and their effects on the simulation of
flexible aircraft can be found in [25].

E. Complete Governing Differential Equations

Consider the relationship between the variation and differential-
dependent position vector h and the independent vectors � and b

[Eq. (22)], the dependent velocity vector _h and independent rates _�

and � [Eq. (24)], and the dependent acceleration vector �h and the

independent rates and accelerations �� and _� [Eq. (26)]. Summing up
all of the element virtual work contributions [Eq. (28)] and the rigid-
body contributions [Eq. (8)], the total virtual work can be written as

�W � 	 ��T �T 
T
�
�

MFF MFB

MBF MBB

" #
��

_�

" #
�

CFF CFB

CBF CBB

" #
_�

�

" #

�
KFF KFB

KBF KBB

" #
�

b

" #
� R

�
(66)

where

MFF � JTh�MGJh�; MFB � JTh�MGJhb

MBF � JThbMGJh�; MBB � JThbMGJhb �MB

CFF � JTh�MG
_Jh� � CG; CFB � JTh�MGHhb � 2JTh�MGHh _� _�

CBF � JThbMG
_Jh�; CBB � JThbMGHhb � 2JThbMGHh _� _� � CB

KFF � KG; KFB � 0

KBF � 0; KBB � 0

(67)

andMG,CG, andKG are the assembled flexible-element generalized
mass, damping, and stiffness matrices, respectively, where they take
the form
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MG �

M�1� 0 � � � 0

0 M�2� � � � 0

0 0 . .
.

0

0 0 � � � M�e�

2
6664

3
7775 (68)

The matrices MB and CB represent the mass and damping matrices
associated with the B frame element portion, as described in Sec. I,
Eq. (8), that is,

MB �
m m ~~prcm

m ~prcm IB

� �
; CB �

m ~!B m ~!B ~~prcm
m ~prcm ~!B ~!BIB

� �
(69)

Note the rigid-body EOM, Eq. (8), can be recovered from theflexible
EOM, Eq. (66), by assuming the elastic DOF are constant. The
resultant force vector R is

R�
�
RF
RB

�
� KFF

KBF

� �
�in �

BgF
BgB

� �
gB � BfdstF

BfdstB

� �
Fdst

� BMdstF

BMdstB

� �
Mdst � BfptF

BfptB

� �
Fpt � BMptF

BMptB

� �
Mpt (70)

where �in is an initial strain vector; g
B is the body-frame-B resolved

gravity vector; and Fdst, Mdst, Fpt, and Mpt are body-resolved
distributed and point forces and moments, respectively. The
aerodynamic forces and moments, Faero and Maero, which are
functions of control surface inputs u, are included in Fdst and Mdst.
Propulsion sources (motors, propeller effects, etc.) distributed along
the vehicle are contained in the terms Fpt and Mpt (e.g., [25]) The
remaining component details of the resultant force vectorR are given
in [19].

From the principle of virtual work, Eq. (66) yields

MFF MFB

MBF MBB

" #�
��

_�

�
�

CFF CFB

CBF CBB

" #�
_�

�

�
�

KFF KFB

KBF KBB

" #�
�

b

�

�
�
RF

RB

�
(71)

This set of equations can also be written in the compact form

M �q� C _q� Kq� R�q; _q; �� (72)

where the generalized mass is a function of strain, M� fM���; the
generalized damping matrix is a function of strain, strain rate, and B
reference frame velocity, C� fC��; _�; ��; and the generalized
stiffnessK is constant. All of the other nonlinearities are contained in
the generalized force R [Eq. (70)].

The complete set of governing differential equations is

MFF ����MFB
_� � CFF _� � CFB� � KFF�� RF

MBB
_���MBF �� � CBB� � CBF _�� RB _��� 1

2
���

_pB � CBG 0
� �

� _�� F1 �q� F2 _q� F3�

(73)

F. Trimming the Aircraft

Trimming is performed for both zero thrust and thrust required for
1-g level flight, based upon techniques outlined in [36,40]. A cost
function is defined as

Jtrim � fT � f (74)

where, for the zero thrust or gliding cases,

f�
�
pitching moment about the origin of B frame

lift � weight

�
(75)

For the case of 1-g level flight, the longitudinal B reference frame

linear and angular accelerations are used, such that

f�
(

_vBy
_vBz
_!x

)
(76)

The cost function Jtrim is then minimized over the solution space
using the elevator deflection angle �e, the body angle of attack �, and
thrust �t. A simple numerical Newton–Raphson method is used to
find the local minimum of the search variable, that is,

�Sk ��
�
@f

@S

��1
k

fk (77)

where

S k �

8<
:
�e
�
�t

9=
;
k

(78)

The search variable is updated by

S k�1 � Sk ��S (79)

and fk�1 and 	@f=@S
�1k�1 are recomputed using Sk�1. The process
continues until the cost function Jtrim reduces to some prescribed
tolerance. To prevent divergence of the solution, Sk�1 is checked at
each iteration step and kept within a prescribed set of bounds. The
Jacobian

Jf �
@f

@S
(80)
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Fig. 7 Flow for trim solution.
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is computed numerically through finite differences. The entire
procedure is outlined in Fig. 7.

G. Solution of EOM

To solve the nonlinear differential equations (73), a high-
frequency dissipative time-stepping approach was implemented
based upon the second-order Newmark method. The method was
modified based upon Geradin’s [41] implicit integration method for
time-marching integration of nonlinear second-order EOM. The
resultingmodifiedNewmarkmethod used aspects of the generalized-
� methods [42,43] and is capable of handling coupled first- and
second-order nonlinear differential equations with repeated discrete
eigenvalues on the unit circle. The method offers relative ease of
implementation with the current EOMmodeling. More details of the
integration scheme can be found in [44].

III. Numerical Studies

This section presents a variety of numerical simulations that
highlight the importance of using a nonlinear structural formulation
for studying very flexible aircraft flight dynamics. The formulation
has been implemented in the University of Michigan’s nonlinear
aeroelastic simulation toolbox (NAST) and it has been validated
against some other published numerical and experimental results
[20,38]. Although the current NAST implementation (inMATLAB)
has not been optimized for maximum computer performance,
reference CPU time for different simulations can be found in [44].

A. Representative HALE Aircraft

A representative HALE-type aircraft was created and is shown in
Fig. 8. The relevant physical properties are summarized in Table 1.
The vehicle was designed to be statically stable for moderate wing
deflections in both the longitudinal and lateral axes. Table 2 also
includes the trimmed longitudinal controls and state (elevator angle,
thrust level, and angle of attack) for both gliding and 1-g levelflights.
Additional details of the vehicle’s mass, structural damping, and
stiffness parameters are provided in [38].

The vehicle is a conventional wing/body/tail configuration with
twin vertical tails. It is representative of a HALE aircraft concept
being considered by the U.S. Air Force. The aircraft has the
conventional control surfaces of elevator, aileron, and twin rudders.
The elevator is such that a positive elevator control input �e results in
a negative pitching moment (nose down). The left and right ailerons
have a�1:1 gearing ratio, such that a positive aileron control input �a
results in a roll to the left (left wing down). The twin rudders have a
1:1 gear ratio, such that a positive rudder control input �r produces a
positive yawingmoment (nose left). Recall that theB reference frame
orientation is x positive out of the right wing, y positive out of the
nose, and z positive up. Thrust is accomplished using a simple point
force applied at the origin of the B reference frame and in the y
direction, such that a positive thrust input �t results in an acceleration
in the positive y direction.

B. Rigid Aircraft, Linearized Structure, and Nonlinear Structure

Open-Loop Studies

Five different case studies are presented that highlight the
importance of nonlinear coupled aeroelastic/flight dynamic
modeling of HALE aircraft. For each case study, three different
simulations are presented, corresponding to three different solutions
of Eq. (73). The first is a reduced-order solution in which all elastic
DOF are removed after the vehicle comes to a steady-state deflection
(rigid body with deformed structure and associated mass). The
second is a linearized solution that retains the elastic DOF, but only

Table 1 Geometric properties of the very flexible aircraft model

Model parameters

Property Value Units

Fuselage length 26.4 m
Wing span 58.6 m
Wing area 196.3 m2

Root chord 4.5 m
Tip chord 2.2 m
Aspect ratio 17.5 ——

Wing incidence angle 3.0 deg
Horizontal tail span 18.0 m
Horizontal root chord 3.5 m
Horizontal tip chord 2.45 m
Horizontal tail incidence angle �4:5 deg
Vertical tail span 4.0 m
Vertical root chord 2.45 m
Vertical tip chord 2.0 m
Wing/horizontal tail airfoil NACA 4415 ——

Vertical tail airfoil NACA 0012 ——

Aileron location 16.3 to 22.8 m
Aileron, elevator, rudder chord 0:2clocal m
Aileron, elevator, rudder max/min deflections �30 deg
Elevator span location 1.8 to 9.0 m
Rudder span location 0.8 to 3.2 m
Elements per wing 9 ——

Elements per horizontal tail 5 ——

Elements per vertical tail 5 ——

Elements in fuselage 10 ——

Total number of elements 48 ——

Number of second-order states 92 ——

Number of first-order states 241 ——

Table 2 Control and aircraft states and inertia properties of the very flexible aircraft modela

Model parameters

Property Value Units

Light, no thrust Heavy, no thrust Light, thrust for level flight Heavy, thrust for level flight

Elevator deflec angle �e 4.51 �16:80 �6:89 �13:68 deg
Thrust req �t 0 0 3:21 � 104 1:12 � 105 N
Aircraft angle of attack � 0.80 7.62 1.93 7.30 deg
Fuel mass 0 32,000 0 32,000 kg
Total mass 2:10 � 104 5:38 � 104 2:10 � 104 5:38 � 104 kg
Fuel fraction 0.0 59.5 0.0 59.5 %
Issxx

b 1:48 � 106 1:75 � 106 1:49 � 106 1:75 � 106 kg �m2

Issyy 8:20 � 105 2:93 � 106 8:19 � 105 2:93 � 106 kg �m2

Isszz 2:27 � 106 4:46 � 106 2:26 � 106 4:47 � 106 kg �m2

Issxy 0 0 0 0 kg �m2

Issxz 0 0 0 0 kg �m2

Issyz 1:82 � 104 9:20 � 104 2:06 � 104 9:00 � 104 kg �m2

xcm 0 0 0 0 m
ycm 3.13 4:33 � 10�3 3.14 5:64 � 10�3 m
zcm 0.29 0.79 0.34 0.77 m

aAll aircraft simulations are begun at sea level conditions and 65 m/s level flight.
bIss are the inertia properties in a deformed steady-state configuration.

1538 SHEARER AND CESNIK



uses the Jacobian matrices (Jh�, Jhb, etc.) obtained from the steady-
state solution. The third is a full nonlinear solution, starting from the
steady-state deflection. The Jacobian matrices are updated at each
subiteration, resulting in a full time-marching simulation of Eq. (73).

The case studies are presented at both heavy- and lightweight-fuel
configurations. Three of the cases (cases 1–3) were with no thrust,
and two additional cases (cases 4 and 5) were simulated with thrust
required for level flight. In all cases, the only elements chosen to be
flexible were the wings. The remaining body and tail elements were
considered to be rigid. Case 1 is a simple straight-ahead gliding
flight. Case 2 is descending flight, and case 4 is 1-g level flight. Both
cases are excited with a simple modified cosine elevator input, as
shown in Fig. 9, to further excite the low elastic frequency modes.
Cases 3 (gliding) and 5 (1-g level flight) have a modified cosine
aileron input, as shown in Fig. 10a, and a simple rudder command to
alleviate the adverse yaw due to aileron input, as shown in Fig. 10b.
The aileron input was chosen to achieve a maximum of
approximately 45 deg of bank using the rigid aircraft model. The
rudder was determined using a heuristic approach to minimize the

associated yaw rate. All five cases were simulated for 30 s with a
constant time step of 0.005 s.

1. Case 1, No Thrust, Gliding Flight

For case 1, Figs. 11 and 12 show the relevant body linear and
angular velocities, vB and !B. In both figures, the beginning of the
classic phugoid mode can be observed, as indicated by the relatively
large excursions in longitudinal velocity and small excursions in
vertical velocity. For the heavy weight condition, the short period
mode is seen as high-frequency oscillations, as depicted in Figs. 11b
and 11c. As expected in traditional short period mode responses, the
light weight configuration increases frequency and damping, hence
smaller oscillations are observed in Figs. 12b and 12c. In both the
heavy and light weight conditions for this vehicle, little difference is
seen between the linearized and nonlinear solutions.

2. Case 2, No Thrust, Elevator Input

For case 2, similar results to case 1 are shown in Figs. 13 and 14.
Larger variations in the body states are the main difference between
the two cases. This is due to the elevator input, as defined in Fig. 9,
exciting low-frequency structural modes. There are small variations
between the linearized and nonlinear solutions, but the linearized
solution essentially captures well the B reference frame dynamics
during symmetric loading and maneuvering for the first 18 s. This is
because the dominant changes associated with the generalized mass
matrix (inertia about the longitudinal axis) do not couple strongly
with symmetric loading and maneuvering. A weak coupling is
evident at 22.3 s, in which amaximumdifference of 0:27 m=s occurs
in the vertical velocity. This relatively small difference (less than 3%)
is attributed to the weak coupling of the nonlinear structural inertial
effects and rigid-body motion. These effects are illustrated by
examining the vertical wing tip position z and a difference between
the linear and nonlinear solutions (�z� zlin � znon), as shown in
Fig. 15. Overall, this is a very particular and restrictive case for any
aircraft to perform any realistic mission. Therefore, asymmetric
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Fig. 8 Representative HALE aircraft model (units are in meters).
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Fig. 9 Elevator control inputs for cases 2 (no thrust) and 4 (with thrust), heavy and light conditions.
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Fig. 10 Lateral control inputs for cases 3 (no thrust) and 5 (with thrust), heavy and light conditions.
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Fig. 11 B reference frame relevant linear and angular rates; case 1, heavy.
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a) Longitudinal velocity b) Vertical velocity c) Pitch rate
Fig. 12 B Reference frame relevant linear and angular rates; case 1, light.
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Fig. 13 B reference frame relevant linear and angular rates; case 2, heavy.
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Fig. 14 B reference frame relevant linear and angular rates; case 2, light.
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maneuversmust also be considered, in which the nonlinear structural
dynamics will have a greater impact on lateral motion.

3. Case 3, No Thrust, Aileron and Rudder Input

Case 3 addresses the asymmetric loading (aileron and rudder
input, as defined in Fig. 10). Results for this case are shown in
Figs. 16 and 17 for heavy and light conditions, respectively. For the
heavy weight condition, Fig. 16, significant differences among the
three modeling approaches can be seen. The inertia effects tend to
accentuate the geometrically nonlinear effects, damping out large
structural motion. Mathematically, the dominant changes in the
generalized mass matrix couple with the B reference frame
dynamics. For the light weight condition, Fig. 17, a relatively high
stiffness-to-mass ratio (a low fuel fraction and light weight) exists,
and there is little difference between the nonlinear and linearized
solutions over the first 10 s. However, geometric nonlinear effects
once again start to cause significant differences in the B reference
frame states. To further highlight the differences in the orientation of
the vehicle between the formulations, the classic Euler angles are
recovered and presented in Figs. 18 and 19.As one can see, the lateral
yaw and roll-angle differences are significant, because Euler yaw-
angle differences greater than 26 and 35 deg occur within the 30 s for
the light and heavy weight conditions. Roll-angle differences of 13

and 15 deg are also experienced in the same time window. More
important than the actual magnitude of the difference is the
difference in sign of the roll angle in the heavyweight case (Fig. 19c).
These lateral motion angles emphasize the importance of the
nonlinear structural modeling. In the longitudinal axis, Euler pitch
angle differences aremuch smaller (maximumof 3 and 5 deg). This is
consistent with earlier longitudinal results.

4. Case 4, Thrust, Elevator Input

For case 4 (elevator input with thrust for level flight), results
similar to case 2 are shown inFigs. 20 and 21. There are no significant
differences between the rigid-body, linearized, and nonlinear
simulations for the first 18 s. However, after that time the weak
nonlinear coupling generates a maximum difference of 2.2% in the
vertical velocity, heavy weight condition (Fig. 20b).

5. Case 5, Thrust, Aileron and Rudder Input

Similar to case 3, case 5 deals with asymmetric loading except
with the addition of thrust required for level flight. Results are seen in
Figs. 22 and 23. Results are similar to case 3 in that more significant
differences can be seen than the elevator only input of case 4.

As in case 3, the differences are highlighted through the recovery
of the classic Euler angles (Figs. 24 and 25). Here, smaller Euler-
angle excursions between solutions are seen, compared with case 3.
For example, in case 3, themaximumEuler-yaw-angle difference for
the light weight condition was 26 deg, compared with 9 deg. Similar
reductions in roll-angle differences are also seen. These reductions in
lateral motion differences are due to the addition of thrust required to
overcome drag in level flight. This results in smaller-magnitude
excursions of the longitudinal velocities, which have a direct impact
on aerodynamic rolling moment. Despite the reduced Euler-angle
differences comparedwith case 3, themagnitude of the differences is
still significant, requiring nonlinear structural analysis.

IV. Conclusions

A framework for analyzing the flight dynamics of very flexible
vehicle configurations typically used in HALE aircraft was
presented. It tightly couples the nonlinear 6-DOF equations of
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Fig. 15 Linear and nonlinear wingtip positions and their difference.
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Fig. 16 B reference frame linear and angular rates; case 3, heavy.
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motion of a reference point in the aircraft with the aeroelastic
equations that govern its geometrically nonlinear structural response.
The structural dynamic analysis of the entire vehicle used a low-order
strain-based geometrically nonlinear formulation. The unsteady
aerodynamics used an incompressible finite state potential-flow

formulation. The coupled nonlinear flight dynamics/aeroelastic
equations of motion were then integrated using an implicit modified
Newmark method, incorporating first- and second-order nonlinear
differential equations. Using the proposed framework, analyses and
simulations were conducted in a representative twin-tailed HALE
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Fig. 17 B reference frame linear and angular rates; case 3, light.
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Fig. 18 B reference frame classic aircraft Euler angles; case 3, light.
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Fig. 19 B reference frame classic aircraft Euler angles; case 3, heavy.
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vehicle. The investigated cases compared nonlinear rigid-body
solutions, nonlinear vehicle 6-DOF coupled with the linearized
aeroelastic solutions, and full nonlinear vehicle 6-DOF and
aeroelastic solutions. Simulations used both full and empty fuel
states for level gliding descent and powered level flight, low-pass
square elevator input gliding descent, and low-pass-filtered square
aileron input rolling/gliding descent. In all heavyweight cases, it was

seen that the rigid-body solutions were not sufficient to capture the
dynamics of a veryflexible aircraft and higher-order formulations are
required. When studying simple symmetric maneuvers, results
indicated that linearized solutions may be acceptable to capture the
main aircraft dynamics. However, when performing asymmetric
maneuvering at heavy weight, results showed significant differences
in the three reference point axes (pitch, roll, and yaw), requiring the
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Fig. 20 B reference frame relevant linear and angular rates; case 4, heavy.
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Fig. 21 B reference frame relevant linear and angular rates; case 4, light.
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Fig. 22 B reference frame linear and angular rates; case 5, heavy.
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nonlinear analysis approach to properly capture the vehicle response.

Overall, simulation results showed the importance of having a

minimum of a linearized structural analysis for symmetric

maneuvering and nonlinear structural modeling for asymmetric

maneuvering of a flexible aircraft such as those being considered for

high-altitude long-endurance civilian and military missions.
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Fig. 24 B reference frame classic aircraft Euler angles; case 5, heavy.
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