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The optical properties of the thin metalized polymer films that are projected for solar
sails are assumed to be affected by the erosive effects of the space environment. Their
degradation behavior in the real space environment, however, is to a considerable degree
indefinite, because initial ground test results are controversial and relevant in-space tests
have not been made so far. The standard optical solar sail models that are currently used for
trajectory and attitude control design do not take optical degradation into account, hence
its potential effects on trajectory and attitude control have not been investigated so far.
Nevertheless, optical degradation is important for high-fidelity solar sail mission analysis,
because it decreases both the magnitude of the solar radiation pressure force acting on the
sail and also the sail control authority. Therefore, we propose a simple parametric optical
solar sail degradation model that describes the variation of the sail film’s optical coefficients
with time, depending on the sail film’s environmental history, i.e., the radiation dose. The
primary intention of our model is not to describe the exact behavior of specific film-coating
combinations in the real space environment, but to provide a more general parametric
framework for describing the general optical degradation behavior of solar sails. Using
our model, the effects of different optical degradation behaviors on trajectory and attitude
control are investigated for various exemplary missions.

I. Introduction

The objective of this paper is to establish a parametric model for optical solar sail degradation and
to describe its effects on trajectory and attitude control. Solar sails require large highly reflective ultra-
lightweight surfaces. The optical and mechanical properties of the thin metalized polymer films that are
projected for solar sails are assumed to be affected by the erosive effects of the space environment. Optical
solar sail degradation (OSSD) should be considered for a thorough solar sail mission analysis because it
decreases not only the magnitude of the solar radiation pressure (SRP) force acting on the sail but also the
sail control authority, because it reduces the magnitude of the SRP force component perpendicular to the
sun-sail direction. Mechanical solar sail degradation (MSSD) should be considered in the solar sail design
process, because it decreases the tensile strength of the sail film and is likely to affect the sail performance.
MSSD, however, is not considered within this paper because its consequences depend on the actual mechanical
strain in the sail film and, therefore, on the actual solar sail design.

Although much ground and space testing has been done to measure the optical degradation of metalized
polymer films as second surface mirrors (metalized on the back side), to our knowledge, no systematic testing
to measure the optical degradation of candidate solar sail films (metalized on the front side) on ground or
in space has been reported so far, so that the optical degradation behavior (and therefore the degradation
behavior of the propulsive capability) of solar sails in the real space environment is to a considerable degree
indefinite. Nevertheless, solar sail mission designers necessitate an OSSD model to estimate the potential
effects of OSSD on their missions.

The standard optical solar sail model is the non-perfectly reflecting sail modela, as it is described, e.g.,
in Refs. 1, 2, or 3. Based on this model, Rios-Reyes and Scheeres developed a generalized sail model for
non-flat solar sails, which allows one to model also local variations of the optical sail properties.4 Both
models do not take OSSD into account. Therefore, the authors of this paper established in November 2004
a “Solar Sail Degradation Model Working Group” (SSDMWG) with the aim to make the next step towards
a realistic high-fidelity optical solar sail model by elaborating a parametric model for OSSD. Our OSSD
model describes the variation of the sail film’s optical coefficients with time, depending on the sail film’s
environmental history, i.e., the radiation dose. The primary intention of this model is not to describe the
exact behavior of specific film-coating combinations in the real space environment, but to provide a more
general parametric framework for the general optical degradation behavior of solar sails. It should later be
refined, when results from ground and in-space tests have become available. Until then, our model can be
used to investigate the effects of different potential degradation behaviors on various mission aspects, e.g.
trajectory optimization and attitude control, by varying the OSSD model parameters.

The paper is organized as follows. Section II reviews the SRP force models for non-perfectly reflecting
solar sails. In section III, a parametric OSSD model is proposed that describes the variation of the sail
film’s optical coefficients with time, depending on the sail film’s environmental history, i.e., the radiation
dose. This model is then used in section IV to estimate the effects of OSSD on trajectory optimization and

aMost work on solar sails has been done using even simpler models.
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attitude control for five exemplary missions: a Mars rendezvous, a Mercury rendezvous, a fast Neptune flyby,
a fast transfer to the heliopause (200AU), and, finally, for artificial Lagrange-point missions.

II. The Non-Perfectly Reflecting Solar Sail

For the description of the solar radiation pressure (SRP) force exerted on a solar sail, it is convenient
to introduce two unit vectors. The first one is the sail normal vector n, which is perpendicular to the sail
surface and always directed away from the sun. In the orbit frameb O3, its direction, which describes the
sail attitude, is expressed by the pitch angle α and the clock angle δ (Fig. 1). The second unit vector is the
thrust unit vector m, which points along the direction of the SRP force. Its direction is described likewise
by the cone angle θ and the clock angle δ.

n
m

re

te

he

αθ
δ

orbital plane

solar sail
sun line

plane perpendicular to
 th

e sun lin
e

Figure 1. Definition of the sail normal vector and the thrust normal vector

At a distance r from the sun, the SRP is

P =
S0

c

(r0
r

)2

= P0 ·
(r0
r

)2

= 4.563
µN
m2

·
(r0
r

)2

(1)

where S0 = 1368 W/m2 is the solar constant, c is the speed of light in vacuum, and r0 is 1 astronomical unit
(1 AU).

Different levels of simplification for the optical characteristics of a solar sail result in different models for
the magnitude and direction of the SRP force acting on the sail. The most simple model assumes an ideally
reflecting sail surface. It will here be denoted as model IR (ideal reflection). It can be easily derivedc (see
also Fig. 2(a)) that the SRP force exerted on an ideal sail isd

F SRP = 2PA cosα cosαn (2)

Thus, for model IR, the SRP force is always along the direction of the sail normal vector, m ≡ n.

A. The Non-Perfectly Reflecting Solar Sail Model

For a thorough attitude control and trajectory simulation, a more sophisticated SRP force model than IR
must be employed, which takes into account the optical coefficients of the real sail film. This model will
here be denoted as model NPR (non-perfect reflection). It was proposed in the 1970s for solar sail trajectory
optimization by Sauer5 and further studied by Forward,1 but found little application until recently.6–10

bO3 = {er, et, eh} is an orthogonal right-handed polar coordinate frame. er points always along the sun-spacecraft line, eh

is the orbit plane normal (pointing along the spacecraft’s orbital angular momentum vector), and et completes the right-handed
coordinate system (er × et = eh).

cSee e.g. Ref. 3 pp. 38-39.
dNote that one cos α results from the projection of the sail area onto er, whereas the other cos α results from the projection

of the two SRP force components onto n.
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Figure 2. SRP force

1. Optical Solar Sail Coefficients

In model NPR, the optical characteristics of the sail film are parameterized by the absorption coefficient a,
the reflection coefficient ρ, the transmission coefficient τ , and the emission coefficient ε, with the constraint
a + ρ + τ = 1. Assuming τ = 0 for the reflecting side of the solar sail, the absorption coefficient is
a = 1− ρ. Because not all photons are reflected specularly, the reflection coefficient can be further divided
into a specular reflection coefficient ρs, a diffuse reflection coefficient ρd, and a back reflection coefficient
ρb, with the constraint ρs + ρd + ρb = ρ. Assuming ρb = 0, this can also be expressed by introducing a
specular reflection factor s, so that s = ρs/ρ ⇔ ρs = sρ ⇒ ρd = (1 − s)ρ. The emission coefficient ε
describes the power W that is emitted from a surface of area A at absolute temperature T , W = AεσT 4,
where σ = 5.67 · 10−8 Wm−2K−4 is the Stefan-Boltzmann constant. The emission coefficients of the sail’s
front and back side are εf and εb, respectively. The angular distribution of the emitted and the diffusely
reflected photons is described by the non-Lambertian coefficients of the sail’s front and back side, Bf and
Bb, respectively. Thus, model NPR parameterizes the optical characteristics of the sail film by the following
set of optical coefficients: P = {ρ, s, εf , εb, Bf , Bb}. According to Wright, the optical coefficients for a sail
with a highly reflective aluminum-coated front side and a highly emissive chromium-coated back sidee are
PAl|Cr = {ρ = 0.88, s = 0.94, εf = 0.05, εb = 0.55, Bf = 0.79, Bb = 0.55}.2

2. Solar Radiation Pressure Force

Using the optical sail coefficients defined above, it can be shownf that in a sail-fixed 2Dg coordinate frame
S = {n, t}, the SRP force exerted on the solar sail has a normal component F⊥ (along n) and a transverse
component F|| (along t, see Fig. 2(b)) with

F⊥ = F SRP · n = 2PA cosαψ⊥ (3a)
F|| = F SRP · t = −2PA cosαψ|| (3b)

where

ψ⊥ ,
1
2
(1 + sρ) cosα+

1
2

[
Bf(1− s)ρ+ (1− ρ)

εfBf − εbBb

εf + εb

]
ψ|| ,

1
2
(1− sρ) sinα (4)

Three characteristic optical sail coefficients may be defined to simplify Eq. (4):

a1 ,
1
2
(1 + sρ) a2 ,

1
2

[
Bf(1− s)ρ+ (1− ρ)

εfBf − εbBb

εf + εb

]
a3 ,

1
2
(1− sρ) (5)

so that
ψ⊥ = a1 cosα+ a2 ψ|| = a3 sinα (6)

eThis is to keep the sail temperature at a moderate limit, as we will see later from Eq. (15).
fSee e.g. Ref. 3 pp. 47-49 for derivation.
gBecause of symmetry, the third dimension is not relevant here.
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The total SRP force vector may then be written as

F SRP = (F 2
⊥ + F 2

||)
1/2 m = 2PA cosα(ψ2

⊥ + ψ2
||)

1/2m (7)

or
F SRP = 2PA cosαΨm (8)

where Ψ , (ψ2
⊥ + ψ2

||)
1/2 depends only on the pitch angle α and the optical coefficients P of the sail film.

Note the symmetry between Eqs. (2) and (8). The angle between m and er is the cone angle θ and the
angle between m and n is called centerline angle φ. It may be calculated via

φ = arctan
(
ψ||

ψ⊥

)
(9)

From Eq. (9), the cone angle is then obtained as

θ = α− φ = α− arctan
(
ψ||

ψ⊥

)
(10)

The SRP force can also be written in components along the unit vectors of a 2D orbit frame O2 = {er, et},
a decomposition that will be used in the next section to determine which optical coefficients p ∈ P are the
most important ones for OSSD modeling. The O2-frame components of F SRP can be obtained simply from
the S-frame components via (

Fr

Ft

)
=

[
cosα − sinα
sinα cosα

](
F⊥
F||

)
(11)

so that

Fr = F SRP · er = 2PA cosα(a1 cos2 α+ a2 cosα+ a3 sin2 α) (12a)
Ft = F SRP · et = 2PA cosα sinα(a1 cosα+ a2 − a3 cosα) (12b)

Finally, the SRP force can be written in components along er and n,10 a decomposition that will be used
later for the derivation of the optimal control law (section IV.A). The result is:

F SRP = 2PA cosα [b1er + (b2 cosα+ b3)n] (13)

where the coefficients b1, b2, and b3 are defined as

b1 ,
1
2
(1− sρ) b2 , sρ b3 ,

1
2

[
Bf(1− s)ρ+ (1− ρ)

εfBf − εbBb

εf + εb

]
(14)

3. Solar Sail Temperature

The equilibrium temperature of the solar sail ish

T =
[
S0

σ

a

εf + εb

(r0
r

)2

cosα
]1/4

∝ cos1/4 α

r1/2
⇒ rmin ∝

cos1/2 α

T 2
lim

(15)

Thus, T = T (r, α,P). Eq. (15) shows that, for a given sail film-coating combination, there is a minimum
sun-sail distance rmin, which depends not only on the sail film temperature limit Tlim, but also on the pitch
angle α.

hSee e.g. Ref. 3 pp. 48-49 for derivation.
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4. Optical SRP Force Sensitivity

Using the SRP force on a black body with an area A perpendicular to the incoming radiation, PA, one can
normalize Fr and Ft, fr = Fr/PA and ft = Ft/PA. The sensitivity of fr and ft with respect to the different
optical coefficients p can then be described by

∂fr

∂p
= cosα(Pp1 cosα+ Pp2 cos 2α)

∂ft

∂p
= cosα sinα(Pp1 + 2Pp2 cosα) (16)

For the optical parameters of an Al|Cr-coated sail, one gets Pρ1 = 0.48573, Pρ2 = 0.94, Ps1 = −0.6952,
Ps2 = 0.88, Pεf1 = 0.2456, Pεb1 = −0.0223, PBf1 = 0.0628, PBb1 = −0.11, Pεf2 = Pεb2 = PBf2 = PBb2 = 0.
Fig. 3 shows how the SRP force components ft and fr vary with α. Note that the sensitivity of ft and fr

is largest with respect to ρ, s, and εf . The sensitivity with respect to the other optical coefficients is only
minor and could be neglected for a first OSSD analysis.
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Figure 3. Sensitivity of the SRP force components w.r.t. the optical coefficients

B. The Simplified Non-Perfectly Reflecting Solar Sail Model

To simplify model NPR, one may assume specular reflectivity of the sail, s = 1, and equal products of the
emission coefficient and the non-Lambertian coefficient for the front and back side, εfBf = εbBb. This model
will here be denoted as model SNPR (simplified non-perfect reflection). Within model SNPR, the symbol η
denotes the reflection coefficient. The SRP force components in the S-frame are in this case

F⊥ = 2PA cosαψ⊥ (17a)
F|| = −2PA cosαψ|| (17b)

with
ψ⊥ ,

1
2
(1 + η) cosα ψ|| ,

1
2
(1− η) sinα (18)

and the SRP force components in the O2-frame are

Fr = PA cosα(1 + η cos 2α) (19a)
Ft = PA cosα(η sin 2α) (19b)

C. Sail Performance Parameters

Within this section, the two most commonly used solar sail performance parameters are introduced. The
characteristic acceleration ac is defined as the SRP acceleration acting on a solar sail that is oriented per-
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pendicular to the sun line (n ≡ er) at r0 (1 AU). For model IR

ac =
2P0A

m
(20)

and for model NPR
ac =

2P0A

m
(a1 + a2) (21)

The lightness number β is defined as the ratio of the SRP acceleration acting on a solar sail that is oriented
perpendicular to the sun line (n ≡ er), and the gravitational acceleration of the sun, µ/r2:

β =
ac(r0/r)2

µ/r2
=

ac

µ/r20
(22)

with µ/r20
.= 5.930 mm/s2 as the sun’s gravitational acceleration at Earth distance. Another possible way

to define a lightness number is by thinking of it as a dimensionless sail loading, that is, βσ , σ∗/σ where
σ , m/A is the sail loading and σ∗ , 2P0/(µ/r20) is a reference sail loading parameter. As a result, βσ

plays the role of a technological parameter in that it establishes the limits of the current (or future) sail
technology. With this definition one gets:

ac = βσ (a1 + a2)
µ

r20
(23)

or
βσ =

ac

µ/r20

1
a1 + a2

=
β

a1 + a2
(24)

Equation (24) shows that, in general, βσ 6= β. Note, however, that for model IR a1 + a2 = 1, and βσ ≡ β.
To avoid ambiguity, we will use β as the lightness number for the remainder of this paper.

III. The Non-Perfectly Reflecting Solar Sail with Degradation

A. Data Available From Ground Testing

Although much ground and space testing has been done to measure the optical degradation of metalized
polymer films as second surface mirrors (metalized on the back side), to our knowledge, no systematic
testing to measure the optical degradation of candidate solar sail films (metalized on the front side) has been
reported so far. Lura et. al. reported in Ref. 11 considerable OSSD after combined irradiation with VUV,
electrons, and protons, whereas Edwards et. al. reported in Ref. 12 that a change of the solar absorption
and emission coefficients could not be measured after irradiation with electrons alone. Because respective
in-space tests have not been made so far, the optical degradation behavior and therefore the degradation
behavior of the propulsive capability of solar sails in the real space environment is to a considerable degree
indefinite. Nevertheless, solar sail mission designers necessitate an OSSD model to estimate the potential
effects of OSSD on their missions. Therefore, the authors of this paper established in November 2004 a
“Solar Sail Degradation Model Working Group” with the aim to elaborate a parametric model for OSSD.

B. Parametric Degradation Model

For a first OSSD model, the following simplifications may be made:

1. The only source of degradation are the solar photons and particles. This simplification is reasonable
at least in the inner solar system and far from the planets, where the cosmic radiation, the radiation
from the planetary radiation belts and reactions with particles of the planetary atmospheres can be
neglected.

2. The solar photon and particle fluxes do not depend on time (average sun without solar events).

3. The optical coefficients do not depend on the sail temperature.

4. The optical coefficients do not depend on the light incidence angle.
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5. No self-healing effects occur in the sail film.

Let p be an arbitrary optical coefficient from P. With OSSD, p becomes time-dependent, p(t). With the
simplifications stated above, p(t) is a function of the solar radiation dose (SRD, dimension

[
J/m2

]
) accepted

by the solar sail within the time interval t− t0:

Σ̃(t) ,
∫ t

t0

S cosαdt′ = S0r
2
0

∫ t

t0

cosα
r2

dt′ (25)

The symbol Σ̃ is used for the SRD, this way preserving Σ for the dimensionless SRD. The SRD per year on
a surface that is perpendicular to the sun at 1AU is

Σ̃0 = S0 · 1 yr = 1368 W/m2 · 1 yr = 15.768 TJ/m2 (26)

Using Σ̃0 as a reference value, the SRD can also be defined in a dimensionless form as

Σ(t) =
Σ̃(t)
Σ̃0

=
(
r20

∫ t

t0

cosα
r2

dt′
)/

1 yr (27)

Because the solar particle flux Spf also varies with cosα/r2, its (damaging) dose within the time interval
t− t0 can be written as Σpf(t) = γpfΣ(t), so that p(t) = p(Σ(t) + Σpf(t)) = p((1 + γpf)Σ(t)) = p(Σ(t)). Thus,
the degradation effects of the solar particles do not have to be considered separately. Σ(t) depends on the
solar distance history and the attitude history z[t] = (r, α)[t] of the solar sail, Σ(t) = Σ(z[t]). Eq. (27) can
also be rearranged in differential form as

Σ̇ =
r20
T

cosα
r2

with Σ(t0) = 0 (28)

where T , 1 yr. We assume that p(t) varies exponentially between p(t0) = p0 and lim
t→∞

p(t) = p∞:

p(t) = p∞ + (p0 − p∞) · e−λΣ(t) (29)

The degradation constant λ is related to the “half life solar radiation dose” Σ̂ (Σ = Σ̂ ⇒ p = p0+p∞
2 ) via

λ =
ln 2
Σ̂

(30)

Note that this model has 12 free parameters additional to the 6 p0, 6 p∞ and 6 half life SRDs Σ̂p. Because
12 parameters are too much for a simple parametric OSSD analysis, the number of free parameters should
be reduced. This is done here by introducing a degradation factor d and by using a single half life SRD for
all p, Σ̂p = Σ̂ ∀p ∈ P. Because the reflectivity of the sail decreases with time, the sail becomes more matt
with time, and the emissivity increases with time, we can use

ρ∞ =
ρ0

1 + d
s∞ =

s0
1 + d

εf∞ = (1 + d)εf 0 (31)

εb∞ = εb0 Bf∞ = Bf 0 Bb∞ = Bb0 (32)

The degradation of the optical parameters can again be written in dimensionless form:

p(t)
p0

=


(
1 + de−λΣ(t)

)
/ (1 + d) for p ∈ {ρ, s}

1 + d
(
1− e−λΣ(t)

)
for p = εf

1 for p ∈ {εb, Bf , Bb}

(33)

Fig. 4(a) shows the variation of those coefficients with Σ for different degradation factors d. Using this
model, the a/εf -ratio raises from

a0

εf 0
=

1− ρ0

εf 0
= 2.4
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to
a∞
εf∞

=
1 + d− ρ0

(1 + d)2εf 0
whose value is 3.1 for a 5% degradation limit, 3.6 for a 10% degradation limit, and 4.4 for a 20% degradation
limit (to keep the terminology simple, we will use the term “a 100d% degradation limit” synonymously for “a
degradation factor of d”). Fig. 4(b) shows how the maximum sail temperature Tmax varies with Σ for different
solar distances 0.2 AU ≤ r ≤ 1 AU. Fig. 5(a) shows the evolution of the F SRP-bubblei with increasing SRD,
and Fig. 5(b) shows the evolution of the difference between the pitch and the cone angle with increasing
SRD. Let F ∗t = maxα Ft denote the maximum SRP force component along et (the direction along which the
orbital energy is changed most effectively), α∗ the pitch angle that yields F ∗t , and the associated cone angle
θ∗. Fig. 5(c) shows how their values vary with Σ.
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Figure 5. OSSD effects on attitude control (d = 0.2)

Note that the OSSD model described here can be directly applied to the generalized sail model (GSM)
detailed in Ref. 4. The GSM can model non-flat sails and more complex sail geometries, using the flat plate
model given in Eqs. (3)-(5) to define differential sail properties. Because the same optical parameters as
given in Eq. (5) are used in the GSM, the effect of optical degradation on the sail can be modeled in the

iThe bubble on which surface the tip of F SRP is constrained to lie (tail at origin).
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same way. Thus, it is possible to directly apply this model to the more realistic GSM. For sake of simplicity,
such a detailed analysis is not performed in the current paper, but would be of interest for the analysis of a
specific sail design.

IV. Potential Degradation Effects on Trajectory and Attitude Control

A. Equations of Motion and Optimal Control Law

Besides the gravitational forces of all celestial bodies and the SRP force, many disturbing forces, as caused,
e.g., by the solar wind, the finiteness of the solar disk, the reflected light from close celestial bodies, and
the aberration of solar radiation (Poynting-Robertson effect), influence the motion of solar sails in space.
Furthermore, a real solar sail bends and wrinkles, depending on the actual sailcraft design. Ideally, all these
effects have to be considered for high-precision trajectory determination.
For mission feasibility analysis, and to isolate the effects of OSSD from the other effects that influence the
motion of real solar sails in space, the following simplifications are made:

1. The solar sail is a flat plate.

2. The solar sail is moving under the sole influence of solar gravitation and radiation.

3. The sun is a point mass and a point light source.

4. The solar sail attitude can be changed instantaneously.

Let the reference frame I = {ex, ey, ez} be an inertial right-handed cartesian coordinate frame. The equa-
tions of motion for a solar sail in the I-frame are:

ṙ = v (34a)

v̇ = − µ

r3
r + a (34b)

where r = (rx, ry, rz) is the sailcraft position and v = (ṙx, ṙy, ṙz) = (vx, vy, vz) is the sailcraft velocity,
r = |r|, µ is the sun’s gravitational parameter, and a = aSRP + ad is the acceleration acting on the sailcraft
(aSRP being the SRP acceleration and ad being the disturbing acceleration, which is neglected within this
paper). Combining Eqs. (13) and (22), the SRP acceleration is given by

aSRP =
β

b1 + b2 + b3

µ

r2
cosα [b1er + (b2 cosα+ b3)n] (35)

Although it is very convenient to describe the translational motion of spacecraft in I-frame coordinates, the
spacecraft control is better described in the reference frame O3 = {er, et, eh}. The components of n in the
O3-frame are:

n = cosα er + sinα cos δ et + sinα sin δ eh (36)

where α is the sail pitch angle and δ is the sail clock angle. Clearly, α and δ comprise the solar sail control
u. The problem is to find the optimal control law u(t) (where t ∈ [t0 = 0, tf ]), which minimizes the time
tf necessary to transfer the spacecraft from an initial state x0 = (r0,v0) to a final state xf = (rf ,vf ) by
maximizing the performance index J = −tf . From Eq. (34), the Hamiltonian of the system is

H = λλλr · v −
µ

r3
λλλv · r + λλλv · a + λΣ

r20
r2T

er · n (37)

where λλλr and λλλv are the vectors adjoint to the position and the velocity, respectively, and λΣ is the costate
associated to Σ. The primer vector13 λλλv can be conveniently expressed in the O3-frame. Paralleling what
has been done for n, we define the orientation of λλλv through the angles αλ ∈ [0, π/2] and δλ ∈ [−π, π] to get

λλλv = λv(cosαλ er + sinαλ cos δλ et + sinαλ sin δλ eh) (38)

where λv = |λλλv|. The time derivatives of the adjoint variables are provided by the Euler-Lagrange equationsj:

λ̇̇λ̇λr = −∂H
∂r

λ̇̇λ̇λv = −∂H
∂v

λ̇Σ = −∂H
∂Σ

(39)

jThe explicit form of the partial derivatives is not shown here due to its complexity.
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Eq. (39) provides 7 scalar differential equations that must be solved along with the equations of motion,
Eqs. (34) and (28). From Pontryagin’s maximum principle, the optimal control law u(t), to be selected
in the domain of feasible controls U , is such that at any time the Hamiltonian is an absolute maximum.
This amounts to maximizing the function H′, which coincides with that portion of the Hamiltonian H that
explicitly depends on the control vector, viz.

u = arg max
u∈U

H ≡ arg max
u∈U

H′ with H′ , λλλv · a + λΣ
r20
r2T

er · n (40)

Substituting Eqs. (13), (36), and (38) into Eq. (40) and using the necessary condition ∂H′/∂δ = 0, one has

tan δ = tan δλ (41)

Eq. (41) states that the unit vectors er, n and eλλλv
, λλλv/λv are coplanar. This generalizes a similar conclusion

obtained for model NPR without degradation.10 This result is justified by the fact that H′ depends on the
OSSD model through the term λΣr

2
0/r

2T er ·n, which, in turn, is a function of α but not of δ. Concerning the
optimal steering law for α, an explicit or semi-analytic solution is – in contrast to the ideal and optical force
model cases10,14 – hardly retrievable. In fact, invoking the necessary condition ∂H′/∂α = 0, the following
equation is obtained for α:

b1 [sin (α+ αλ) + sin (α− αλ)]

+
b2
2

[2 sin (α− αλ) + 3 sin (3α− αλ) + sin (α+ αλ)]

+ 2 b3 sin (2α− αλ) + bΣ sinα = 0

(42)

where

bΣ ,
2 r20 λΣ

β µT λv
(b1 + b2 + b3) (43)

The dimensionless variable bΣ models the optical degradation of the solar sail. In the ideal case without
degradation (λΣ ≡ 0 ⇒ bΣ ≡ 0), Eq. (42) provides the optimal control law for the optical force model. The
corresponding solution is given in Ref. 10. At a generic time t, for a given pair (β, d), one can calculate the
values taken by bΣ, Σ, b1, b2, and b3 (which, in turn, depend on Σ, λ, and d). Let S be the region of the
(α, αλ)-plane that satisfies the conditions H′ ≥ 0 and ∂2H′/∂α2 < 0 (convexity condition). Consider the set
of pairs (α̃, α̃λ) to be solutions of Eq. (42). Note that for a given α̃λ, the corresponding value of α̃ is obtained
through a numerical solution of Eq. (42) (for example using a Newton algorithm). Clearly, α̃ maximizes
H′, provided (α̃, α̃λ) ∈ S. Otherwise, α should be selected in order to render H′ = 0, that is α = π/2. To
summarize, the optimal steering law is given by:

α =

α̃ if H′(α̃, α̃λ) ≥ 0

π/2 if H′(α̃, α̃λ) < 0
(44)

For a 20% degradation limit, Fig. 6 shows the optimal steering law for different values of bΣ and Σ along
with the region S (shaded region). The boundary value problem associated to the variational problem is
constituted by the equations of motion, Eqs. (34) and (28), and by the Euler-Lagrange equations, Eq. (39).
The boundary conditions are constrained by the planetary ephemerides. They provide 12 scalar conditions
connected to the position and velocity of the solar sail at both t0 and tf . The other boundary condition is
given by the initial value of Σ(t0) = 0. The transversality conditions λΣ(tf ) = 0 and H(tf ) = 1 complete
the differential problem.

B. Mars Rendezvous

As the first case to investigate the consequences of OSSD for trajectory and attitude control, the control laws
described in section A have been applied to a 2D circular orbit-to-circular orbit Earth-Mars transferk using
solar sails with various lightness numbers and degradation limits. Like for all trajectories within this paper,
direct interplanetary insertion of the solar sail at Earth with zero hyperbolic excess energy (C3 = 0 km2/s2)

kThe final position of Mars is left free.
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Figure 6. Optimal control law (thick line) for the pitch angle α.

is assumed. The trajectories within this section have been calculated using a hybrid numerical technique
that combines genetic algorithms to obtain a rough estimate of the adjoint variables with gradient-based and
direct methods to refine the solution.10 The differential equations have been integrated in double precision
using a Runge-Kutta-fifth-order scheme with absolute and relative errors of 10−12. A set of canonical units15

has been used to reduce their numerical sensitivity. The impact of the OSSD model on mission performance
has been investigated using three different mathematical models:

Model (a): Within this model, an instantaneous degradation of the optical parameters of the sail is as-
sumed. At t = t0, ρ, s, and εf attain immediately their end-of-life values, ρ∞, s∞, and εf∞. From
a mathematical viewpoint, this corresponds to Σ̂ → 0 and hence λ → ∞. Accordingly, for a given
characteristic acceleration, the obtained performance should be considered as an upper bound for the
trip times.

Model (b): Within this model, the degradation of the optical parameters has been taken into account in
the numerical integration (that is, in the equations of motion and in the Euler-Lagrange equations),
but it has been neglected during the evaluation of the steering law. In other words, the steering law
for solar sails without degradation (given in Ref. 10) has also been used for the degrading sails. From a
mathematical viewpoint, this corresponds to assuming bΣ ≡ 0 and bi(t) ≡ bi(t0) (i = 1, 2, 3) in Eq. (42)
only. This model allows to estimate the effect of the OSSD model on the “ideal” control law (that is,
on the control law obtained without taking the degradation effect into account). This simplifies the
practical implementation of the steering law because the latter is a function of one time-dependent
variable only (the primer vector pitch angle αλ).

Model (c): Within this model, the optimal control problem is solved using the OSSD model and the optimal
control law described in Eq. (44).

For comparative purposes, also optimal trajectories without degradation have been calculated (these cor-
respond to the model described in Ref. 10). Accordingly, the corresponding results should be considered
as a lower bound for the trip times. Fig. 7 summarizes the results obtained for the different models and
a degradation limit of 5% and 20%. The trip times obtained from model (b) are nearly coincident with
that from model (c). The main reason is that the values of bΣ are small in all simulations (recall that the
transversality condition requires bΣ(tf ) = 0). As expected, the trip times for model (a) are much greater
than that obtained with non-instantaneous degradation. Finally, note that an increase of the degradation
factor has remarkable consequences on trip times. This confirms that the degradation of the optical sail
characteristics should not be neglected for thorough trajectory calculations and that an ideal model provides
excessively optimistic results.
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Figure 7. Trip times for an Earth-Mars circular orbit-to-circular orbit transfer for a degradation limit of 5%
and 20% (Σ̂ = 0.5).

C. Mercury Rendezvous

The second case to investigate the consequences of OSSD for trajectory and attitude control is a Mercury
rendezvous for a solar sail with a characteristic acceleration of ac = 1.0 mm/s2. The trajectories within this
section have been calculated using the trajectory optimizer GESOP16 with SNOPT.17 The final accuracy
limit for the trajectories was set to ∆rf,max = 80 000 km (inside Mercury’s sphere of influence at perihelion)
and ∆vf,max = 50m/s. Trajectories have been calculated for degradation limits of 0%, 5%, 10%, and 20%,
with a half life SRD of Σ̂ = 0.5. Firstly, the effects of the degradation limit on trip time was investigated for an
arbitrarily selected launch window that ranges from MJD 57000 (09 Dec 2014) to MJD 57130 (18Apr 2015).
Fig. 8(a) shows the trip time over the launch date, whereas Fig. 8(b) shows the trip time increase over
the launch date. It can be seen from Fig. 8(a) that the sensitivity of the trip time with respect to OSSD
depends considerably on the launch date. Some launch dates considered previously as optimal become very
unsuitable when OSSD is taken into account because an additional revolution about the sun is required prior
to rendezvous. Note that the optimal launch date for zero degradation is the worst launch date for a 20%
degradation limit. For many launch dates, however, OSSD does not seriously affect the mission, as Fig. 8(a)
shows. Given an indefinite OSSD behavior at launch, MJD 57000.0 would be a very robust launch date.
Fig. 9(a) shows the optimal variation of the pitch angle α along the trajectory for this launch date, Fig. 9(b)
for a launch 30 days later. In summary, the results show that OSSD can have remarkable consequences on
trip times (Fig. 8) and also on the optimal control angles (Fig. 9). Another important point, which could not
be seen from the Mars orbit-to-orbit transfer, is that the actual trip time might be tremendously above the
lower bound calculated for orbit-to-orbit transfers, if the launch and the target body are in an unfavorable
constellation at launch.

D. Fast Neptune Flyby

The third case to investigate the consequences of OSSD for trajectory optimization is a fast Neptune flyby for
a solar sail with a characteristic acceleration of ac = 1.0 mm/s2. The trajectories within this section have been
calculated using InTrance,18 a method that combines artificial neural networks and evolutionary algorithms
to find near-globally optimal steering strategies. To find the absolute trip-time minima, independent of
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Figure 9. Optimal sail pitch angle variations for different degradation limits

the actual constellation of Earth and Neptune, no flyby at Neptune itself, but only a crossing of its orbit
within a distance of less than 106 km was required, and InTrance was allowed to vary the launch date
within a one year interval. Therefore, the resulting trip times represent lower bounds that are strictly valid
only for the optimal constellation of Earth and Neptune. Specific suboptimal launch dates/constellations,
e.g., when Neptune is at aphelion, might yield longer trip times. Although a final distance of 106 km is
relatively large for a planetary flyby, the control profile found by InTrance can be used as initial guess
for some local trajectory optimization method with a better local convergence behavior. Alternatively, the
neurocontroller parameters found by InTrance can be used as initial guess for another run of InTrance (with
a more demanding final constraint, e.g. 1000 km above planetary surface). The sail film temperature was
limited to Tlim = 240◦C = 513.15 K. Fig. 10 shows the trajectories and steering profiles for a 0% and a 20%
degradation limit. Fig. 11(a) shows the SRD increase and Fig. 11(b) the variation of the solar distance with
time. One can see that the aphelion of the last loop becomes larger with an increasing degradation limit and
therefore the final solar photonic assist (SPA), i.e., the last close solar approach, occurs later. Fig. 12 shows
the trip times for various degradation limits and half life SRDs together with the associated increases.
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E. Fast Transfer to the Heliopause

The fourth case to investigate the consequences of OSSD for trajectory and attitude control is a fast solar
sail mission to the heliopause. Following loosely the requirements for ESA’s Interstellar Heliopause Probe
(IHP) study,19,20 the spacecraft should be delivered to the nose of the heliosphere at a latitude of 7.5 deg
and a longitude of 254.5 deg (in the ecliptic coordinate frame) at 200 AU from the sun in 25 years. The
sail is jettisoned at 5 AU to eliminate any potential interference caused by the solar sail on the local space
environment. The trajectories have been calculated using AnD blending, a method that blends locally optimal
control laws.21–23 Thereby, each control law is prioritized by consideration of how efficiently it will use the
SRP and how far each orbital element is from its target value. For non-ideal non-degrading solar sails
(model NPR), it has been demonstrated that the trajectories found with AnD blending and InTrance are
very similar.21 A characteristic acceleration of 1.75 mm/s2 was selected for this analysis, which gives a zero
degradation trip time of 21.74 years. For the trajectories within this section a fixed minimum radius of
0.25 AU, a half life SRD of Σ̂ = 0.5 (S0 · yr) and a fixed launch date of 03 January 2030 was used. Fig. 13(a)
shows the trip time and Fig. 13(b) shows the trip time increase for 0 ≤ d ≤ 0.3. For d ≤ 0.2, the trip time
increase is exactly linear. For d = 0.25 and 0.3 the trip time does not fit the expected linear relationship

15 of 21

American Institute of Aeronautics and Astronautics



Sail degradation limit [%]

__
_

T
rip

tim
e

[y
rs

]

_
_

T
rip

tim
e

in
cr

ea
se

[%
]

0 5 10 15 20
0

1

2

3

4

5

6

7

8

0

10

20

30

40
Fast Earth-Neptune transfer with solar sail (ac=1.0mm/s2)
Half life SRD = 0.5 (S0*yr)

C3=0km2/s2 at Earth
Flyby at Neptune orbit within Δr<1.0E6km

Frame 001 ⏐ 27 Jun 2005 ⏐ Flight Time

(a) Different degradation limits

1 / Half life SRD [1/(S0*yr)]

__
_

T
rip

tim
e

[y
rs

]

_
_

T
rip

tim
e

in
cr

ea
se

[%
]

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

0

5

10

15

20

25
Fast Earth-Neptune transfer with solar sail (ac=1.0mm/s2)
Degradation limit = 10%

C3=0km2/s2 at Earth
Flyby at Neptune orbit within Δr<1.0E6km

faster degradationwithout
degradation

Frame 001 ⏐ 27 Jun 2005 ⏐ Flight Time

(b) Different half life SRDs

Figure 12. Trip time and trip time increase for optimal Neptune transfer

21.5

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

26.0

26.5

0 5 10 15 20 25 30

Degradation limit [%]

Tr
ip

 ti
m

e 
––

 [y
rs

]

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

A
ph

el
io

n 
ra

di
us

 –
 –

 [A
U

]

(a) Trip time to 200 AU and radius of aphelion passage

0

2

4

6

8

10

12

14

16

18

20

22

0 5 10 15 20 25 30

Degradation limit [%]

Tr
ip

 ti
m

e 
in

cr
ea

se
 d

ue
 to

 d
eg

ra
da

tio
n 

[%
]

21.74

22.24

22.74

23.24

23.74

24.24

24.74

25.24

25.74

26.24

Tr
ip

 ti
m

e 
[y

rs
]

(b) Trip time increase
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(c) Trip time and velocity at 5AU (sail jettison point)
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(d) Final optical coefficient values and SRD

Figure 13. Transfer to 200AU for different degradation limits (Σ̂ = 0.5)

as the sail continues to increase the inclination beyond the point where effort would be better spent gaining
orbital energy. Fig. 13(a) shows that the radius of aphelion passage increases by over 1AU as the degradation
limit is increased from zero to 30%. Fig. 13(c) shows that the velocity of the spacecraft at sail jettison is
decreasing in an approximately linear manner, although the time to sail jettison much more closely matches
the shape of the aphelion passage relationship. It is thus notable that given that all these relationships are
only approximately linear, the trip time to 200 AU is exactly linear for 0 ≤ d ≤ 0.2. Fig. 13(d) shows the
value of the optical coefficients at sail jettison and the total SRD increase with degradation limit. Fig. 14(a)
shows the most favorable trajectory plot for each degradation limit. Note that a change in degradation limit
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(a) Inner solar system trajectories (b) Variation of solar distance and inclination

Figure 14. Transfer to 200AU for different degradation limits (Σ̂ = 0.5)

(a) Variation of control angles (b) Variation of optical coefficients

Figure 15. Transfer to 200AU for different degradation limits (Σ̂ = 0.5)

for a fixed start epoch significantly changes the final spacecraft azimuth at 200 AU, which would significantly
impact mission science objectives. In Fig. 14(a) it is seen that the SPA occurs at the same physical location
independent of the degradation limit as the argument of pericenter is not varied from trajectory to trajectory,
although the time of each SPA is seen to vary by as much as 11/4 years in Fig. 14(b). Fig. 14(b) also shows
that for 0 ≤ d ≤ 0.2 the inclination has attained its final value significantly before the SPA. At d = 0.25 the
inclination reaches 7.5 deg just prior to the SPA, while at d = 0.3 this does not occur until after the SPA.
The sail control angles used in each best case trajectory are illustrated in Fig. 15(a) where it is noted that
the maximum pitch angle of each trajectory is similar, yet the maximum cone angles decreases in-line with
the degradation limit increase. Furthermore, the size of the discontinuity within each control angle profile
decreases as d increases. Fig. 15(b) shows the variation of the optical coefficients for the trajectories shown
in Fig. 14(a), where it is seen that the bulk of the degradation occurs during the close solar pass. It is thus
logical to assume that multiple close solar passes would have an adverse effect on the quality of the optical
surface and should be avoided when designing such trajectories.
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F. Artificial Lagrange-Point Missions

This section will examine the artificial Lagrange point problem for solar sails with different reflection coef-
ficients η according to the simplified non-perfectly reflecting solar sail model (model SNPR, section II.B).
Firstly, equilibrium solutions will be obtained for an ideal solar sail (model IR). Then, the problem will be
revisited for solar sails with a reflection coefficient η < 1. Due to the effect that the SRP force vector is no
longer directed along n, it will be shown that the volume of space available for artificial Lagrange points is
extremely sensitive to the reflection coefficient.

1. Equilibrium Solutions for Model IR

Figure 16. Sun-Earth restricted circular three-body problem with non-perfectly solar sail

Firstly, equilibrium solutions for an ideal sail will be derived. The ideal sail will be considered in a frame
of reference co-rotating with the two primary masses m1 (Sun) and m2 (Earth or other planet) at constant
angular velocity ωωω, as shown in Fig. 16. The sail attitude is defined by the sail normal vector n, fixed in the
rotating frame of reference. In addition, the ratio of the SRP force to the solar gravitational force exerted
on the sail is defined by the sail lightness number β. Since for m1 >> m2 both forces have approximately an
inverse square variation with solar distance the sail lightness number is nearly a constantl. It can be shown
that the sail lightness number is related to the total solar sail mass per unit area σ by σ = 1.53 g/m2/β. Let
the unit of mass be chosen such that µ̄ = G(m1 + m2) = 1. If we now define µ = m2/(m1 + m2) then in
this system the two masses are µ1 = 1− µ and µ2 = µ. The unit of length is chosen such that the constant
separation of the two masses is also unity. The vector equation of motion for a solar sail in this rotating
frame of reference may be written in standard form as

r̈ + 2ωωω × ṙ +∇U = a (45)

with the three-body gravitational potential U and the solar radiation pressure acceleration a defined by

U = −
[
1
2
(x2 + y2) +

1− µ

r1
+
µ

r2

]
(46a)

a = β
1− µ

r2
(r̂1 · n)2n (46b)

where the sail position vectors are defined as r1 = (x + µ, y, z) and r2 = (x − (1 − µ), y, z). Equilibrium
solutions are now required in the rotating frame of reference so that the first two terms of Eq. (45) vanish.
The five classical Lagrange points are then obtained as the solutions to ∇U = 0 with r̂1 ·n = 0 and so a = 0.
However, for r̂1 · n > 0 there is an additional acceleration a which is a function of the lightness number
β and the attitude n so that new artificial equilibrium solutions may be generated. Since the vector a is
oriented in direction n, taking the vector product of Eq. (45) with n it follows that

∇U × n = 0 ⇒ n = λ∇U (47)

l Note that the finite size of the solar disc leads to a very small deviation of the SRP from a 1/r2
1 law.
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where λ is an arbitrary scalar multiplier. Using |n| = 1, λ is identified as 1/|∇U | so that the required sail
attitude is defined by

n =
∇U
|∇U |

(48)

which can be used to obtain the pitch angle α. The required sail lightness number may also be obtained by
taking the scalar product of Eq. (45) with n. Again requiring an equilibrium solution it is found that

β =
r2

1− µ

∇U · n
(r̂1 · n)2

(49)

Since the sail lightness number and attitude can be selected, the set of five classical Lagrange points will
be replaced by an infinite set of artificially generated equilibrium solutions. The regions in which these new
solutions may exist are defined by the constraint r̂1 ·∇U ≥ 0 with a boundary surface defined by an equality.
This constraint may be understood physically since the solar radiation pressure acceleration vector a, and
so the sail normal vector n, can never be directed sunward. The boundary surface has two topologically
disconnected surfaces S1 and S2 which define the region of existence of equilibrium solutions near m2. The
classical equilibrium solutions lie on either S1 or S2 since they are the solutions to ∇U = 0. Surfaces of
constant sail lightness number generated from Eq. (49) for the Earth-Sun system are shown in Fig. 17(a).
In general, the surfaces of constant sail lightness number approach these boundaries asymptotically with
β →∞ when r̂1 ·n → 0 as is clear from Eq. (49). It can be seen that as the sail lightness number increases
larger volumes of space are accessible for artificial equilibrium points.

(a) η = 1 (b) η = 0.9

(c) η = 0.8 (d) η = 0.7

Figure 17. Contours of sail loading σ in the x-z-plane: [1] 30 [2] 15 [3] 10 [4] 5 (in g/m2)
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2. Equilibrium Solutions for Model SNPR

Now, model SNPR will be considered, which allows – in contrast to model NPR – a closed-form solution.
The SRP acceleration will act now in direction m and may be written as the sum of components normal to
the sail surface (along n) and transverse to the sail surface (along t)

am =
1
2
β

1− µ

r2
(1 + η)(r̂1 · n)2n +

1
2
β

1− µ

r2
(1− η)(r̂1 · n)(r̂1 · t)t (50)

where (r̂1 ·n) is cosα and (r̂1 ·t) is sinα. The analysis presented in the previous section will now be repeated
using the sail force model defined by Eq. (50) so that the equation of motion may now be written as

r̈ + 2ωωω × ṙ +∇U = am (51)

For an equilibrium solution the first two terms of Eq. (51) will again vanish so that the sail attitude must
be chosen as

m =
∇U
|∇U |

(52)

The unit vector m can now be defined by the cone angle θ between r̂1 and m as

tan θ =
|r̂1 ×∇U |
r̂1 · ∇U

(53)

In addition, using Eq. (50), the centerline angle can be obtained from the ratio of the transverse and normal
accelerations as

tanφ =
1− η

1 + η
tanα (54)

where the pitch angle α = θ+φ. Noting that n · t = 0 and taking a scalar product of Eq. (51) with the unit
vector n gives the required sail lightness number as

β =
2r2

1− µ

∇U · n
(1 + η)(r̂1 · n)2

(55)

The centerline angle may be obtained explicitly by again noting that α = θ+φ. Then, after some reduction,
Eq. (54) yields the centerline angle directly from the cone angle as

tanφ =
η

(1 + η) tan θ

[
1−

√
1− 1− η2

η2
tan2 θ

]
(56)

Lastly, using Eq. (55) it is found that the required sail lightness number may be obtained in terms of the
lightness number for an ideal solar sail β̃ as

β =
2

1 + η

√
1 + tan2 φ

(1− tan θ tanφ)2
β̃ (57)

where β̃ is defined by Eq. (49). Therefore, using Eqs. (53), (56) and (57) the sail orientation and sail lightness
number required for an artificial equilibrium solution can be obtained. The effect of a non-ideal solar sail and
OSSD is shown in Fig. 17 for a η = 0.9, 0.8, and 0.7. Firstly, it can be seen that the volume of space available
for equilibrium solutions about L2 is significantly reduced. This is due to the centerline angle which limits
the direction in which the SRP force vector can be directed. For solutions near L1 the main effect of the
non-ideal sail is to displace the equilibrium solutions towards the Earth. This is due to the reduction in the
SRP force magnitude rather than the centerline angle. In general, we can state that equilibrium solutions
sunward of L1 are not greatly effected by OSSD while equilibrium solutions about L2 are severely restricted.

V. Summary and Conclusions

Based on the current standard model for non-perfectly reflecting solar sails, we have developed a para-
metric model that includes the optical degradation of the sail film due to the erosive effects of the space
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environment. Using this model, we have investigated the effect of different potential degradation behaviors
on trajectory and attitude control for various exemplary missions. All our results show that, in general,
optical solar sail degradation has a considerable effect on trip times and on the optimal steering profile. For
specific launch dates, especially those that are optimal without degradation, this effect can be tremendous.
Having demonstrated the potential effects of optical solar sail degradation on future missions, more research
on the real degradation behavior has to be done because the degradation behavior of solar sails in the real
space environment is to a considerable degree indefinite. To narrow down the ranges of the parameters of
our model, further laboratory tests have to be performed. Additionally, before a mission that relies on solar
sail propulsion is flown, the candidate solar sail films have to be tested in the relevant space environment.
Some near-term missions currently studied in the US and Europe would be an ideal opportunity for testing
and refining our degradation model.
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