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A computational study of several analytical test cases is carried out to verify the im-
plementation of the low magnetic Reynolds number approximation into a hypersonic flow
solver. An investigation in several electrical conductivity models, including solutions to
Boltzmann’s equation, is made to determine the appropriate method for approximating
the flow’s electrical conductivity, since the conductivity is an essential part of the magne-
tohydrodynamic approximations. These improvements will facilitate future computational
studies of the effects of externally applied magnetic fields on plasma-assisted flow control
devices and provide more physically accurate modeling of these techniques.

Nomenclature

ρ = mass density
µ = coefficient of viscosity
u = streamwise velocity component
u = velocity vector (u, v, w)
x, y, z = streamwise, spanwise, and transverse coordinates
i, j, k = computational grid indices along the axial, radial, and circumferential directions
θ = angle along circumference of the body (cylindrical coordinate system)
A = surface area of grid cell
n = normal vector
N = total number density
p = pressure
τ = viscous stress
E = total energy per volume
q = heat flux (translational, rotational, and vibrational)
T = temperature (translational and rotational)
Tv = temperature (vibrational)
h = enthalpy
χ = mole fraction
d = distance between electrodes
L = axial surface length
St = Stanton number, qw/[ρ∞u∞(h0 − hw)]
Rem = magnetic Reynolds number, uL/ηm
ηm = magnetic diffusivity, µ−1

0 σ−1

σ = electrical conductivity
σ̃ = electrical conductivity tensor (including Hall effect and ion-slip)
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φ = electric potential
B = magnetic field vector
E = electric field vector
j = current field vector
µ0 = permeability of free space, 4π × 10−7 N/A2

ε0 = permittivity of free space, 8.85× 10−12 F/m
C = scaling vector, C = (σ̃T · n)A
ω = relaxation parameter for successive over-relaxation method

Subscript
∞ = free stream
w = wall

I. Introduction

Plasma-assisted hypersonic flow control has experienced a renewed interest over the past decade.1,2 This
resurgence has been credited to many factors including the expanding requirements for sustained hypersonic
flight and rapid access to space. These desires have produced several new challenges, particularly in air-
breathing propulsion, where conventional means of flow control may be inadequate to meet the precise
demands of scramjet and ramjet technologies. Plasma-based control systems are one of the options being
explored to fill these needs. In addition to propulsion, these devices are also being applied to many other
vehicle systems that could be enhanced by their abilities.

Recent experimental and computational research by Shang et al.3 has investigated ways of reducing
drag on blunt nose bodies by means of plasma injection, while research by Kremeyer et al.4 and Yan5

focused on drag reduction and flow control using laser deposition (filamentation) ahead of conic and spherical
geometries. Plasma actuators are being used to provide steering moments,6,7 changes in vehicle lift,8 control
of flow separation,9,10 and in local heat load mitigation.11

A potential limitation of these devices is the large energy requirement necessary when they are employed
to control large scale hypersonic flows by means of Joule heating through energy deposition.12 One possible
way of improving the effectiveness and/or providing finer control is to utilize the ionized portion of the flow.
The ionized flow can be subjected to electric and magnetic fields producing additional/improved flow control.
In order to simulate these effects, computational fluid codes need to be modified to accurately account for the
magnetohydrodynamic (MHD) effects. This is accomplished by solving some form of Maxwell’s equations.
Although it is possible to solve Maxwell’s equations directly,13,14 most computational work in the area
assumes the current continuity equation by means of the low magnetic Reynolds number approximation.

Barmin et al. demonstrated the need for 3D calculations when computing the MHD equations in order to
prevent the introduction of unstable disturbances into the solution.15 MHD work by Gaitonde has included
detailed high order numerical modeling16 and investigations into the Hall effect and ion-slip.17,18 Shang
et al.19 investigated plasma actuators embedded at the entrance of a hypersonic inlet cowl, while Wan et
al. studied MHD power generation.20 With DARPA’s Falcon program entering its 3rd phase21 and several
other hypersonic test programs being conducted in other organizations and countries,22–25 the demand for
continued development of computational tools in hypersonic flows continues to be strong.

The effort of this work is to implement the MHD effects into the 3D fluid solver used in previous work to
quantify the required power expenditures for plasma-assisted devices in realistic hypersonic systems.12,26 In
the following, we first provide a review of the flow code, LeMANS. The Lorentz force and Joule heating (MHD
effects) are added to the conservation equations for a perfect gas solver. The low magnetic Reynolds number
approximation is made to simplify Maxwell’s equations in order to compute the electric and current fields.
A solution to the MHD model is achieved using a finite volume, finite difference scheme. An examination of
several electrical conductivity models is made, including results from a Boltzmann solver. Finally, solutions
validating the MHD module are presented for an analytical case and for flow between two parallel electrode
plates with a potential difference.

2 of 21

American Institute of Aeronautics and Astronautics



II. Method

A. Governing Equations

Flow-field results are obtained using Computational Fluid Dynamics (CFD) to solve the Navier-Stokes
equations. The CFD computations are executed using the Michigan Aerothermodynamic Navier-Stokes
(LeMANS) code which was developed at the University of Michigan.27,28

LeMANS is a general 2D/axisymmetric/3D, parallel, unstructured finite-volume CFD code. The numeri-
cal fluxes between cells are discretized using a modified Steger-Warming Flux Vector Splitting (FVS) scheme,
except near shock waves. In these regions the original Steger-Warming FVS scheme is used. LeMANS is
able to employ a two-temperature model to account for thermal-nonequilibrium and a standard finite rate
chemistry model for non-equilibrium chemistry. The two temperature model assumes that a single tempera-
ture T accounts for the translational and rotational energy modes of all species while the vibrational energy
mode is accounted for by a separate temperature Tv.

The usual conservation equations are solved:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂ρu
∂t

+∇ · (ρu2 + pδij − τ) = j×B (2)

∂E

∂t
+∇ · ((E + p)u− τ · u− q) = j ·E (3)

LeMANS assumes the fluid is continuous and Newtonian. It also assumes Stokes’ hypothesis when
determining the viscous stresses.

τij = µ

(
∂uj
∂xi

+
∂ui
∂xj

)
− 2

3
µ∇ · uδij (4)

Previous work considered a phenomenological model of dissipative heating to account for a thermal
actuator.26 This was represented as an additional source term on the right side of the energy equation (3),
but is replaced with Joule heating (j · E) in the equation’s current form. The conservation of momentum
equation is modified to include the Lorentz force (j×B) on the right hand side of equation (2). These additions
constitute the effects the electric and magnetic fields have on the flow. The vibrational energy equation is
also modified with the inclusion of a Joule heating term (γ j · j/σ), where γ is a factor that accounts for
partitioning of electromagnetic energy deposition between different nonequilibrium modes. This equation is
not included with the abovementioned governing equations because the remainder of the paper only employs
a single temperature model and equilibrium chemistry.

The simulations are performed using second-order accurate spatial discretization and carry double pre-
cision arithmetic throughout. Thermal equilibrium and an eleven species, non-reacting air chemistry model
(N2, O2, NO, N , O, N+

2 , O+
2 , NO+, N+, O+, and e) are used in the simulations, where e is the electrons.

B. Low Magnetic Reynolds Number Approximation

The three additional variables appearing in the modified governing equations (j,B,E) are determined by
first noting that the magnetic Reynolds number, equation (5), is small for the cases of interest. Consequently,
it can be shown that the induced magnetic field can be ignored.29 This means only external magnetic fields
are present in the flow (and must be specified).

Rem =
uL

ηm
(5)

The current and electric field vectors are determined by starting with a generalized form of Ohm’s law
(adjusted for a flow moving relative to a magnetic field B) which relates the two vectors as seen in equation
(6). Following the outline in Ref. 30, the electrical conductivity tensor σ̃ is employed as a compact way of
accounting for ion-slip and the Hall effect. The electrical conductivity tensor is further simplified by ignoring
ion-slip and the Hall effect, which reduces the tensor to its scalar σ multiplied by the identity matrix (σ̃ = σI).
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j = σ̃ · (E + u×B) (6)

Ampère - Maxwell’s law, equation (7), is simplified by neglecting the current displacement term ∂E
∂t . This

assumption is valid when its magnitude is compared to the conduction current (j = σE) for typical conditions
of air, see Ref. 31 for details. The reduced Ampère - Maxwell law is combined with charge conservation,
equation (8), to yield the steady state form of the current continuity equation, equation (9).

∇×B = µ0j + µ0ε0
∂E
∂t

(7)

∇ · j = −∂ρ
∂t

(8)

∇ · j = 0 (9)

Gauss’s Law for magnetism (∇ · B = 0) ensures the magnetic field is divergence free and absent of
magnetic monopoles. This law is combined with the magnetic vector potential (µB = ∇×A) to prove that
A (the vector potential) must exist.

Assuming the electric field vector is smooth and rapidly decaying, Helmholtz’s theorem is used to decom-
pose it into irrotational and divergence-free component vector fields. This is represented as a scalar potential
φ and a vector potential A. (E = −∇φ+∇×A) Using the low magnetic Reynolds number assumption, the
right side of Faraday’s law of induction, equation (10), must be zero for the external magnetic field specified
in this work. Since (∇×E = 0), the electric field is irrotational (curl-free), so Helmholtz’s decomposition of
E is equation (11).

∇×E = −∂B
∂t

(10)

E = −∇φ (11)

Combining equations (6, 9, and 11) produces the Poisson type equation observed in equation (12).

∇ · σ̃ · [−∇φ+ u×B] = 0 (12)

To find the solution for φ, and subsequently E and j, a finite volume method is employed to be consistent
with the flow solver. Rearranging the equation and integrating over an arbitrary volume yields∫

V

∇ · [σ̃ · (∇φ)]dV =
∫
V

∇ · [σ̃ · (u×B)]dV (13)

Applying the Divergence Theorem, equation (13) can be rearranged and written in a more compact form
by introducing scaling vector C which is the sum of the face area multiplied with the dot product of the
transpose of the electrical conductivity tensor and the outward facing normal as described in equation (14).
The face area is A and should not be confused with the vector potential. In 3D: C = [(σ1,1nx + σ2,1ny +
σ3,1nz)A, (σ1,2nx + σ2,2ny + σ3,2nz)A, (σ1,3nx + σ2,3ny + σ3,3nz)A]. Equating the surface integral to a sum
over an arbitrary number of faces in a specific cell produces equation (15).

C = (σ̃T · n)A (14)

faces∑
(∇ · φ) ·C =

faces∑
(u×B) ·C (15)

During every iteration of LeMANS, a Poisson solver (MHD subroutine) is called to compute the electric
and current field vectors by determining the electric potential φ. With the velocity and magnetic field vectors
provided by LeMANS, the right side of equation (15) is computed directly by approximating each face vector
as a volumetric average of the adjoining cells. A finite difference approach is used to determine the electric
potential flux (∇ · φ) through each face as seen in Figure 1. Following Refs. 32 and 33, a second order,
nonuniform difference for the flux is written as

4 of 21

American Institute of Aeronautics and Astronautics



∂φ

∂x
=
φright + (α2 − 1)φface − α2φleft

α(α+ 1)∆x
(16)

where ∆x is the difference between the left cell center and the face center (∆x = |xface−xleft|) and α is the
ratio of the right and left cell center differences (α = |xface−xright

xface−xleft
|). Equations (15 and 16) are applied to

all cells using the Successive Over-Relaxation (SOR) iterative technique. The SOR technique is an iterative
explicit solver that utilizes the direction of change to the solution to extrapolate an improved solution based
on a relaxation constant ω. The method converges more slowly than an implicit scheme,33 but is easier to
implement and parallelize. For all computations presented here, ω = 1.70.

Mixed boundary conditions are generally employed at a solid surface. For electrodes that are good
conductors, the potential is specified, either as a fixed value or determined by auxiliary equations representing
an external circuit. For an insulated boundary, the normal component of current is set to zero: j · n =
σ̃ · (E + u ×B) · n = 0. This can be a quite complicated boundary condition in the general case of tensor
conductivity, but in the case of scalar conductivity and a no-slip wall, it reduces to E · n = 0.

The outward direction of symmetry plane must have a zero gradient electric field (E·n = 0). By definition
the ghost cell center lies on the outward normal vector, so the symmetry plane boundary condition is ∇φ = 0.
The proper boundary conditions in the far-field are less clear for aerodynamic MHD problems. For high
accuracy, it may be necessary to solve the current continuity equation on a larger domain than the fluid
conservation laws since the magnetic field can interact with the far-field. However, for external flows, the
conductivity should drop to a negligible value far from the body such that it is assumed permissible to set
the normal component of the electric field to zero. The normal component of the electric field is assumed
to be very small at the inlet and is neglected (E · n = 0). Finally, the outlet is assumed to be sufficiently
downstream of the primary MHD interaction such that it is reasonable to set the normal component of the
electric field to zero. The inlet and outlet boundary conditions are further simplified by their corresponding
ghost cells (∇φ = 0). Table 1 lists all domain boundaries and their respective conditions.

Table 1. Boundary conditions for MHD solver

Location Type Condition
Inlet Neumann E · n = 0

Far-field Neumann E · n = 0
Symmetry Neumann E · n = 0

Outlet Neumann E · n = 0
Wall (electrode) Dirichlet φ = specified
Wall (insulating) Neumann j · n = 0

The Dirichlet conditions are directly substituted into the ghost cells joining the wall (electrode) boundary
such that the wall face equals the specified value. The Neumann boundary conditions require the electric
potential φ in the ghost cell to be determined iteratively in conjunction with the rest of the MHD solver.
Since each ghost cell only has one face, they are updated to ensure (∇φ = 0) for the face between the ghost
cell and its adjoining real cell before the domain’s interior cells are computed using equation (15).

III. Electrical Conductivity

A. Equilibrium Air

Over the years, equilibrium air properties have been the subject of several researchers.34–39 Research in
this area continues to be further refined because it is necessary to accurately determine the correct thermal
characteristics of a flow field, particularly in reacting flows like hypersonics. In addition to having the
appropriate heat conduction, some electrical conductivity models are a function of the species mole fraction,
another result of the flow field thermal characteristics. A range of input conditions to facilitate comparisons
between various electrical conductivity models is generated utilizing computational research conducted by
Godin and Trépanier40 to produce plots of the mole fractions of equilibrium air for a range of temperatures
and pressures.
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Simulations are run for a temperature range of 102 − 105 K with pressures ranging from 10−3 − 1 atm
for dry air (including 0.93 % argon). Figure 2 shows the species mole fractions consistent with the eleven
species computed in LeMANS (N2, O2, NO, N , O, N+

2 , O+
2 , NO+, N+, O+, and e). As seen in the figures,

a pressure increase shifts the distributions to higher temperatures. Another noticeable result is the missing
species at higher temperatures (T > 15,000 K). These missing species are primarily multi-ionized atomic
nitrogen (N++, N3+, and N4+) as seen in Figure 3 and are usually neglected in hypersonic flow simulations
because the post-shock flow field rarely achieves thermal equilibrium at these temperatures before exiting
the domain.

B. Conductivity Models

As this research area has matured, several models have been developed to capture the behavior of the
electrical conductivity in air which appears to be a function of both pressure and temperature as seen in
Figure 4, reproduced from Sutton’s Engineering Magnetohydrodynamics.31 Several empirical models only
attempt to capture the conductivity once it starts to approach a constant (at high temperatures) because the
conductivity is negligibly small at lower temperatures. Figure 5 is a photocopy from Cambel’s text, Plasma
Physics and Magnetofluid-Mechanics. It shows two such approximations for the electrical conductivity of
argon at p = 0.01 atm.41 The Spitzer-Harm model, equation (17), was developed for fully ionized gases,
whereas the model developed by Chapman and Cowling, equation (18), was developed for weakly ionized
flows.

σ =
1.56× 10−4 × T 1.5

ln(1.23× 104 × T 1.5/n0.5
e )

Ω−1cm−1 (17)

σ = 3.34× 10−12 α

Q T 0.5
Ω−1cm−1 (18)

where α is the degree of ionization and Q is the collision cross section. Using research by Bush,42 Poggie
and Gaitonde developed an electrical conductivity model that is only a function of temperature as seen in
equation (19).43 This model has been adopted by others, including work by Otsu et al.,44,45 which set n = 2
(Poggie and Gaitonde set n = 4). σ0 is a reference conductivity and T0 is the peak post-shock temperature.
One set of reference values employed are σ0 = 731 Ω−1 · cm−1 at T0 = 8000K (p = 34 Pa).

σ = σ0

(
T

T0

)n
(19)

Another weakly ionized model that is only a function of temperature was developed by Raizer. His
method relates the conductivity to an exponential function as seen in equation (20), where T is specified in
Kelvin. This model is considered valid for air, nitrogen, and argon at p = 1 atm.

σ = 83× e−36000/T Ω−1cm−1 (20)

These semi-empirical models are compared against solutions to Boltzmann’s equation using a Boltzmann
solver developed by Weng and Kushner.46 The method of solving Boltzmann’s equation is functionally
equivalent to that proposed by Rockwood.47,48 Although the solver requires the translational temperature,
pressure, and species mole fractions as input parameters, the solution of Boltzmann’s equation only depends
on E/N and each species mole fraction (E is the magnitude of the electric field and N is the total number
density). This means the input temperature and pressure are not adjusted to match the actual flow field.
The solution is achieved using an extensive list of collision cross-section data taken from the compilations
discussed in Refs. 49 and 50. The Boltzmann solver outputs the equilibrium transport coefficients for a
range of E/N which are used to compute the electrical conductivity.

A disadvantage of computing solutions to Boltzmann’s equation is that E is coupled to σ. This means the
MHD solver depends on σ to determine E, see equation (12). Thus, the Boltzmann solver must be coupled
to the MHD solver in order to compute σ, E, and j simultaneously, which increases the computational cost
of the simulation.

Once solutions of Boltzmann’s equation are computed, σ is determined using the resulting transport
coefficients. Using the definition of conductivity for a dc current, equation (21) relates electrical conductivity
to the electric charge (q = 1.6× 10−19 C), the electron number density (ne), the electron mass (9.11× 10−31
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kg), and the electron momentum transfer collision frequency (νm). The electrical conductivity definition is
combined with the definition of electron mobility, equation (22), to yield equation (23).

σ =
q2 ne
me νm

(21)

µ =
q

me νm
(22)

σ = µ q ne (23)

The transport coefficients are given for values at standard conditions (T = 273 K, p = 1 atm). The
electrical conductivity is then computed for a given total number density (N) by utilizing equation (24)
which states the product of the electron mobility and total number density is a constant. This is substituted
into equation (23) to yield equation (25) which relates the electrical conductivity to the electron mobility (a
transport coefficient produced by solutions to Boltzmann’s equation), and the degree of ionization.

µ = µ0

(
N0

N

)
(24)

σ = µ0 N0 q
(ne
N

)
Ω−1cm−1 (25)

C. Conductivity Results

To facilitate comparisons between the various electrical conductivity models, a list of species mole frac-
tions for a range of pressures and temperatures is made using the plots in Figure 2. The table is listed in the
Appendix (Table 2). For the Chapman-Cowling model, the degree of ionization α is the sum of the ionized
species divided by the total number density (α = ΣnI/N), and for simplicity, the collision cross-section is
set equal to the vibrational cross-section for an ideal molecule (Q = 5× 10−17cm2).

The list of collision cross-section data available in the Boltzmann solver does not include NO+ and must
be neglected from the Boltzmann solutions. Fortunately, Table 2 and Figure 2 indicate the mole fraction
of NO+ is very low for all configurations being tested, so its absence is assumed inconsequential. For a
low degree of ionization, the majority of the collisions are electron-neutral or electron-ion. As the degree
of ionization increases, electron - electron collisions must be included, which dramatically increases the
computational time of the solver.

Figures 6-8 show the electrical conductivity distributions of all the models versus temperature at p =
0.001, 0.1, and 1 atm. The solid line shown for the Boltzmann solver is the conductivity for E/N = 10
Townsend (Td). (1 Td = 10−17 V cm2) None of the semi-empirical models fully capture the behavior of
the Boltzmann solver, although the Chapman-Cowling model appears to closely follow its behavior. This is
because both the Chapman-Cowling model and Boltzmann solver directly depend on the degree of ionization.

While the semi-empiric models deviate from the electrical conductivity estimated by the Boltzmann
solver, their reference parameters could be adjusted to better fit specific ranges of conditions. In addition,
they are usually much easier to implement and computationally cheaper than a coupled MHD-Boltzmann
approach. These advantages suggest the use of a semi-empirical model is a better choice for estimating
the electrical conductivity used in the MHD solver as long as the model is valid for flow field conditions.
However, large differences in the electrical conductivity (between the computed and real conductivity) will
result in large changes in the current field and, subsequently, produce incorrect Lorentz force and Joule
heating effects. Therefore, it is essential that care is taken when selecting reference parameters.

IV. MHD Results

In previous work, LeMANS was validated for two different hypersonic cases. Simulations for hyper-
sonic laminar air over elliptic blunt and sharp cones were compared to experimental work investigated by
Nowlan et al.51 and Kimmel et al.52,53 These experimental validation cases were selected because they are
considered representative of a realistic hypersonic air-vehicle geometry and because of the limited amount
of experimental data available. Figure 9 shows the experimental and computational Stanton number (St)
distributions for the Mach 14 blunt elliptic cone investigated by Nowlan et al.51 Full details of the validation
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exercises and results are available in Refs. 12 and 26. Overall, LeMANS is capable of accurately computing
three dimensional hypersonic laminar flows.

A. MHD Validation Cases

1. Analytical case with Dirichlet Boundary Conditions

Validation of the MHD module is accomplished by utilizing the analytical test case developed in the
computational work by Gaitonde et al.30 This validation exercise has been utilized previously by Wan et
al.,20 and is selected for this work because it is simple, has magnetic and velocity field vectors, and an
analytical solution. The governing equation for the test problem is

∇2φ = xez (26)

Dirichlet boundary conditions are assigned to the outer cells for each side of the domain based on the
analytical solution (φ = xez). To simplify the work, the electrical conductivity tensor is set to unity (σ̃ = 1),
although its exact value does not affect the solution. The magnetic and velocity field vectors are chosen as
B = [0, 1

2e
z, 0] and u = [u, 0, −1

2 x
2] respectively.

Several meshes are employed including a uniform rectilinear, a nonuniform rectilinear (with cell clustering
near x = 0, y = 0, z = 0), and a rotated nonuniform rectilinear mesh, as seen in Figure 10. Each mesh has
sides with length equal to one and the non-rotated meshes lie within the domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤
z ≤ 1. The formal order of accuracy is estimated using the Richardson extrapolation function predefined
in Tecplot 360 R©. This method determines the formal order of accuracy by extrapolating the results from a
sequence of meshes refined by a factor of two, i.e. the medium mesh has twice as many grid points on each
side compared to the coarse mesh. For the cases examined, coarse = 10× 10× 10, medium = 20× 20× 20,
and fine = 40× 40× 40. The uniform mesh has a formal order of accuracy of 1.999, which is expected since
a 2nd order accurate finite difference scheme is employed. The nonlinear mesh produces a formal order of
accuracy of 1.98 and the rotated mesh yields 1.80 due to the limitations of the finite difference approach
employed.

Figure 11 shows the computed and analytical solutions for the rotated nonuniform mesh with part of
the mesh removed to reveal the interior cells. The computed solutions are almost identical to the analytical
solutions. Figure 12 plots the Least Squares Norm, for each of the meshes versus the number of iterations
using the SOR method (ω = 1.7). The uniform mesh requires more iterations to converge because ω is not
optimized for its geometry and grid spacing.

2. Flow Between Two Electrodes

A second validation exercise is performed simulating flow between two parallel electrodes separated by
a distance d, where d is measured from the bottom electrode (z = 0). Again, this validation exercise follows
the computational work by Gaitonde et al.30 The electrodes have a specified potential in which the top
electrode plate is equal to one and the bottom is set to zero (φtop = 1, φbottom = 0). Neumann boundary
conditions are employed along the remaining sides of the domain so the normal component of the gradient is
zero (∂φ∂n = 0). Figure 13 illustrates the domain with a rectilinear nonuniform mesh used in the simulation.
For these grids, cell clustering is applied near both electrodes using a bi-exponential decay of cell size along
the z axis.

The simulations are computed assuming the velocity vector is zero (u = 0) which significantly simplifies
equation (12) to obtain a theoretical solution such that the current is constant (j = −σ̃ · ∇φ = constant).
Two different electrical conductivity models are simulated. In the first case, σ is constant (σ = 1), while the
second case assumes the electrical conductivity diminishes as d increases (σ = 1/2d) as seen in Figure 14.

For constant electrical conductivity (σ = 1), the theoretical solution reduces such that the gradient of
the potential equals zero. The resulting electric potential is φ = z = d for the given boundary conditions.
The theoretical solution for the second case is determined by recalling the Neumann boundary conditions
applied to the four side walls, which indicate that the solution φ will not vary along the x or y axes. Since
ion-slip and Hall effects are being neglected, the current equation reduces to

jz = σ ∇zφ = 2−d ∇zφ = constant = C (27)
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This equation can be further simplified by noting d equals z for the domain (∂φ∂z = C 2d = C 2z).
Integrating both sides over the domain and applying the electric potential from both plates yields

∫ 1

0
∂φ
∂z dz =

∫ 1

0
C 2zdz (28)

∂φ
∂z = ln 2 2z (29)

This is extended using each plate’s electric potential to obtain the theoretical solution, which is written
noting d equals z for the domain.

φ = 2d − 1 (30)

Figure 15 plots the computed and analytical solutions for the constant electrical conductivity problem
on the nonuniform mesh with part of the mesh cut away to reveal the interior cells. Figure 16 plots the
electric potential distributions along the x = 0.5, y = 0.5 ray for both electrical conductivity problems. The
figures demonstrate that the MHD solver accurately computes the electric potential for the validation cases
performed.

V. Conclusions

A low magnetic Reynolds number approximation was made to simplify Maxwell’s equations in order to
accurately account for electromagnetic effects for weakly ionized flows. A solution to the resulting MHD
model was presented using a finite volume, finite difference scheme and coupled to LeMANS, an unstructured
Navier-Stokes solver. Validation cases were successfully run for an analytical case and for flow between two
parallel electrode plates with a potential difference.

In addition to the MHD solver, an examination of several electrical conductivity models was made.
Although the semi-empiric models did not fully capture the behavior of the electrical conductivity distribution
produced by the Boltzmann solver, they are valid for specific ranges of conditions and reference parameters.
A more general approach would be to couple the Boltzmann solver to the MHD module. While this increases
the computational cost of the simulation, the generality of the approach makes it attractive.

VI. Future Work

In further studies, we will focus on the parallelization of the MHD solver and the MHD effects for thermal
nonequilibrium flows. This includes modifications to the mass diffusion terms within the conservation equa-
tions (finite chemistry). These improvements will be used to investigate whether additional enhancements to
the flow field can be achieved by introducing a magnetic field to the flow over a realistic hypersonic vehicle
which is using an arc discharge between a cathode and anode on the vehicle’s surface.
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Appendix

Table 2. Temperature, pressure, and mole fractions for air computed using the computational code cited in
Ref. 40. (χ = N2/O2/NO/N/O/N+

2 /O+
2 /NO+/N+/O+/e)

Pressure Temperature Mole Fractions [χ]
0.001 atm 2000 K 0.80/0.18/0.01/0.00/0.01/0.00/0.00/0.00/0.00/0.00/0.00
0.001 atm 4000 K 0.64/0.00/0.00/0.04/0.31/0.00/0.00/0.00/0.00/0.00/0.00
0.001 atm 6000 K 0.01/0.00/0.00/0.79/0.19/0.00/0.00/0.00/0.00/0.00/0.00
0.001 atm 8000 K 0.00/0.00/0.00/0.70/0.17/0.00/0.00/0.00/0.06/0.01/0.07
0.001 atm 10000 K 0.00/0.00/0.00/0.19/0.06/0.00/0.00/0.00/0.32/0.06/0.38
0.001 atm 12000 K 0.00/0.00/0.00/0.01/0.01/0.00/0.00/0.00/0.40/0.09/0.49

0.100 atm 2000 K 0.81/0.19/0.01/0.00/0.00/0.00/0.00/0.00/0.00/0.00/0.00
0.100 atm 4000 K 0.68/0.00/0.02/0.00/0.30/0.00/0.00/0.00/0.00/0.00/0.00
0.100 atm 6000 K 0.32/0.00/0.00/0.42/0.25/0.00/0.00/0.00/0.00/0.00/0.00
0.100 atm 8000 K 0.01/0.00/0.00/0.79/0.19/0.00/0.00/0.00/0.01/0.00/0.01
0.100 atm 10000 K 0.00/0.00/0.00/0.69/0.17/0.00/0.00/0.00/0.06/0.01/0.07
0.100 atm 12000 K 0.00/0.00/0.00/0.36/0.10/0.00/0.00/0.00/0.23/0.03/0.27

1.000 atm 2000 K 0.81/0.19/0.01/0.00/0.00/0.00/0.00/0.00/0.00/0.00/0.00
1.000 atm 4000 K 0.69/0.03/0.04/0.00/0.24/0.00/0.00/0.00/0.00/0.00/0.00
1.000 atm 6000 K 0.53/0.00/0.01/0.17/0.29/0.00/0.00/0.00/0.00/0.00/0.00
1.000 atm 8000 K 0.06/0.00/0.00/0.73/0.20/0.00/0.00/0.00/0.00/0.00/0.00
1.000 atm 10000 K 0.00/0.00/0.00/0.76/0.18/0.00/0.00/0.00/0.02/0.00/0.02
1.000 atm 12000 K 0.00/0.00/0.00/0.62/0.16/0.00/0.00/0.00/0.10/0.01/0.11
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Figure 1. An illustration of the nonuniform finite difference methodology used to find the flux through face i
from i− 1 to i+ 1. (φ is known at i+ 1 [blue] and unknown at i− 1 [red])
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Figure 2. Mole fractions of equilibrium air versus temperature for various pressures. (11 species)
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Figure 3. Mole fractions of equilibrium air versus temperature for p = 1 atm. (14 species)
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Figure 4. Electrical conductivity of equilibrium air for various temperatures and pressures reproduced from
Ref. 31.

Figure 5. Electrical conductivity of equilibrium argon at p = 0.013 atm from Ref. 41.
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Figure 6. Electrical conductivity distribution versus temperature for various electrical conductivity models.
(p = 0.001 atm)
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Figure 7. Electrical conductivity distribution versus temperature for various electrical conductivity models.
(p = 0.1 atm)
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Figure 9. Stanton number distributions for Mach 14 blunt elliptic cone (±4.5 percent experimental uncer-
tainty).51
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Figure 10. Sample rectilinear meshes used in the analytical MHD validation case. (20× 20× 20)
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Figure 11. Contours of the electric potential φ for the analytical MHD validation case. The left side of the
domain is composed of computed values while the right side is theoretical. (20× 20× 20)
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Figure 12. Least Square Normal versus iteration number for the various meshes used in the analytical validation
case. Computations where made using the SOR method with ω = 1.70. (20× 20× 20)
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Figure 13. Nonuniform mesh for current flow between parallel electrode plates. (10× 10× 20)
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Figure 14. Various conductivity models used in flow between parallel electrode plates.
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Figure 15. Contours of the electric potential φ for parallel electrodes with no flow (σ = Constant). The left
side of the domain is composed of computed values while the right side is theoretical. (10× 10× 20)

20 of 21

American Institute of Aeronautics and Astronautics



φ

d

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Diminishing (1/2d)
Constant
Theory

Electrical Conductivity, σ

Figure 16. Electric potential distributions between parallel electrode plates with no flow. Two electrical
conductivity models are shown (σ = 1 and σ = 1/2d). The distribution is extracted along x = 0.5, y = 0.5.
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