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High-Specific Impulse Hall Thrusters, Part 2: Efficiency Analysis

Richard R. Hofer*
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Performance and plasma measurements of a high-specific impulse (2000-3000 s) Hall thruster were analyzed
using a phenomenological performance model that accounted for a partially ionized plasma containing multiply
charged ions. Anode efficiency over discharge voltages of 300-900 V ranged from 57 to 69 %, which corresponded to
89-97% voltage utilization, 86-90% mass utilization, 77-81% current utilization, and 97-99 % charge utilization.
Although the net decrease of efficiency due to multiply charged ions was at most 3%, the effects of multiply charged
ions on the discharge current could not be neglected because the increase of the discharge current with voltage was
primarily due to the increasing fraction of multiply charged ions. This and the fact that the maximum deviation of
the electron current from its average value was only +5/—14 % illustrated how efficient operation at high-specific
impulse was enabled through the regulation of the electron current with the applied magnetic field. The electron
Hall parameter, defined by acceleration zone plasma properties, was nearly constant with voltage, decreasing from
an average of 210 at 300 V to an average of 160 between 400 to 900 V.

Nomenclature

A = cross-sectional area of the annular discharge
chamber

B, = radial component of the magnetic field

B, max = maximum radial magnetic field on discharge
chamber centerline

By = magnetic field normalization constant

E, = axial component of the electric field

e = electron charge

I, = ion beam current, X I;

1, = discharge current, [, + 1,

1, = axial electron current

I; = current of the ith ion species

i = ion charge-stage index, 1, 2, 3, etc.

Jezs Jeo = axial and azimuthal electron current densities

My, M, = anode and cathode mass flow rates

my, = jon beam mass flow rate, Xm;

m; = mass flow rate of the ith ion species

m, = total mass flow rate, m, + m,

Mye = mass of a xenon atom

N = total number of ion species

ny = ion beam number density, ¥n;

N, = electron number density

n; = number density of the ith ion species

P, = discharge power, V, 1,

Py jet (or beam) power, T2 /2n1,
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Prag = electromagnet coil power

P, = total input power, P; + Ppae

T = thrust

V, = average acceleration voltage, V, — V;
Vi, Vi = discharge and ion loss voltages

Vinp = most-probable ion voltage, ~V,

Vy plasma potential

Vipa» Vine = uncorrected and corrected ion voltages

VExB = ExB drift velocity

Z; = charge-state of the ith ion species, 1, 2, 3, etc.
£ = electron current fraction, 1,/1,

& = fraction of the ith ion species, n; /n,

Na> N = anode and current utilization efficiencies

Ne = cathode efficiency, m, /m,

Nmag = electromagnet coil efficiency, P,/ P,

Nm, Mg, Ny = mass, charge, and voltage utilization efficiencies
Ny = total efficiency

& = exchange ratio, m,.1;/m,e

Q. = electron Hall parameter

Q; = current fraction of the ith ion species, I; /1)

1. Introduction

ESTERN interest in Russian Hall thruster technology
emerged in the 1990s partly because the 1600-s specific im-
pulse characteristic of flight hardware fell between arcjets (less than
1000 s) and gridded ion thrusters (greater than 3000 s) (Refs. 1 and
2). After Russian Hall thrusters met western flight qualification stan-
dards in the mid-1990s, interest in expanding the specific impulse
range developed, mostly toward 3000 s, so that the Hall thruster
could more fully bridge the 1000-3000 s specific impulse gap. These
activities were motivated by studies indicating the mission bene-
fits for Earth orbiting?~’ and interplanetary’~!! spacecraft if Hall
thrusters could operate efficiently at high-specific impulse (2000—
3000 s). These benefits have included greater payloads, launch vehi-
cle step downs, reduced trip times, or lower required power. Because
the realization of these benefits depends on high-specific impulse
Hall thrusters being available, a clear need exists to explore the
development challenges of such technology enhancements.
Beginning in the late 1990s, the feasibility of operating mod-
ern, xenon Hall thrusters at high-specific impulse was investi-
gated. Although the initial studies of commercially developed Hall
thrusters demonstrated greater than 4000-s specific impulse, maxi-
mum thruster efficiency occurred at less than 3000 s (Refs. 12—14).
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Follow-on efforts focused on the development and characterization
of xenon Hall thrusters capable of both high-specific impulse and
high-efficiency operation.'>~22 The research resulted in the NASA-
173M series of laboratory-model Hall thrusters.

The designs of the NASA-173M series thrusters were based on
the hypothesis that the efficiency maximum observed with the com-
mercially developed thrusters was actually a consequence of modern
magnetic field designs that have been optimized for 1600-s specific
impulse. The new thrusters were, therefore, an attempt to improve
efficiency through the implementation of a magnetic circuit intended
for high-specific impulse operation. The basis of the magnetic field
design was a topography shaped as a plasma lens.?

The role of the magnetic field in achieving efficient operation
can be shown by considering the relationship between the electron
Hall parameter, the axial electron current, and the magnetic field.
First, as a basic operating principle of Hall thrusters the electron
Hall parameter satisfies

Qe = Jeo/Je: > 1 M

In this form, the Hall parameter characterizes the number of az-
imuthal orbits that an electron executes before being perturbed by
particle collisions, collisions with the walls, or plasma fluctuations.
The high value of the Hall parameter, being much greater than unity
but not infinite, implies that electrons must undergo a sufficient num-
ber of ionizing collisions on their way to the anode to sustain the
plasma discharge while still maintaining a bulk azimuthal current
that is several times larger than the axial current. When this argu-
ment is taken one step further, it is reasonable to expect that efficient
Hall thruster operation can only be achieved over a narrower range
of Hall parameters than which a stable discharge can be achieved.

The relationship between the Hall parameter and thruster effi-
ciency can be shown by considering the current utilization effi-
ciency. The current utilization efficiency, which largely determines
the anode efficiency, is given by

Mo =1Io/Ia = 1/[1 + (I/1,)] @

For constant discharge current, Eq. (2) shows how minimizing the
electron current increases the current utilization by maximizing the
ion yield. The electrons also largely determine the ionization effi-
ciency (through their average temperature) and the acceleration ef-
ficiency (by establishing the self-consistent electric field). Clearly,
an understanding of electron dynamics is vital in the study of Hall
thruster physics.

Unfortunately, the physics determining the axial electron current
in a Hall thruster is a seemingly intractable problem that has plagued
researchers for decades.?>~ This is mainly due to the presence of
anomalous diffusion mechanisms that increase the electron cross-
field transport beyond that predicted by classical transport theory.
The two leading candidates thought to be responsible for anomalous
transport are collisions with the walls and turbulent plasma fluctu-
ations. Determining which of these mechanisms is dominant has
been the subject of considerable debate since the 1960s. A review
in Ref. 21 of past experimental, numerical simulation, and theoret-
ical research shows that it is likely that both mechanisms each play
a role in different regions of the plasma and at different operating
conditions. Fortunately, although a complete understanding of the
electron dynamics has so far proven to be elusive, it is known that
the electron dynamics can be influenced by controlling the shape
and strength of the magnetic field. At least in this sense, it is fair to
say then that the magnetic field is the most important aspect of Hall
thruster design.

The significance of the magnetic field in achieving efficient opera-
tion at high-specific impulse has been verified with the NASA-173M
Hall thrusters. Experiments with the first thruster, the NASA-173M
version 1, validated the plasma lens design by showing how altering
the magnetic field topography at high-specific impulse enhanced
efficiency.' In part 1 of this paper,?? experiments with the second
thruster, the NASA-173M version 2 (v2), are reported that demon-
strate there is a minimum current density and optimum magnetic
field topography at which efficiency monotonically increases with

voltage. Comparison of the thrusters has also shown that efficiency
can be optimized for specific impulse by varying the concavity of
the plasma lens.?

Design and experiment have established that Hall thrusters can
operate efficiently at high-specific impulse. However, a need still
exists to improve our understanding of the relationship between
the thruster design and the plasma to further increase the perfor-
mance, thermal margin, stability, and lifetime of future designs. To
that end, a series of diagnostics were deployed with the NASA-
173Mv2 to study the competing mechanisms affecting performance
at high-specific impulse.'3~2!

In this paper, we consider the question of how the magnetic field
enabled high-efficiency operation of the NASA-173Mv2. We be-
gin by presenting the relevant details of a performance model de-
rived in Ref. 21. Select results from the diagnostic studies are then
reviewed and analyzed in the context of the model. Our analysis
demonstrates how efficient, high-specific impulse operation of the
NASA-173Mv2 was enabled through the regulation of the electron
current with the magnetic field. Furthermore, we show that efficient
operation was achieved over a limited range of electron Hall param-
eters by showing that the Hall parameter was nearly constant over
a broad range of discharge voltages.

II. Phenomenological Model of Hall
Thruster Efficiency

In this section, the essential details from a phenomenological Hall
thruster performance model are presented.”’ The model expresses
the performance of a Hall thruster as a function of the utilization
efficiencies of current, mass, voltage, and charge by accounting
for a partially ionized plasma consisting of multiply charged ions.
When combined with experimental data, the model can be used to
weigh the relative importance of various plasma properties affecting
performance such as multiply charged ions or the electron current.
Although the model can be used to compute each of the performance
parameters, only those portions of the model concerning efficiency
are presented here.

Excluding the electrical efficiency of the systems that deliver
power to a Hall thruster, the total thrust efficiency 7, is the ratio of
jet power in the exhaust to the total input power

N = P/ Pr = (T° [ 2014 Pa) (Pa/ P) Gita /1it,) = Nathmaghe  (3)

The cathode efficiency 7. and electromagnet efficiency 7., account
for the cathode flow rate and the power supplied to the electromagnet
coils, respectively. Because these losses are not directly related to the
production of useful thrust, the focus here is on the anode efficiency
Na-

The anode efficiency is determined by the efficiency of the ion-
ization and acceleration processes. Although these processes are
interrelated and not easily separated analytically, one way to de-
compose the anode efficiency is by defining the following utilization
efficiencies.

1) Charge utilization efficiency is the net efficiency decrease due
to multiply charged ions.

2) Voltage utilization efficiency is the conversion of voltage into
axially directed ion velocity.

3) Current utilization efficiency is the fraction of ion current con-
tained in the discharge current.

4) Mass utilization efficiency is the conversion of neutral mass
flux into ion mass flux.

The anode efficiency is then the product of these four processes
given by

Na = T2/2ma Pd = nqnunhnm (4)

where the partial efficiencies are the charge utilization efficiency

ng = ( ZZQS;{ ;/27 ) (%)
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the voltage utilization efficiency
m=Ve/Va=1=V/Vy (6)
the current utilization efficiency
m=1In/li=1—¢ @)
and the mass utilization efficiency
m Qi
=t =€ Y 8)

(Throughout this paper, summations are for each ion species i from
1 to N, where N is the total number of ion species.) The current,
mass, and charge utilization efficiencies are interrelated due to their
dependence on the ion current and the ion current fractions. Thus,
the anode efficiency can also be expressed as

(- WY aere (0 ) ©)
Na = 7 & JZ
—_——

M NbMNmMNg

The electron current fraction ¢ can be calculated using Eq. (9)
if the anode efficiency, ion current fractions, and ion loss voltage
are known. Equations (5-8) can then be used to compute each of
the utilization efficiencies. For the experiments reported here, the
anode efficiency was measured with a thrust stand, the ion current
fractions were measured with an ExB probe, and the ion loss voltage
was measured with a retarding potential analyzer.

III. Experimental Apparatus

A. Hall Thruster

Shown as Fig. 1 in part 1 of this paper (Ref. 22) the laboratory-
model NASA-173Mv2 is asingle-stage, magnetic layer Hall thruster
sized for a nominal discharge current of 10 A and discharge volt-
ages of 500-800 V. The discharge chamber has an outer diameter
of 173 mm and is made from boron nitride. The magnetic circuit
is similar to the generic Hall thruster schematic shown as Fig. 3 in
Ref. 22. A fixed structure of iron pole pieces, an inner coil and an
outer coil, form the primary magnetic circuit. Fine control of the
magnetic field is provided with an internal trim coil and an external
trim coil. The internal trim coil primarily affects the radial magnetic
field in the discharge chamber, whereas the external trim coil af-
fects the magnetic field downstream of the exit plane and near the
cathode.

The thruster was powered with commercially available power
supplies. A 100-uF capacitor in parallel with the main discharge
supply was used as the discharge filter. A laboratory-model hollow
cathode rated for emission currents up to 20 A was used to supply
electrons to the discharge chamber for ionization and the plume for
neutralization. The cathode heater and keeper were used only during
the thruster ignition sequence. Xenon (99.9995% pure) was supplied
with commercially available mass flow controllers that were cali-
brated before each experiment using a constant-volume method. The
uncertainty of the mass flow calibrations were on average £1.0%.
Thruster telemetry was acquired using a 22-bit datalogger that was
calibrated using digital multimeters with uncertainties of +0.05%
for voltage and £0.2% for current.

B. Vacuum Facility

All experiments were conducted in Vacuum Facility 12 (VF12)
at NASA John H. Glenn Research Center.”? VF12 is a cryogeni-
cally pumped, cylindrical, stainless steel vacuum chamber that is
3 m in diameter and 9.6 m in length. The NASA-173Mv2 was al-
ways mounted on a thrust stand, with the thruster centerline near the
chamber’s vertical centerline, and fired 8.9 m down the length of the
tank toward the cryopanels, which are located along the back-half of
VF12. When the plume probes were used (Secs. II1.D and IIL.E), they
were located 2 m downstream of the thruster exit plane on thruster
centerline, within an accuracy of £0.5 cm in both the axial and radial

directions. (Only one probe was in VF12 at a time during testing.)
A nitrogen calibrated hot-cathode ionization gauge, which was lo-
cated 5.2 m downstream of the thruster, recorded the background
pressure. The indicated pressure measurements were corrected for
xenon using the base pressure on air (typically 1.0 x 10~ torr) and
a correction factor of 2.87 for xenon.?! For a total xenon flow rate
of 11 mg/s, the corrected pressure was 4.6 x 107° torr.

C. Thrust Stand

Thrust measurements were taken using a null-mode, inverted-
pendulum thrust stand that had been used previously in VF12 with
a 10-kW Hall thruster.?! The thrust stand was described in detail in
Ref. 22. Measurement uncertainty was predominantly due to thermal
drift and was estimated to be 0.5 mN. Repeatability was quantified
by periodically returning to select operating points and was influ-
enced more by the thruster, for example, by returning to the same
discharge current, than the thrust stand. For a given operating point,
the average repeatability of thrust measurements was 1% of the
reported values. Given the uncertainty of the thrust, mass flow rate,
current, and voltage, the propagated uncertainty of the efficiency
was £2.3%. For example, if the measured efficiency was 0.500,
then the absolute uncertainty would be +0.012.

D. ExB Probe

An ExB probe, or Wien filter, is a bandpass ion filter that selects
ions according to their velocities through the application of crossed
electric and magnetic fields.??=3> Most probes establish a constant
magnetic field with permanent magnets while the electric field is
established between two parallel plates. Sweeping the plate voltage
while monitoring the ion current that passes through the probe yields
a current—voltage characteristic that is related to the ion velocity
distribution function. Because the velocity of multiply charged ions
in Hall thrusters is proportional to the square root of their charge
state, an ExB probe can be used to discriminate between ion species.
Analysis of the ion current peaks from the probe characteristic can
then be used to compute the ion species fractions.

The ExB probe used in these experiments was based on previous
designs used to study ion and Hall thrusters**—3* and was described
in detail in Ref. 21. The acceptance angle of the probe was 0.7 deg.
Probe resolution, based on equations from Ref. 33, was conserva-
tively estimated as 7% of the ion energy. The entrance and exit col-
limators were aligned perpendicular to the thruster exit plane within
an accuracy of +0.5 deg. After considering the known sources of
error,”! the absolute measurement uncertainty of the species frac-
tions was estimated to be £0.04, +0.02, and +0.01 for Xe*, Xe**,
and Xe**, respectively. At 300 V, this equated to a percentage un-
certainty of +4%, +50%, and £100% for the species fractions of
Xet, Xe?t, and Xe3t, respectively. These uncertainties include the
effects of using a single, axial sampling location during the measure-
ments as inputs to the performance model. A more accurate method
would include the radial variation of the species fractions, weighted
by the local current density, so that a global average for the thruster
could be computed. Because the experiments were limited to axial
measurements, the additional uncertainty due to neglecting radial
variations were instead included in the uncertainty estimates.

E. Retarding Potential Analyzer

A retarding potential analyzer (RPA) selectively filters ions by
applying a retarding potential across an inlet grid.’®3’ The probe
acts as a high-pass filter by allowing only ions with voltages, that
is, energy-to-charge ratios, greater than the grid voltage to pass
and reach a collection electrode. The derivative of the resulting
current—voltage characteristic is then proportional to the ion voltage
distribution function.*

The RPA used in this investigation was a three-grid design de-
scribed in detail in Ref. 21. Measurements of the ion voltage distribu-
tion were taken with respect to facility ground. Plasma potential V,
measurements taken with a cylindrical langmuir probe (not shown,
see Ref. 21) were used to correct the RPA data so that the true ion
voltage distribution could be computed, that is, Viye = Vipa — V.
The most-probable ion voltage Vi,, and the ion loss voltage V; were
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then found from the true ion voltage distribution. The most-probable
ion voltage was defined as the voltage where the ion current was
greatest. The ion loss voltage was then computed as the difference
between the discharge voltage and the most-probable ion voltage,
thatis, V; = V4 — V. The acceptance angle of the probe was 45 deg.
The face of the probe inlet was aligned parallel to the thruster exit
plane within an accuracy of £0.5 deg. After considering the known
sources of error,?! the uncertainty of the most-probable voltage was
estimated as +10/—20 V. Similar to the ExB probe described ear-
lier, these uncertainties include the effects of using a single, axial
sampling location during the measurements as inputs to the perfor-
mance model.

F. Hall Probe

A commercially available, three-axis Hall probe was used to mea-
sure the radial magnetic field of the thruster at atmospheric condi-
tions (no plasma). The Hall probe, which was described in detail
in Ref. 21, was placed on the channel centerline at the axial lo-
cation of the maximum radial magnetic field, B, ., Which is near
the discharge chamber exit plane. Before collection of data, the Hall
probe was zeroed using a zero-Gauss chamber with the thruster coils
off and the probe located 300 mm from the thruster. Measurement
uncertainty, which was primarily due to positional and alignment
errors, was estimated as +10%.

IV. Results

Performance and probe measurements of the thruster were con-
ducted at xenon mass flow rates of 10 mg/s through the anode and
1.0 mg/s through the cathode. These flow rates have proven to be
an acceptable balance between performance, thermal margin, and
stability up to discharge voltages of 1000 V (Ref. 21).

The performance evaluation discussed in part 1 (Ref. 22) estab-
lished the coil currents that maximized thruster efficiency. The gen-
eral method for taking data was to set the voltage and flow rate and
then investigate the effects of each coil on discharge current, plasma
oscillations, and anode efficiency. The effects of changing the mag-
netic field topography were investigated by energizing the thruster
coils in different combinations, which are labeled subsequently as
1) inner coil—outer coil, only the inner coil and outer coil were en-
ergized; 2) internal trim coil—the internal trim coil was energized
in addition to the inner coil and outer coil; 3) internal trim coil,
external trim coil—both trim coils were energized in addition to the
inner coil and outer coil; and 4) external trim coil—the external trim
coil was energized in addition to the inner coil and outer coil.

The probe measurements used the coil currents found during the
performance evaluation that maximized efficiency. The performance
measurements typically did not include data with the external trim
coil unless the internal trim coil was also energized. During the ExB
probe and RPA experiments, the external trim coil combination was
included at all discharge voltages so that the effects of the external
trim coil could be investigated separate from the internal trim coil.

For all of the experiments, the thruster was operated for 2—4 h
after initial exposure to vacuum conditions to allow for outgassing
of the discharge chamber walls. On subsequent thruster shutdowns
and restarts or a change in the discharge voltage, the thruster was
operated for at least 30—60 min before data were acquired. This
procedure allowed enough time for the discharge current to reach a
steady-state value.

A. Anode Efficiency

Anode efficiency measurements using the thrust stand were taken
during the performance characterization discussed in part 1(Ref. 22)
of this paper and are tabulated in Ref. 21. Figure 1 here shows that the
anode efficiency at 10 mg/s increased monotonically with discharge
voltage from 56.5% at 300 V to 68.5% at 1000 V. Total efficiency
(not shown) spanned the range from 51.1% at 300 V to 60.8% at
1000 V. While providing a modest improvement to performance,
trim coils were not required to obtain a continuously increasing
efficiency-specific impulse characteristic. This was one indication
that the magnetic circuit of the thruster was optimized for high-
specific impulse operation. Additional details on the effects of the
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applied magnetic field on thruster characteristics are discussed in
Ref. 22.

B. Ion Species Fractions

ExB probe measurements of the ion species fractions were taken
at discharge voltages between 300 and 900 V (Ref. 21). The ion
species fractions are shown in Fig. 2 as a function of discharge
voltage and magnetic field configuration. Although the fraction of
multiply charged ions increased with voltage, Xe™ still dominated
the plasma at all voltages. At constant discharge voltage, there was
no systematic dependence of the species fractions with the magnetic
field configuration. The 7% energy resolution of the ExB probe may
have contributed to this result by masking small changes of the ion
species fractions. Between 300 and 900 V, the species fraction of
Xe™* decreased from 0.96 to 0.81, whereas the Xe?* species fraction
increased from 0.03 to 0.16 and the Xe3* species fraction increased
from 0.01 to 0.03. At 300 V, the fractions of Xe>* and Xe** were
lower, but still consistent with, Hall thruster studies that have re-
ported species fractions of 0.06-0.11 Xe?* and 0.01 Xe** (Refs. 35,
38, and 39).

C. Ion Loss Voltage

RPA measurements of the ion loss voltage were taken at discharge
voltages between 300 and 800 V (Ref. 21). A grid short inside the
RPA ended testing at 800 V after testing only with the inner coil
and outer coil. The ion loss voltage is shown in Fig. 3 as a function
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of discharge voltage and magnetic field configuration. At constant
discharge voltage, there was no systematic dependence of the ion
loss voltage with the magnetic field. As in the case of the ExB probe,
this trend may have been due to the limited voltage resolution of the
RPA. The ion loss voltage decreased with discharge voltage from 35
Vat300 Vto25V at 800 V. At 300V, the ion loss voltage was lower,
but still consistent with Hall thruster studies that have reported ion
loss voltages between 45 and 50 V (Refs. 35, 39, and 40).

D. Magnetic Field Strength

Measurements with the Hall probe of the maximum, radial mag-
netic field strength on the channel centerline were taken at the coil
combinations corresponding to discharge voltages of 300-1000 V
(Ref. 21). The magnetic field strength, normalized by an arbitrary
constant By, is shown in Fig. 4 for each of the coil combinations
from the performance characterization. Operating points where the
external trim coil was energized are not explicitly shown because the
external trim coil has a negligible effect on the magnetic field in the
discharge chamber. The magnetic field increase was nearly linear
with voltage. Between 300 and 400 V, the magnetic field abruptly
jumped and then linearly increased between 400 and 1000 V. The
increase in magnetic field between 300 and 400 V corresponded to
increased plume divergence and discharge current oscillations also
measured between 300 and 400 V (not shown, see Ref. 22). The
magnetic field increased by a factor of 1.5 between 300 and 400 V
and by a factor of 1.7 between 400 and 1000 V. Between 300 and
1000 V, the magnetic field increased by a factor of 2.6.

V. Discussion

A. Charge Utilization Efficiency
Figure 5 shows the charge utilization efficiency computed with
Eq. (5). In Fig. 5 and as shown subsequently, error bars representing
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the propagated uncertainty are shown on the inner coil, outer coil
coil combination only. The charge utilization averaged 98.5% at 300
V and then decreased at a nearly linear rate to an average of 97.6%
at 800 V. A (relatively) sharp decrease occurred between 800 and
900 V, where the charge utilization dropped to an average of 97.0%.

Although the charge utilization defined by Eq. (5) does notinclude
the effects of multiply charged ions on the current or mass utilization,
the charge utilization is a measure of the net effect of multiply
charged ions on performance.?! Thus, the net decrease of the anode
efficiency due to multiply charged ions averaged 1.5-3.0% between
discharge voltages of 300 and 900 V. This statement is not meant to
imply that multiply charged ions can be neglected in our analysis.
Multiply charged ions significantly affect the ion current calculation
and must be included (Sec. V.C).

B. Voltage Utilization Efficiency

Figure 6 shows the voltage utilization efficiency computed with
Eq. (6). The voltage utilization was computed only for the thruster
operating points, that is, coil combinations, that were studied dur-
ing the performance characterization. The RPA data include all of
the thruster operating points from the performance characterization
between 300 and 700 V. At 800 V, data with the RPA were acquired
only with the inner coil and outer coil, and no data were collected
with the RPA at 900 V. Because the voltage utilization showed a
clear trend with discharge voltage, the ion loss voltage was conser-
vatively extrapolated for the missing data points at 800 and 900 V.
The ion loss voltage was set to 25 V for the operating conditions at
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Fig. 7 Discharge, ion, and electron current vs discharge voltage at
10 mg/s.

800 V using the trim coils (the same as the measured value at 800
V, IC and OC). The ion loss voltage was set to 24 V for each data
point at 900 V, which was consistent with the observed decrease
in ion loss voltage with increasing discharge voltage. Because Eq.
(9) depends on the ion loss voltage, the computations that follow in
Secs. V.C-V.G are also based on these extrapolations.

Figure 6 shows that the voltage utilization averaged 88.7% at
300 V and increased to an average of 96.9% at 800 V. The voltage
utilization was 97.3% for the extrapolated data at 900 V. The increase
of the voltage utilization was primarily the result of the increasing
discharge voltage because the decrease of the ion loss voltage was
negligible in comparison.

C. Electron and Ion Current

Figure 7 shows the discharge current and the ion and electron
current computed with Eq. (9). The electron current was relatively
constant between 300 and 700 V and then decreased between 700
and 900 V. The average value of the electron current between 300
and 900 V was 2.06 A with a maximum deviation of +5%/—14%
from the average. In contrast, the ion current steadily increased with
discharge voltage from a minimum of 6.79 A at 300 V to a maximum
of 8.05 A at 900 V. The same relative increase of the ion current
with voltage has been confirmed with unpublished results on the
same thruster from a cathode-plane Faraday probe that employed
a method similar to that found in Ref. 18. The discharge current
also increased with discharge voltage from a minimum of 8.84 A
at 300 V to a maximum of 9.83 A at 900 V. Thus, the increase in
the discharge current was attributed to the increasing fraction of
multiply charged ions, rather than an increase of electron current.
This demonstrates that the electron current in a high-specific im-
pulse Hall thruster can be regulated if the magnetic field is of the
appropriate shape and strength. These results also show that an in-
creasing discharge current characteristic should not be assumed to
be the sole result of increasing electron current, especially if the
thruster is operating efficiently. Finally, these results underscore the
importance of including the effects of multiply charged ions when
analyzing the efficiency of high-specific impulse Hall thrusters.

D. Current Utilization Efficiency

Figure 8 shows the current utilization efficiency computed with
Eq. (7) by using the ion and electron currents calculated in Sec. V.C.
The continuous increase of the ion current with voltage shown in
Fig. 7 was not reflected in the current utilization because the cur-
rent utilization depends on the ion and electron current. Instead, the
current utilization initially increased between 300 and 500 V, was
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Fig. 8 Current utilization efficiency vs discharge voltage at 10 mg/s.
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Fig. 9 Mass utilization efficiency vs discharge voltage at 10 mg/s.

relatively constant between 500 and 700 V, and then increased be-
tween 700 and 900 V. The rise in the current utilization beginning
at 700 V was largely the result of the electron current decreasing.
Overall, because the electron current was nearly constant between
300 and 900 V, the current utilization efficiency increased with volt-
age because of the increasing fraction of multiply charged ions. The
current utilization averaged 76.6% at 300 V and increased to an aver-
age of 81.4% at 900 V. The computed current utilization efficiencies
were consistent with values typically found in the literature for Hall
thrusters,*! as well as with the value of 77% previously measured
using a cathode-plane Faraday probe with the thruster operating at
500 V, 5 mg/s in Ref. 18.

E. Mass Utilization Efficiency

Figure 9 shows the mass utilization efficiency computed with
Eq. (8) by using the ion current that was calculated in Sec. V.C. The
mass utilization increased between 300 and 500 V, was relatively
constant between 500 and 700 V, and then decreased between 700
and 900 V. The mass utilization averaged 85.9% at 300 V and 88.1%
at 900 V. The maximum mass utilization of 90.3% occurred at 700 V.

The effects of multiply charged ions are usually neglected in the
literature, resulting in mass utilization efficiencies of 90-95% for
discharge voltages of 300 V (Refs. 41 and 42). This is an adequate
approximation so long as the discharge voltage is not much greater
than 300 V. If multiply charged ions had been neglected in the
calculations, the mass utilization shown in Fig. 9 would have been
3.4% (absolute) higher at 300 V and 9.3% (absolute) higher at 900 V.
Conversely, the current utilization shown in Fig. 8 would have then
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Fig. 10 Optimized anode efficiency and corresponding utilization effi-
ciencies vs discharge voltage at 10 mg/s: O, charge; [, voltage; A, mass;
X, current; and ®, anode. (Error bars suppressed for clarity.)

been 3.4% (absolute) lower at 300 V and 9.3% (absolute) lower
at 900 V. These results demonstrate that the approximation of a
singly charged plasma breaks down at high voltage as the fraction
of multiply charged ions increases with the discharge voltage.

F. Optimized Anode Efficiency

Figure 10 shows the anode efficiency and the corresponding uti-
lization efficiencies for the coil combinations at each discharge volt-
age shown in Fig. 1 that maximized anode efficiency. Over discharge
voltages ranging from 300 to 900 V, the voltage and current utiliza-
tion increased, the charge utilization decreased, and the mass uti-
lization was nearly constant. The current utilization was always less
than the other partial efficiencies, which confirmed the well-known
result that Hall thruster efficiency is largely determined by the cur-
rent utilization, further emphasizing the importance of the magnetic
field as a means to control the electron dynamics and maximize
thruster efficiency.

Because the current utilization increased with the discharge volt-
age (and the electron current showed evidence of a decrease above
700 V), these results imply that the maximum efficiency of Hall
thrusters may not have yet been reached. Anode efficiencies can po-
tentially still be increased, perhaps as high as the 80% value reported
in Ref. 43, if the discharge voltage is increased beyond 1000 V. At
discharge voltages less than 1000 V, because the electron current
was relatively constant, further efficiency improvements require a
means to minimize the production of multiply charged ions while
increasing the voltage and mass utilization. Because substantial in-
creases in the charge or voltage utilization seem unlikely (because
these quantities already have high values), increasing the anode ef-
ficiency below 1000 V will depend on a means to increase the mass
utilization, such as the well-known effects of high-current density
or high-power operation.*'-*?

G. Electron Hall Parameter

The scaling of the axial electron current with voltage provides
insight on the electron Hall parameter. The Hall parameter can be
computed from the ratio of the azimuthal and axial electron current
densities [Eq. (1)]. The azimuthal electron current density can be
calculated from

j29 = N¢€VExB = nee(EZ/Br) (10)
The axial electron current density can be computed from the elec-

tron current and the annular cross-sectional area of the discharge
chamber given by

Jeoe =1./A (11)

After the quasi-neutrality condition (n,~n,;) is applied and
Egs. (10) and (11) are substituted, the Hall parameter from Eq. (1)
becomes

Q. = nyeE.A/B, 1, (12)

Besides the electron current and discharge chamber area, the Hall
parameter was calculated from the available data as follows:

1) The axial electric field at 300 V was estimated from typical
electric field strengths in modern Hall thrusters and then linearly
varied with discharge voltage.'82!:4

2) The radial magnetic field was taken from the Hall probe mea-
surements shown in Fig. 4.

3) The beam density n, was computed from an expression derived
in Ref. 21 as

3 12V, 3
I, = ZI,- = Ae%nb P Z%‘;Zf (13)

Because Eq. (12) is calculated based on global thruster properties,
the result should be interpreted as a bulk, or average Hall parameter
that is representative of the discharge chamber acceleration zone
where the plasma density is high and the ions are being accelerated
through the majority of the applied voltage. This is an important
point to make because time-averaged measurements of the Hall
parameter from Refs. 45—47 have shown a strong spatial dependence
throughout the discharge chamber. These studies have shown that
the Hall parameter attains a maximum value of several hundred in
the acceleration zone and then falls to the Bohm value, that is, 16,
near the anode and downstream of the exit plane.

Figure 11 shows that the average Hall parameter computed with
Eq. (12) was an order of magnitude larger than the Bohm value.
The error bars include a conservative 25% uncertainty on the elec-
tric field used in the calculations, resulting in an overall uncertainty
of +57/—34%. This relatively large uncertainty is consistent with
other probe-based measurements found in the literature (typically
50% due to their reliance on plasma densities derived from lang-
muir probes). At 300 V, the Hall parameter was on average 210.
Between 300 and 400 V, the Hall parameter decreased by 25% and
then was nearly constant between 400 and 900 V. Between 400 and
900 V, the Hall parameter was, on average, 160 with a maximum
deviation from the average of +12%/—7%. The computed Hall pa-
rameter was consistent with experimental investigations®~*’ that
have shown that the Hall parameter attains a value of several hun-
dred in the acceleration zone and with numerical simulations>3
that have found acceptable results when a fitting constant related to
the Hall parameter was approximately 100.

The decrease in the Hall parameter between 300 and 400 V
likely coincided with the onset of space-charge saturation of the
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Fig. 11 Electron Hall parameter vs discharge voltage at 10 mg/s.
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discharge chamber wall sheaths due to intense secondary elec-
tron emission.?®? In other thrusters, the space-charge satura-
tion regime has been correlated with a sudden decrease in the
breathing-mode frequency, increased electron current, and max-
imum efficiency.?®?**® Whereas the NASA-173Mv2 data cannot
reveal whether or not space-charge saturation occurred in our ex-
periments, there is ample evidence that the thruster was transitioning
to a different operating mode at discharge voltages of ~400 V. For
example, measurements in Ref. 22 of the plume divergence and dis-
charge current oscillations both show large increases between 300
and 400 V. Also, the magnetic field intensity (Fig. 4) also sharply
increased between 300 and 400 V. The transition to this new regime
most likely persisted until about 600 V, after which discharge cur-
rent oscillations suddenly decreased, while the breathing-mode fre-
quency (not shown, see Ref. 22) continued to increase. Whereas
the precise details are uncertain and require further research, these
trends suggest that the applied magnetic field was effective at con-
trolling oscillations and wall effects such that the electron current
was stabilized, thereby allowing the anode efficiency to increase
continuously with discharge voltage.

At least between 400 and 1000 V, maintaining a nearly constant
Hall parameter over such a large voltage range implied that the
balance of all of the processes affecting the axial electron mobility
was also approximately constant. This result supports our earlier
claim that efficient thruster operation can only be achieved over a
limited range of Hall parameters.

V1. Conclusions

When combined with data from performance and plasma mea-
surements, the results from a phenomenological Hall thruster perfor-
mance model have provided new insights on the factors affecting ef-
ficiency during high-specific impulse operation. Between discharge
voltages of 300 and 900 V, analysis has shown that, although the
net decrease of efficiency due to multiply charged ions was at most
3.0%, the effects of multiply charged ions on the discharge cur-
rent and electron current could not be neglected. The increase of
the discharge current with discharge voltage was attributed to the
increasing fraction of multiply charged ions, whereas the electron
current was found to be nearly constant. These findings revealed how
efficient operation at high-specific impulse was enabled through the
regulation of the electron current with the applied magnetic field.
Additionally, the current utilization was always less than the other
partial efficiencies composing the anode efficiency, which under-
scored the importance of the magnetic field as a means of controlling
the electron dynamics and maximizing thruster efficiency. Finally,
it was shown that the electron Hall parameter was nearly constant
with voltage, which supported our claim that efficient operation can
be achieved only over a narrow range of Hall parameters.

The research on the NASA-173M Hall thrusters has established
a solid foundation from which the development of high-specific
impulse Hall thrusters may continue. Whereas the design of such
thrusters is currently in progress, there are several other issues and
potential directions that deserve further scrutiny. These topics are
briefly discussed next.

Numerical Simulations

Although our analysis has provided new insights not previously
available, a more fundamental explanation of the factors affecting
efficiency at high-specific impulse will most likely require numeri-
cal modeling. Such efforts might be similar to those of Barral et al.?
and most certainly must include multiply charged ions.

Lifetime Evaluation

This research has tacitly assumed that if thruster efficiency is
maximized so too is thruster lifetime. Whereas this may prove to
be accurate, there are still questions concerning the rate at which
lifetime decreases with increasing voltage. Modeling by Garrigues
et al. has begun to address some of these issues by demonstrating
how erosion rates in 1600-s specific impulse thrusters decrease when
a plasma lens is used (in lieu of less concave magnetic field lines).

Efforts to predict the operational lifetime of other Hall thrusters are
also currently be pursued.

Krypton Operation

Besides offering higher specific impulse, krypton may prove to be
a better propellant than xenon at high-specific impulse because the
thruster lifetime should be higher with krypton. Whereas ionizing
krypton requires more energy than xenon (which decreases the mass
utilization efficiency), this attribute also decreases the production
of multiply charged ions. The lower mass of krypton with respect
to xenon also decreases the sputtering yield approximately by the
square root of the mass ratio. If Hall thruster efficiency on krypton
can be improved to approach that of xenon, a krypton thruster could
benefit several interplanetary missions due to its higher specific
impulse and longer lifetime. Recent investigations of several Hall
thrusters operating on krypton have shown promise, where total
efficiencies greater than 50% have been measured.*’

Acknowledgments

Support for this research through the former NASA Code R Ener-
getics program is gratefully acknowledged. We would like to thank
James Haas at the U.S. Air Force Research Laboratory, Edwards Air
Force Base, California for providing us with the retarding potential
analyzer and participating in the experiment using the diagnostic.
We would also like to thank David Jacobson, David Manzella, and
Peter Peterson for technical advice and insight.

References

I'Kaufman, H.R., “Technology of Closed-Drift Thrusters,” AIAA Journal,
Vol. 23, No. 1, 1985, pp. 78-87.

2Qleson, S. R., and Sankovic, J. M., “Advanced Hall Electric Propulsion
for Future in-Space Transportation,” NASA TM-210676, April 2001.

3Gulczinksi, F. S., and Spores, R. A., “Analysis of Hall-Effect Thrusters
and Ton Engines for Orbit Transfer Missions,” AIAA Paper 96-2973, July
1996.

4Raitses, Y., Guelman, M., Ashkenazy, J., and Appelbaum, G., “Orbit
Transfer with a Variable Thrust Hall Thruster Under Drag,” Journal of Space-
craft and Rockets, Vol. 36, No. 6, 1998, pp. 875-881.

S0leson, S. R., “Advanced Electric Propulsion for Space Solar Power
Satellites,” NASA TM-1999-209307, Aug. 1999.

%0Oleson, S. R., “Advanced Electric Propulsion for RLV Launched
Geosynchronous Spacecraft,” NASA TM-1999-209646, Dec. 1999.

7Oleson, S. R., “Mission Advantages of Constant Power, Variable Isp
Electrostatic Thrusters,” NASA TM-2000-210477, Nov. 2000.

8Dudzinski, L. A., Hack, K. J., Gefert, L. P, Kerslake, T. W., and Hewston,
A. W., “Design of a Solar Electric Propulsion Transfer Vehicle for a Non-
Nuclear Human Mars Exploration Architecture,” 26th International Electric
Propulsion Conf., Paper IEPC-99-181, Oct. 1999.

9Fiehler, D., and Oleson, S., “A Comparison of Electric Propulsion Sys-
tems for Mars Exploration,” NASA TM-2003-212593, Sept. 2003.

10Gefert, L. P, Hack, K. J., and Kerslake, T. W., “Options for the Human
Exploration of Mars Using Solar Electric Propulsion,” AIP Conf. No. 458,
Space Technology and Applications International Forum (STAIF), Jan. 1999.

“Brophy, J. R, and Noca, M., “Electric Propulsion for Solar System
Exploration,” Journal of Propulsion and Power, Vol. 14, No. 5, 1998,
pp. 700-707.

2Jacobson, D. T., Jankovsky, R. S., Rawlin, V. K., and Manzella, D. H.,
“High Voltage TAL Performance,” NASA TM-2001-211147, Nov. 2001.

B3Manzella, D. H., Jacobson, D. T., and Jankovsky, R. S., “High Voltage
SPT Performance,” NASA TM-2001-211135, Nov. 2001.

14pote, B., and Tedrake, R., “Performance of a High Specific Impulse Hall
Thruster,” 27th International Electric Propulsion Conf., Paper IEPC-01-35,
Oct. 2001.

I5Hofer, R. R., Peterson, P. Y., Gallimore, A. D., and Jankovsky, R. S., “A
High Specific Impulse Two-Stage Hall Thruster with Plasma Lens Focusing,”
27th International Electric Propulsion Conf., Paper IEPC-01-36, Oct. 2001.

16Hofer, R. R., and Gallimore, A. D., “The Role of Magnetic Field To-
pography in Improving the Performance of High-Voltage Hall Thrusters,”
AIAA Paper 2002-4111, July 2002.

17Hofer, R. R., and Jankovsky, R. S., “The Influence of Current Density
and Magnetic Field Topography in Optimizing the Performance, Divergence,
and Plasma Oscillations of High Specific Impulse Hall Thrusters,” NASA
TM-2003-212605, Dec. 2003.

8Hofer, R. R., and Gallimore, A. D., “Recent Results from Internal
and Very-Near-Field Plasma Diagnostics of a High Specific Impulse Hall
Thruster,” NASA CR-2003-212604, Dec. 2003.



740 HOFER AND GALLIMORE

9Hofer, R. R., and Gallimore, A. D., “Ion Species Fractions in the Far-
Field Plume of a High-Specific Impulse Hall Thruster,” NASA CR-2003-
212893, Dec. 2003.

20Hofer, R. R., Haas, J. M., and Gallimore, A. D., “Ion Voltage Diagnostics
in the Far-Field Plume of a High-Specific Impulse Hall Thruster,” NASA
CR-2003-212895, Dec. 2003.

2IHofer, R. R., “Development and Characterization of High-Efficiency,
High-Specific Impulse Xenon Hall Thrusters,” Ph.D. Dissertation, Dept. of
Aerospace Engineering, Univ. of Michigan, Ann Arbor, MI, Jan. 2004; also
NASA/CR-2004-213099, June 2004.

22Hofer, R. R., and Jankovsky, R. S., “High-Specific Impulse Hall
Thrusters, Part 1: Influence of Current Density and Magnetic Field,” Journal
of Propulsion and Power (to be published).

23Janes, G. S., and Lowder, R. S., “Anomalous Electron Diffusion and
Ton Acceleration in a Low-Density Plasma,” Physics of Fluids, Vol. 9, No. 6,
1966.

24Morosov, A. L., Esipchuk, Y. V., Tilinin, G. N., Trofimov, A. V., Sharov,
Y. A., and Shchepkin, G. Y., “Plasma Accelerator with Closed Electron Drift
and Extended Acceleration Zone,” Soviet Physics Technical Physics, Vol. 17,
No. 1, 1972, pp. 38-45.

25Fife, J. M., “Hybrid-PIC Modeling and Electrostatic Probe Survey of
Hall Thrusters,” Ph.D. Dissertation, Dept. of Aeronautics and Astronautics,
Massachusetts Inst. of Technology, Cambridge, MA, Sept. 1998.

26Boeuf, J. P, and Garrigues, L., “Low Frequency Oscillations in a Sta-
tionary Plasma Thruster,” Journal of Applied Physics, Vol. 84, No. 7, 1998,
pp. 3541-3554.

2Tvanov, A. A., Ivanov, A. A., and Bacal, M., “Effect of Plasma-Wall
Recombination on the Conductivity in Hall Thrusters,” Plasma Physics and
Controlled Fusion, Vol. 44, No. 8, 2002, pp. 1463-1470.

28Gascon, N., Dudeck, M., and Barral, S., “Wall Material Effects in Sta-
tionary Plasma Thrusters I: Parametric Studies of an SPT-100,” Physics of
Plasmas, Vol. 10, No. 10, 2003, pp. 4123-4136.

2()Barral, S., Makowski, K., Peradzynski, Z., Gascon, N., and Dudeck, M.,
“Wall Material Effects in Stationary Plasma Thrusters II: Near-Wall
and in-Wall Conductivity,” Physics of Plasmas, Vol. 10, No. 10, 2003,
pp. 4137-4152.

30 Ahedo, E., Gallardo, J. M., and Martinez-Sanchez, M., “Effects of the
Radial Plasma-Wall Interaction on the Hall Thruster Discharge,” Physics of
Plasmas, Vol. 10, No. 8, 2003, pp. 3397-34009.

31'Mason, L. S., Jankovsky, R. S., and Manzella, D. H., “1000 Hours of
Testing on a 10 Kilowatt Hall Effect Thruster,” AIAA Paper 2001-3773,
July 2001.

2Seliger, R. L., “ExB Mass-Separator Design,” Journal of Applied
Physics, Vol. 43, No. 5, 1972, pp. 2352-2357.

BKim, S. W,, “Experimental Investigations of Plasma Parameters and
Species-Dependent Ion Energy Distribution in the Plasma Exhaust Plume of
a Hall Thruster,” Ph.D. Dissertation, Dept. of Aerospace Engineering, Univ.
of Michigan, Ann Arbor, MI, 1999.

34Williams, G. J., Domonkos, M. T., and Chavez, J. M., “Measurement
of Doubly Charged Ions in Ion Thruster Plumes,” NASA TM-2002-211295,
Jan. 2002.

35Kim, S.-W., and Gallimore, A. D., “Plume Study of a 1.35-kW SPT-100
Using an ExB Probe,” Journal of Spacecraft and Rockets, Vol. 39, No. 6,
2002, pp. 904-909.

3King, L. B., “Transport-Property and Mass Spectral Measurements in
the Plasma Exhaust Plume of a Hall Effect Space Propulsion System,”

Ph.D. Dissertation, Dept. of Aerospace Engineering, Univ. of Michigan,
Ann Arbor, MI, 1998.

37Hutchinson, I. H., Principles of Plasma Diagnostics, 1sted., Cambridge
Univ. Press, Cambridge, England, U.K., 1987.

38King, L. B., and Gallimore, A. D., “Mass Spectral Measurements in
the Plume of an SPT-100 Hall Thruster,” Journal of Propulsion and Power,
Vol. 16, No. 6, 2000, pp. 1086-1092.

3Gulczinksi, F. S., and Gallimore, A. D., “Near-Field Ion Energy and
Species Measurements of a 5-kW Hall Thruster,” Journal of Propulsion and
Power, Vol. 17, No. 2, 2001, pp. 418-427.

40King, L. B., and Gallimore, A. D., “Ion-Energy Diagnostics in the
Plasma Exhaust Plume of a Hall Thruster,” Journal of Propulsion and Power,
Vol. 16, No. 5, 2000, pp. 916-922.

41Kim, V., “Main Physical Features and Processes Determining the Per-
formance of Stationary Plasma Thrusters,” Journal of Propulsion and Power,
Vol. 14, No. 5, 1998, pp. 736-743.

427hurin, V. V., Kaufman, H. R., and Robinson, R. S., “Physics of Closed
Drift Thrusters,” Plasma Sources Science and Technology, Vol. 8, No. 1,
1999, pp. R1-R20.

43Grishin, S. D., Erofeev, V. S., Zharinov, A. V., NaumKkin, V. P,, and
Safronov, I. N., “Characteristics of a Two-Stage Ion Accelerator with an An-
ode Layer,” Journal of Applied Mathematics and Technical Physics, Vol. 19,
No. 2, 1978, pp. 166—-173.

#Raitses, Y., Staack, D., Dorf, L., and Fisch, N. J., “Experimental Study
of Acceleration Region in a 2 kW Hall Thruster,” ATAA Paper 2003-5153,
July 2003.

45Haas, J. M., “Low-Perturbation Interrogation of the Internal and Near-
Field Plasma Structure of a Hall Thruster Using a High-Speed Probe Posi-
tioning System,” Ph.D. Dissertation, Dept. of Aerospace Engineering, Univ.
of Michigan, Ann Arbor, MI, 2001.

‘“’Choueiri, E. Y, “Plasma Oscillations in Hall Thrusters,” Physics of
Plasmas, Vol. 8, No. 4, 2001, pp. 1411-1426.

47Bishaev, A. M., and Kim, V., “Local Plasma Properties in a Hall-
Current Accelerator with an Extended Acceleration Zone,” Soviet Physics—
Technical Physics, Vol. 23, No. 9, 1978, pp. 1055-1057.

48 Azziz, Y., Warner, N. Z., Martinez-Sanchez, M., and Szabo, J. J., “High
Voltage Plume Measurements and Internal Probing of the BHT-1000 Hall
Thruster,” AIAA Paper 2004-4097, July 2004.

Bibliographies

Garrigues, L., Hagelaar, G. J. M., Bareilles, J., Boniface, C., and Boeuf,
J. P, “Model Study of the Influence of the Magnetic Field Configuration
on the Performance and Lifetime of a Hall Thruster,” Physics of Plasmas,
Vol. 10, No. 12, 2003, pp. 4886-4892.

Jacobson, D. T., Manzella, D. H., Hofer, R. R., and Peterson,
P. Y., “NASA’s 2004 Hall Thruster Program,” NASA TM-2004-213340,
Oct. 2004.

Kim, V., Kozlov, V., Semenov, A., and Shkarban, I., “Investigation of the
Boron Nitride Based Ceramics Sputtering Yield Under Its Bombardment
by Xe and Kr Ions,” 27th International Electric Propulsion Conf., Paper
IEPC-01-073, Oct. 2001.

Manzella, D. H., Yim, J., and Boyd, 1. D., “Predicting Hall Thruster
Operational Lifetime,” NASA TM-2004-213214, Aug. 2004.

Syage, J. A., “Electron-Impact Cross Sections for Multiple Ionization of
Kr and Xe,” Physical Review A: General Physics, Vol. 46, No. 9, 1992,
pp. 5666-5679.



