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A method to evaluate the trajectory dynamics of low-thrust spacecraft is refined and
applied to targeting and optimal control problems. The original method uses averaged
variational equations for the osculating orbital elements with 14 Fourier coefficients of the
thrust acceleration vector to estimate a spacecraft trajectory over many spiral orbits. The
accuracy of this method is improved by correction of any offset of the averaged trajectory
from the true trajectory due to non-trivial periodic components. Spacecraft targeting
problems are then solved using the corrected averaged variational equations and a general
cost function represented as a Fourier series. A method for reducing the cost of a transfer
by selection of acceleration Fourier coefficients beyond the 14 that appear in the averaged
equations is described.

I. Introduction

Low-thrust propulsion systems offer an efficient option for many interplanetary and Earth orbit missions.
However, optimal control of these systems can pose a difficult design challenge. Analytical or approxi-
mate solutions exist for several special cases of optimal low-thrust orbit transfer problems, but the general
continuous-thrust problem requires full numerical integration of each initial condition and thrust profile.
The trajectory is highly sensitive to these variables, thus the optimal control law over tens or hundreds of
orbits of a spiral trajectory is often difficult to determine.

Classical analytical methods exist for certain special case transfers, such as the logarithmic spiral1 and
Lawden’s spiral.2 More recent solutions have used the calculus of variations3 or direct optimization methods4

to determine optimal low-thrust control laws within certain constraints. Several methods for open-loop,
minimum-time transfers5–7 and optimal transfers using Lyapunov feedback control8,9 also exist. Averaging
methods, in combination with other approaches, have proven effective in overcoming sensitivities to small
variations in initial orbit and thrust profile.10–12 Yet all solutions remain limited to certain regions of the
thrust and orbital parameter space.

Previous work13 has established the validity of an averaging method to estimate the trajectory dynamics of
low-thrust spacecraft in the general case. The spacecraft thrust vector components are represented as Fourier
series in eccentric anomaly and the Gauss variational equations are averaged over one orbit to define a set of
secular equations. These equations are functions of only 14 of the thrust Fourier coefficients, regardless of the
order of the original Fourier series, and can represent thrust controls of varying magnitude and direction. An
iterative method using these averaged secular equations was shown to solve orbital targeting problems with
significantly reduced computing requirements as compared to integration of the full Newtonian equations of
motion.

The current study further develops this method to improve the accuracy of the averaging and targeting
methods. A corrective term is included in the averaging method to eliminate offsets due to periodic variations
of the trajectory. This correction reduces divergence between the true and average trajectories over many
orbits.

The original targeting method is generalized to accommodate any cost function represented as a Fourier
series. For most cost functions, some numerical evaluation of partial derivatives is required, however the
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minimum-energy cost function can be evaluated analytically. The targeting algorithm is also improved by
offset correction of the initial orbital elements.

After the 14 Fourier coefficients for a given transfer have been selected, the total energy of the transfer
can often be reduced by inclusion of additional terms in the thrust acceleration Fourier series. The existence
of these additional energy-reduction terms is proven for certain cases and a method for selection of the
additional terms is described.

II. Applications

This trajectory analysis and targeting method has applications to many problems of interest. It can allow
designers in the early stages of mission planning to quickly perform first-order analyses of many trajectories
using any thrust-based criteria of interest. Representation of the control law by its influential and non-
influential Fourier coefficients allows clear visualization of the effects of changes to the thrust profile. It
can also reveal means by which an orbit transfer cost may be reduced without significantly altering the
trajectory, through the method described in Section B or similar techniques.

The analytical methods described in this paper also have applications to space situational awareness, in
both trajectory prediction and reverse engineering. Given limited observation data, space agencies must be
able to expeditiously predict whether an unknown object or errant spacecraft poses a threat to a critical
asset. In other situations, the orbital history of a known or suspected low-thrust spacecraft must be traced
based on discrete sightings. The averaged variational equations in Section III may be integrated forward or
backwards in time to accomplish either objective.

As the space environment becomes increasingly cluttered, the computational complexity of trajectory
prediction algorithms becomes crucial. Likewise, as low-thrust propulsion systems are used in more space-
craft, predictive tools must be equipped to deal with their unique dynamics. The methods described in
this paper are well suited for dealing with both high volumes of data and more detailed analyses of specific
scenarios.

III. Averaged Variational Equations

We consider a spacecraft of negligible mass in orbit about a central body, which is assumed to be a point
mass. The spacecraft is subject to a continuous thrust acceleration of potentially varying magnitude and
direction. The spacecraft trajectory can be described by the Newtonian equations of motion:

~̇r = ~v (1)

~̇v = − µ

r3
~r + ~F (2)

where ~r is the position vector, ~v is the velocity vector, and µ is the standard gravitational parameter of
the central body. The thrust acceleration vector ~F can be resolved along the radial, normal, and tangential
directions:

~F = FRr̂ + FW ŵ + FS (ŵ × r̂) (3)

where r̂ = ~r
|~r| and ŵ = ~r×~v

|~r×~v| . The Newtonian equations can be decomposed into the Lagrange Planetary
Equations, which describe the time rate of change of the classical orbit elements of a body subject to the
FR, FW , and FS perturbations. The Gauss form of the Lagrange Planetary Equations is presented below:14

da

dt
= 2

√
a

µ

[
FR

ae√
1− e2

sin ν + FS
a2
√

1− e2
a (1− e cosE)

]
(4)

de

dt
=

√
a

µ

√
1− e2 [FR sin ν + FS (cos ν + cosE)] (5)

di

dt
=

√
a

µ

(1− e cosE)√
1− e2

FW cos (ν + ω) (6)

dΩ
dt

=
√
a

µ

(1− e cosE)√
1− e2

FW sin (ν + ω) (7)
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dω

dt
=

√
a

µ

√
1− e2
e

[
−FR cos ν + FS

(
1 +

1− e cosE
1− e2

)
sin ν

]
− cos i

dΩ
dt

(8)

dε1
dt

= −2
√
a

µ
(1− e cosE)FR +

(
1−

√
1− e2

)(
ω̇ + Ω̇

)
+ 2
√

1− e2 sin2

(
i

2

)
Ω̇ (9)

In these equations, a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the longitude of
the ascending node, ω is the argument of periapsis, and ε1 +

∫
n dt = l is the mean longitude. The mean

anomaly is the difference of the mean longitude and the longitude of periapsis:

M =
∫
n dt+ ε1 − (Ω + ω) (10)

In the modeling and simulation of low-thrust spacecraft orbits, both the Newtonian equations and the
Gauss equations provide identical results. The Gauss equations are often preferred for clear visualization of
the orbit over time.

Given an arbitrary acceleration vector ~F, each component can be represented as a Fourier series over
an arbitrary time interval (0,L). The Fourier series can be expanded in time or in a time-varying orbital
parameter, such as true anomaly, eccentric anomaly, or mean anomaly. As shown in the previous paper,13

expansion in eccentric anomaly leads to useful simplifications.

FR =
∞∑
k=0

[
αRk cos

(
2πkE
L

)
+ βRk sin

(
2πkE
L

)]
(11)

FW =
∞∑
k=0

[
αWk cos

(
2πkE
L

)
+ βWk sin

(
2πkE
L

)]
(12)

FS =
∞∑
k=0

[
αSk cos

(
2πkE
L

)
+ βSk sin

(
2πkE
L

)]
(13)

We assume an acceleration vector that is specified over one orbit period (L = 2π) with a sufficiently low
magnitude that the size and shape of the orbit does not change significantly over one revolution. Therefore
we may average the Gauss equations over one orbit period with respect to mean anomaly, then shift the
independent parameter of the averaging to eccentric anomaly to correspond to the acceleration Fourier series,
to find equations for the mean orbit elements. The average rates of change of the orbital elements a, e, i, Ω,
ω, and ε1 are only dependent on the 14 Fourier coefficients αR0 , αR1 , αR2 , βR1 , αS0 , αS1 , αS2 , βS1 , βS2 , αW0 , αW1 ,
αW2 , βW1 , and βW2 , regardless of the order of the original thrust Fourier series.

ȧ = 2

√
a3

µ

[
1
2
e βR1 +

√
1− e2 αS0

]
(14)

ė =
√
a

µ

√
1− e2

[
1
2

√
1− e2 βR1 + αS1 −

3
2
e αS0 −

1
4
e αS2

]
(15)

i̇ =
√
a

µ

1√
1− e2

[
1
2
(
1 + e2

)
cosω αW1 −

3
2
e cosω αW0 −

1
2

√
1− e2 sinω βW1

−1
4
e cosω αW2 +

1
4
e
√

1− e2 sinω βW2

]
(16)

Ω̇ =
√
a

µ

csc i√
1− e2

[
1
2

√
1− e2 cosω βW1 +

1
2
(
1 + e2

)
sinω αW1 −

3
2
e sinωαW0

−1
4
e
√

1− e2 cosω βW2 −
1
4
e sinω αW2

]
(17)

ω̇ =
√
a

µ

1
e

[
−1

2

√
1− e2 αR1 + e

√
1− e2 αR0 +

1
2
(
2− e2

)
βS1 −

1
4
eβS2

]
− cos i Ω̇ (18)

ε̇1 =
√
a

µ

[(
−2− e2

)
αR0 + 2eαR1 −

1
2
e2αR2

]
+
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(
1−

√
1− e2

)(
ω̇ + Ω̇

)
+ 2
√

1− e2 sin2

(
i

2

)
Ω̇ (19)

The assumption of a thrust acceleration vector specified over only one orbit period is not strictly necessary;
the same averaging method can be used with acceleration functions specified over arbitrary lengths, simply
by averaging the Gauss equations over the full interval. In general, when L = mπ, the 0th, m

2 -th, and
m-th coefficients will remain, with fractional indices required in the original Fourier series when m is not an
even integer. However, the averaging assumption may become less valid for aperiodic control laws of long
duration, for which the orbit changes significantly from start to finish.

IV. Agreement with Newtonian Equations

To verify the averaged secular equations, we first consider a simple control law: a step acceleration
function in the tangential direction only, as pictured in Figure 1.

Figure 1. Step Tangential Acceleration

The Fourier series for this step function is defined by only a constant term and the odd-numbered sine
coefficients:

FS =
∞∑
k=0

αSk cos (kE) + βSk sin (kE) (20)

αS0 =
1

2π

∫ 2π

0

FSdE =
1
2

(21)

αSk =
1
π

∫ 2π

0

FS cos (kE) dE = 0 (22)

βSk =
1
π

∫ 2π

0

FS sin (kE) dE =
(−1)k − 1

kπ
(23)

Figure 2 compares this Fourier series, numerically evaulated up to order 1000, to the series of only the
five terms that appear in the averaged secular equations. Clearly there is considerable variation between
these two representations of the periodic step acceleration control law.
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Figure 2. Step Tangential Acceleration: Comparison of thrust laws from Fourier series of step function up to
order 1000 and five terms of thrust law that appear in averaged secular equations
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Figure 3 describes the osculating orbital elements of an example spacecraft subjected to these thrusts.
Equations 14 - 19 with αS0 , αS1 , αS2 , βS1 , and βS2 above were integrated using a Runge-Kutta method to
estimate the trajectory over 10 orbits. For comparison, the Newtonian equations (Equations 1 and 2) were
also integrated using the Fourier series up to order 1000. The two methods determined very similar orbital
trajectories. (All dimensions herein are normalized to a standard gravitational parameter µ = 1.)

Figure 3. Step Tangential Acceleration: Comparison of trajectories determined by integration of Newtonian
equations with Fourier series up to order 1000 and secular equations with five Fourier coefficients
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V. Offset Correction

Average trajectories calculated using Equations 14-19 show the correct trends in the evolution of the
osculating orbital elements and are good approximations of the true trajectories. However, they may be
offset from the true averages and may diverge from true trajectories over many orbits. This may be partially
due to higher order effects not captured in the averaging method, but it may also be due to non-trivial
periodic components which can shift the mean value of the state from the initial condition. This initial
condition offset can be corrected by the addition of an averaged periodic term to the initial conditions of the
secular equation for each orbital element.

At any time t, the true value of any orbital element can be expressed as the sum of a secular term and a
periodic term. The periodic term repeats itself over each orbit.

œ (t) = œ0 + œ̇t+ œp (t) (24)

The true average value of the orbital element over one orbit is thus:

œ = œ0 +
T

2
œ̇ + œp (25)

where T represents the period, ~x represents a vector of the six orbital elements, and œ̇ = f(~x) represents
Equations 14-19.

The time derivative of Equation 24 provides a differential equation for the periodic term:

œ̇p = f(~x, t)− f(~x) (26)

We substitute the nominal inital condition ~x0 for the true orbital element vector, knowing that the corrections
are of higher order, and perform the quadrature for œp:

œp =
∫ t

0

f (~x0, τ) dτ − f ( ~x0) t (27)

This periodic term can be averaged over one orbit:

œp =
1

2π

∫ 2π

0

[∫ t

0

f (~x0, τ) dτ − f (~x0) t
]
dM (28)

For compatibility with the form of the Gauss equations above, the two integrals are shifted to eccentric
anomaly.

œp =
1

2π

∫ 2π

0

[∫ E

E0

1
n

(1− e cosE′) f ( ~x0, E
′) dE′

]
(1− e cosE) dE − π

n
f ( ~x0) (29)

where n =
√

µ
a3 is the mean motion. Note that π

n = T
2 . This expression for œp can be substituted into

Equation 25 to determine the average value of the orbital element over the first period.

œ = œ0 +
1

2π

∫ 2π

0

[∫ E

E0

√
a3

µ
(1− e cosE′) f ( ~x0, E

′) dE′
]

(1− e cosE) dE (30)

To correct the initial conditions for the averaged secular equations, Equation 29 is substituted into
Equation 24 at t = 0. The averaged secular equations, thus initialized, yield a more accurate average of the
true periodic trajectory.

œ (0) = œ0 +
1

2π

∫ 2π

0

[∫ E

E0

1
n

(1− e cosE′) f (~x,E′) dE′
]

(1− e cosE) dE − T

2
f (~x) (31)

To calculate a value for the averaged periodic correction term, we substitute the Fourier series in eccentric
anomaly for the acceleration component terms in the Gauss equations. To avoid infinite series in the solution,
we only include the 14 terms of the Fourier series whose coefficients appear in the averaged secular equations,
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as they have been shown to have the most significant effect on the trajectory dynamics. Assuming zero
eccentric anomaly initial conditions, the correction terms are:

ap =
a3

µ

[
e

(
(2 + e)αR0 +

1
2
αR1 −

(
1
2
e+

2
3

)
αR2 + πβR1

)
+
√

1− e2
(
2παS0 + (2 + e)βS1 + βS2

)]
−T

2
ȧ(~x0) (32)

ep =
1
2
a2

µ

[
(1− e2)

(
(2 + e)αR0 +

1
2
αR1 −

(
1
2
e+

2
3

)
αR2 + πβR1

)
+
√

1− e2
(
− 3eπαS0 + 2παS1

−1
2
eπαS2 +

(
1− 5

4
e2 − 8

3
e

)
βS1 +

(
−5

8
e+

8
3

)
βS2

)]
− T

2
ė(~x0) (33)

ip =
1
2
a2

µ

1√
1− e2

[
αW0

(√
1− e2 sinω

(
−1− 1

2
e

)
− 3πe cosω

)
+ αW1

(
π cosω

(
1 + e2

)
+
√

1− e2 sinω
(

2
3
e+

1
4
e2

1
2

))
+ αW2

(√
1− e2 sinω

(
2
3

+
5
8
e

)
− 1

2
πe cosω

)
βW1

(
cosω

(
1
2
− 8

3
e− 3

4
e2
)
− π

√
1− e2 sinω

)
+ βW2

(
cosω

(
4
3
− 9

8
e+

4
3
e2 +

1
2
e3
)

+
1
2
πe
√

1− e2 sinω
)]
− T

2
i̇(~x0) (34)

Ωp =
1
2
a2

µ

csc i√
1− e2

[
cosω

√
1− e2

(
αW0

(
2 +

1
2
e

)
+ αW1

(
−1

4
e2 +

1
2
− 2

3
e

)
+αW2

(
−5

8
e− 2

3

)
+ πβW1 −

1
2
eπβW2

)
+ sinω

(
παW1

(
1 + e2

)
− 7

2
πeαW2 + βW1

(
1
2
− 8

3
e− 3

4
e2
)

+βW2

(
4
3
− 9

8
e+

4
3
e2 +

1
2
e3
))]

− T

2
Ω̇(~x0) (35)

ωp =
1
2
a2

µ

1
e

[
αS0

(
4− 3

2
e− 2e2 − e3

)
+ αS1

(
π − 2

3
e− 3

4
e2
)

+ αS2

(
−4

3
− 9

8
e+

2
3
e2 +

1
2
e3
)

πβS1
(
2− e2

)
− 1

2
πβS2 + 2eπ

√
1− e2αR0 − π

√
1− e2αR1 + βR1

√
1− e2

(
−1

2
+ 2e+ e2

)]
− cos iΩp +

T

2
Ω̇(~x0)− T

2
ω̇(~x0) (36)

ε1p = −a
2

µ

[
παR0

(
2 + e2

)
− 2πeαR1 +

1
2
πe2αR2 + βR1

(
2− e+

2
3
e2
)]

+
(

1−
√

1− e2
)(

ωp + Ωp

+
T

2
ω̇(~x0) +

T

2
Ω̇(~x0)

)
+ 2
√

1− e2 sin2 i

2

(
Ωp +

T

2
Ω̇(~x0)

)
− T

2
ε̇1(~x0) (37)

Figure 4 shows the effect of these corrections on the system with Fourier coefficients randomly selected
up to order 10 within the range (-2.5e-7, 2.5e-7). The corrected initial conditions shift the estimated average
trajectory to more accurately reflect the true average trajectory. They also can reduce the divergence between
the true and average trajectories, most noticeably in the plot of mean anomaly. Some drift remains, however,
due to higher order effects. This can be seen in the plot of the argument of periapsis; the corrected trajectory
closely approximates the true average trajectory over the first few orbits, but diverges as higher order effects
accumulate over several orbits.

VI. Targeting

The averaged secular variational equations provide an efficient means of solving low-thrust orbit transfer
problems. Any spacecraft targeting problem with a time span sufficient to allow low-thrust transfer can
theoretically be solved by numerical integration of the averaged equations and iterative evaluation of the 14
thrust Fourier coefficients.

In the previous paper,13 an iterative method was developed to solve targeting problems using a minimum-
energy cost function. This method can be extended to more general minimization problems by representing
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Figure 4. Averaged Trajectory Offset Correction

the cost function as the integral of another Fourier series in eccentric anomaly. Most cost functions require
numerical evaluation of certain partial derivatives in order to be used in this manner, thus the minimum-
energy cost function, which can be evaluated analytically, remains the most straightforward example. The
targeting algorithm can also be improved by correction of the initial orbital elements according to the method
described in Section V.

After a solution to the targeting problem has been found, the total energy of the transfer can often
be reduced by including additional terms in the force Fourier series. Additional terms beyond the 14 that
appear in the secular equations do not significantly alter the trajectory, but can, in many cases, be selected
to provide a lower-cost control.

A. Targeting in the Averaged Equations

We approach the targeting problem in the averaged equations as a two point boundary value problem with
given initial state ~x0, final state ~xf , and transfer time T . The equations of motion have the form:

~̇x = G (~x) ~α+ F (~x) (38)

where ~x is the state vector of orbital elements, ~α is the 14 × 1 vector of thrust Fourier coefficients
that appear in the averaged secular equations, and ~F accounts for the additional mean motion term in the
differential equation for mean anomaly. The term G (~x) ~α represents Equations 14 - 19.
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~x =



a

e

i

Ω
ω

M


, ~α =



αR0
αR1
αR2
βR1
αS0
αS1
αS2
βS1
βS2
αW0
αW1
αW2
βW1
βW2



, ~F =



0
0
0
0
0
n



We minimize the cost function J(~α), representing the minimum solution, subject to ~x (T ; ~α, ~x0) = ~xf .
To solve this problem, we introduce the Lagrange multiplier ~λ:

J = J (~α) + ~λ [~x (T ; ~α, ~x0)− ~xf ] (39)

∂J

∂
(
~α,~λ

) = [0]20x1 =

[
∂J
∂~α + ~λ ∂~x∂~α

~x (T ; ~α, ~x0)− ~xf

]
(40)

We replace ~x (T ; ~α, ~x0) with its Taylor series approximation:

~x (T ; ~α, ~x0) ≈ ~x (T ; ~α0, ~x0) +
∂~x

∂~α
· δ~α (41)

For clarity, let ∂~x
∂~α = Ψ6×14. Beginning with the zero thrust case, we iteratively update the thrust

coefficient vector ~α = ~α0 + δ~α by solving the two simultaneous vector equations from (40).

∂J

∂~α ~α+δ~α
+ ~λ ·Ψ = 0 (42)

~x (T ; ~α0, ~x0) + Ψ · δ~α− ~xf = 0 (43)

We assume a cost function of the form:

J (~α) =
1

2π

∫ 2π

0

f
(
~F
)
dM (44)

where ~F represents the force due only to the 14 relevant terms in the component Fourier series. If the
integrand is represented as a Fourier series:

f
(
~F
)

=
∞∑
j=0

aj cos (jE) + bj sin (jE) (45)

and the independent variable of the integration is shifted to eccentric anomaly, only the first two terms
of the Fourier series remain:
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J (~α) =
1

2π

∫ 2π

0

 ∞∑
j=0

aj cos (jE) + bj sin (jE)

 (1− e cosE) dE (46)

= a0 −
e

2
a1

By the definition of Fourier coefficients:

a0 =
1

2π

∫ 2π

0

f
(
~F
)
dE (47)

a1 =
1

2π

∫ 2π

0

f
(
~F
)

cos (E) dE (48)

To evaluate Equation 42, we need the partial derivative ∂J(~α)
∂~α , which has the form:

∂J (~α)
∂~α

=
∂a0

∂~α
− e

2
∂a1

∂~α
(49)

This partial derivative can be evaluated numerically for most cost functions and may be evaluated ana-
lytically for certain simple cost functions.

First, we consider the cost function J(~α) representing the minimum acceleration solution to the targeting
problem. We assume a negligible rate of mass loss such that this is simply the average thrust per orbit.

J (~α) =
1

2π

∫ 2π

0

√
F 2
R + F 2

S + F 2
W dM (50)

Equations 47 and 48 become:

a0 =
1

2π

∫ 2π

0

√
F 2
R + F 2

S + F 2
W dE (51)

a1 =
1

2π

∫ 2π

0

√
F 2
R + F 2

S + F 2
W cos (E) dE (52)

However, the the partial derivatives of these coefficients are difficult to evaluate analytically and are
undefined in the zero thrust case:

∂a0

∂~α
=

1
4π

∫ 2π

0

∂
∂~α

(
F 2
R + F 2

S + F 2
W

)√
F 2
R + F 2

S + F 2
W

dE (53)

∂a0

∂~α
=

1
4π

∫ 2π

0

∂
∂~α

(
F 2
R + F 2

S + F 2
W

)
cos (jE)√

F 2
R + F 2

S + F 2
W

dE (54)

To avoid this problem, we consider a slightly different cost function J (~α) representing the minimum
energy solution:

J (~α) =
1

2π

∫ 2π

0

(
F 2
R + F 2

S + F 2
W

)
dM (55)

The orthogonality conditions lead to a simple expression for Equation 47. To simplify Equation 48, we
note that the square of each force vector component is a finite sum of products of two elements of ~α and two
sines or cosines of iE, where i = 0, 1 or 2. Using trigonometric identities, each product can be represented as
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a sum of sines and cosines of jE, where j = 0, 1, 2, 3 or 4. Thus the orthogonality conditons can be applied
again.

a0 =
1
2

(
~α · ~α+

(
αR0
)2

+
(
αS0
)2

+
(
αW0
)2)

(56)

a1 = 2αR0 α
R
1 + αR1 α

R
2 + 2αS0α

S
1 + αS1α

S
2 + βS1 β

S
2 + 2αW0 αW1 + αW1 αW2 + βW1 βW2 (57)

Now the partial derivative ∂J(~α)
∂~α is straightforward to evaulate analytically:

∂J (~α)
∂~α

= ~α

(
Q− 1

2
eZ

)
(58)

where

Q =

 q4 0 0
0 q5 0
0 0 q5


14×14

, q4 =


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , q5 =


2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (59)

Z =

 z4 0 0
0 z5 0
0 0 z5


14×14

, z4 =


0 2 0 0
2 0 1 0
0 1 0 0
0 0 0 0

 , z5 =


0 2 0 0 0
2 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

 (60)

Equations 42 and 43 can now be solved to iteratively update ~α:

δ~α = −
(
Q− 1

2
eZ

)−T
ΨTλT − ~α0 (61)

λT =

[
Ψ
(
Q− 1

2
eZ

)−T
ΨT

]−1

(~x (T ; ~α, ~x0)− ~xf −Ψ ~α0) (62)

To evaluate the matrix Ψ, we take the partial derivative of Equation 38 with respect to ~α.

∂

∂~α

(
~̇x
)

=

[
∂ ~F

∂~x
+ ~α

∂G

∂~x

](
∂~x

∂~α

)
+G (~x) (63)

Ignoring the ~α∂G∂~x term, which will be small compared to ∂ ~F
∂~x , we have an equation of the form:

Ψ̇ (t) =
∂ ~F (t)
∂~x

Ψ (t) +G (~x (t)) (64)

Ψ (0) = 0 (65)

We note that the matrix ∂ ~F
∂~x has only one nonzero element. The solution to the homogeneous system is

the orbital element transition matrix Φ = ∂~x
∂ ~x0

.
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Ψ̇h =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
− 3

2
n
a 0 0 0 0 0


Ψ (66)

Ψh =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

− 3
2
n
a t 0 0 0 0 1


= Φ (67)

Φ (0) = I (68)

Using the standard procedure, we find the particular solution, then sum the homogeneous and particular
solutions at t = 0 to find the general solution:

Ψ (t) = Φ (t)
∫ t

0

Φ−1 (τ)G (~x (τ)) dτ (69)

This expression for Ψ allows us to iteratively update ~α using Equation 61 and converge on a solution to
the boundary value problem that minimizes the cost function.

The initial condition offset correction described in Section V improves the accuracy of the targeting
algorithm. We initialize the algorithm with zero thrust, then use the Fourier coefficients calculated in
each iteration to correct the initial state of the subsequent iteration according to Equation 31. Thus each
integration of the averaged equations has a slightly different initial conditon which more closely approximates
the average of the desired transfer trajectory.

~x0j+1 =



a(0)j + ap(0)j+1

e(0)j + ep(0)j+1

i(0)j + ip(0)j+1

Ω(0)j + Ωp(0)j+1

ω(0)j + ωp(0)j+1

M(0)j +Mp(0)j+1


(70)

This method converges to a set of 14 Fourier coefficients that describe a control law that solves the tar-
geting problem in the averaged secular equations. The true trajectory under this control law, as determined
by the Newtonian equations, generally compares well to the averaged trajectory, as demonstrated in Section
IV.

An example of the targeting methodology applied to a transfer in all six orbital elements is shown below.
Table 1 shows the initial and final states of the boundary value problem, between which the spacecraft must
transfer over five orbits. After five iterations of the targeting algorithm, initialized with the zero thrust case,
the final ~α is shown in Table 2 and the transfer trajectory is shown in Figure 5. As above, the dimensions
are normalized to a standard gravitational parameter µ = 1.
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Table 1. Targeting Example: Initial and Target States

Initial State Final State
a 100 110
e 0.1 0.15
i (deg.) 20 30
Ω (deg.) 20 30
ω (deg.) 20 30
M (deg.) 0 10

Table 2. Targeting Example: Final Force Fourier Coefficients After Five Iterations

αR0 -0.0136e-5
αR1 0.0961e-5
αR2 -0.0004e-5
βR1 -0.0058e-5
αS0 0.0001e-5
αS1 0.2534e-5
αS2 -0.0205e-5
βS1 0.0011e-5
βS2 -0.0149e-5
αW0 0.0143e-5
αW1 0.0173e-5
αW2 0.0006e-5
βW1 -0.0338e-5
βW2 -0.0010e-5
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Figure 5. Targeting Example: Solution trajectory after five iterations

B. Lower-Energy Transfer with Extended Thrust Fourier Series

In many cases, additional terms in the thrust acceleration Fourier series beyond the 14 key terms can reduce
the total cost of the transfer without significantly altering the trajectory. The following proves the existence
of a lower-cost control for the quadratic cost function and all controls with nonzero values of α2.

The quadratic minimum energy cost function is described by Equations 46, 56, and 57. For simplicity,
we consider only the cosine series of one directional component of the force:

J (~α) =
1
2

[
~α · ~α+ (α0)2 − e (2α0α1 + α1α2)

]
(71)

If the Fourier series is extended up to order N, the difference between the new cost function and the cost
function for the key-element-only series is:

∆J =
1
2

[[
(α3)2 + (α4)2 + ...+ (αN )2

]
− e (α2α3 + α3α4 + ...+ αN−1αN )

]
(72)

If the additional terms are to reduce the energy of the transfer, we must have ∆J < 0. One method
for this is term-by-term selection of the additional Fourier coefficients. Given a nonzero value of α2, we can
choose α3 such that

α2
3 − eα2α3 < 0 (73)

That is,

0 < |α3| < e |α2| (74)
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Define ε such that 0 < ε < 1. Then α3 = eεα2. Continuing in this manner, we can choose αn such that

αn = (eε)n−2
α2 (75)

where n = 1...N , so that each term further reduces ∆J . Now, let N →∞ and define J ′:

J ′ = α2
2 + 2∆J (76)

Substituting Equations 72 and 75, we can simplify the expression:

J ′ =
∞∑
j=0

[
α2
j+2 − eαj+2αj+3

]
=

∞∑
j=0

[
(eε)2j − (eε)2j+2

ε

]
α2

2

=
α2

2

1− (eε)2
[
1− e2ε

]
(77)

where the final simplification is based on the fact that for any w < 1,
∑∞
j=0 w

j = 1
1−w . We can now

solve Equation 76 to find the total reduction in transfer energy for a given choice of ε and infinite additional
terms in the Fourier series:

∆J = −1
2
α2

2

e2

1− (eε)2
(1− ε) (78)

Thus a lower-cost control exists for all controls with α2 6= 0. This method can be extended to select
terms of the full sine and cosine series of each directional component of the force, assuming αR2 , βR1 , αS2 , βS2 ,
αW2 , and βW2 are nonzero. Further methods to optimize this minimization or address other cost functions
will be developed in future work.

VII. Nonsingular Equations for Circular Orbits

In the previous paper, a change of variables was introduced to avoid singularities in the averaged secular
equations due to zero eccentricity or inclination. To replace the variables e, i, Ω, and ω, we introduced the
variables

h1 = e sin ω̃ (79)
k1 = e cos ω̃ (80)
h2 = sin i sin Ω (81)
k2 = sin i cos Ω (82)

where ω̃ = Ω + ω. The averaged equations were reformulated in terms of these variables.
The offset correction method described in Section V can be applied to the equations in the new variables.

The resulting correction terms h1p, k1p, h2p, and k2p have the form of Equation 31. These terms are quite
lengthy, however, so they are most easily calculated using a symbolic manipulator.

The variable change allows numerical integration of the averaged equations for trajectories that closely
approach circular orbits. Figure 6 shows an example of the corrected equations in the new variables for an
orbit originating at e = 0.005 with Fourier coefficients randomly selected up to order 10.
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Figure 6. Trajectory initialized at e = 0.005 with corrected equations in changed variables
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Although this method is accurate for trajectories with very small eccentricities, some computational
difficulties remain for trajectories involving exactly zero eccentricity. Simulations that begin from an exactly
circular orbit usually do not show agreement between the averaged equations and the true trajectory. This
is unlikely to be a problem in real applications, as any flight trajectory would not be exactly circular.
However, it prevents comparison of this method to other low-thrust spacecraft targeting methods that
involve theoretical circular orbits.

A similar situation exists for equatorial orbits, but this is of less concern, as the plane from which
inclination is measured can usually be redefined.

VIII. Conclusions

The Fourier coefficient method for evaluation of average low-thrust spacecraft trajectory dynamics was
refined and applied to orbital targeting problems. Offsets of the average trajectory due to periodic variations
were corrected, which reduced the divergence between the true and average trajectories over several orbits.
This correction, along with generalization of the cost function analysis, improved the original orbital targeting
algorithm. Reduction of the energy required for a given transfer by inclusion of additional terms in the thrust
Fourier series was proven possible in certain cases and a method for selection of the additional terms was
described.

The improved targeting method provides accurate, low-cost solutions to almost all feasible low-thrust
orbital targeting problems. It does not generally provide optimal solutions, however, as higher-order terms
may always be added to the thrust acceleration vector Fourier series to reduce the total energy of the transfer,
or other low-thrust solutions may exist.

Future work will explore further optimization methods using the averaged secular equations. Time-
variation of the thrust acceleration vector will be included in the targeting algorithm; transfer costs may
be reduced by correctly selecting different control laws for different portions of the transfer. Alternate cost
functions and improved methods for selection of the additional Fourier coefficients may also be explored.
Future work will also continue to investigate the remaining singularities of the circular orbit case.
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