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Abstract 

Schemes for twedimensional advection, based on the 
full advection direction, are derived and tested. The 
optimal, positive, linear scheme for triangles is pre- 
sented and discussed. A technique for developing 
nonlinear schemes for linear problems is put for- 
ward, and positive, nonlinear schemes for triangles 
and quadrilaterals are presented. The linear schemes 
are based only on the advection direction and the 
mesh geometry; the nonlinear schemes add solution- 
gradient information to attain increased accuracy. 
All of the schemes are compact; the updates can be 
done on a cell-wise basis, using only the nodes that 
define that cell. All show a very marked improve- 
ment over mesh-aligned first-order upwind differenc- 
ing, which employs the same stencil. 

Introduction 
Much of the insight employed in the development 
of modern-day algorithms for solving advection- 
dominated problems comes from the equation for one- 
dimensional advection 

Most schemes for advection-dominated problems in 
two dimensions are based on applying the one- 
dimensional schemes along mesh directions; i.e. u p  
winding based on the projection of the advection di- 
rection onto the normal to a cell-face. 

The short-comings of this approach are apparent 
on problems in which the advection direction is not 
aligned with the mesh. As an example of this, a cir- 
cular advection field, 

and boundary conditions given by 

yield excessively smeared results when first-order, 
mesh-aligned upwinding is applied. On the mesh 
shown in Figure 1, which is a Delaunay triangula- 
tion of a relatively uniform point cloud, the input 
distribution (the left half of the lower boundary) is 
smeared quite a bit by the time it reaches the out- 
flow (the right half of the lower boundary), as seen in 
Figure 2. 

While high-resolution mesh-aligned schemes give 
vastly improved results, the schemes presented in this 
paper, using the same stencil as the first-order up- 
wind scheme, give results that are better yet. 
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Figure 1: Mesh for Circular Advection Problem 
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Figure 2: Contours of u for Circular Advection Prob- 
lem - Mesh-Aligned Upwind Scheme 

The equation for tw-dimensional advection, 

may be solved by any one of a number of finite- 
difference, finite-volume or finite-element schemes. 
The schemes described in this paper fall in the 
broad class of "cell-vertex," or "fluctuation-splitting" 
schemes, which use conforming finite elments to rep- 
resent the data, but do not necessarily use the "weak 
solution/test function" formalism to generate up- 
dates [I]. A recent survey of what has been ac- 
complished within a more conventional finite-element 
framework has been given by Hughes [2]. Many well- 
known finite-volume and finite-element schemes may 
be interpreted in the fluctuation-splitting framework. 
The unknowns, u, are thought of as being associated 
with nodes in the mesh, and as varying linearly along 
faces in the mesh. A residual, or fluctuation, for a cell 
in the mesh may be calculated by integrating equa- 
tion 4 over a cell, giving 

where a is the advection direction (a, 6). By Gauss' 
theorem, 

r 

where fi is the inward-pointing unit normal to the cell 
face, and the integral is carried out counter-clockwise. 
The fluctuation calculation for a triangular cell is de- 
picted in Figure 3. 

Making use of the linear representation of u on each 
face, the boundary integral may be evaluated, giving 

where n; is the scaled normal to the face opposite the 
ith node. Using the fact that 

Equation 7 may be simplified to give 



2 ' Node i of mesh 

Figure 3: Definition of Cell, Nodes and Normals Figure 4: Dual Mesh and Area Associated with Node 

where the fluctuation for that cell is then scattered only to 
k . - !  t - 2a .n i ,  (10) the nodes of the cell. This remains, however, a large 

class of schemes. The distribution weights (the ai's) 
and, for example, remain to be chosen; the only constraint on them thus 

far is the conservation constraint, Equation 13. 
n l  = ( ( ~ 3  - YZ) , (22 - 23)) . (11) 

Once a fluctuation has been calculated for a cell, it Linear Schemes and the Advec- 
remains to split the fluctuation among the nodes, in 
order to update the solution at the nodes. The total tion Direction 
change in u in the cell, in a time At, is At &. This 
change is scattered to the three nodes of the cell by The simplest cell-vertex scheme is simply to dis- 

tribute the fluctuation equally to the nodes of a cell; 
S lul  := Slul  + o l A t 4 c  (12~)  that is 1 
S2u2 := S2u2 + a z A t 4 ~  (12b) a .  - - 

' - 3  (14) 

S3u3 := S3u3+ a3At4c for triangular cells. (For quadrilateral cells, ai = 

where Si is the area associated with node i (i.e. one- 
third the area of the triangles having node i as a 
vertex, or the area of the polygon associated with 
node i on the median-dual mesh; see Figure 4) and 
cui is the fraction of the fluctuation for cell C sent to 
node i .  It is important to note that each node can get 
contributions from more than one cell; for the update 
scheme defined above, only cells which share node i 
as a vertez can send coniribuiions to that node. To 
enforce conservation, it is necessary that 

114).  his distribution, in conjunction with the resid- 
ual calculation step, corresponds to central differenc- 
ing, or, equivalently, a Galerkin finite-element ap- 
proach with a lumped mass matrix. The marginal 
stability of this scheme, and the resulting oscillatory 
solutions, are well-documented. 

A more sophisticated approach is to put some more 
"physics" into the distribution step; clearly an equi- 
distribution of the fluctuation is inconsistent with the 
advection problem being solved, and a downwind- 
biased distribution is more physical. This can result - - 

in schemes that are more accurate, and more stable, 
(I3) than the Galerkin scheme. One way to derive such a 

scheme is to write the change in u at a node as - 

on each cell. 
At2 a2 The two pieces defined above, i.e. the residual cal- = lD 2 d2 dy + $ d2 dy 

culation step and the distribution step, define a very - .  
compact set of schemes - the residual calculation au 
for a cell is based entirely on the nodes of the cell; = A t ~ $ d z d y + $ ~ a . V s i d z d y  



where the subscript D denotes the cell in the me- 
dian dual associated with the node (see Figure 4). 
The contribution to Aui from a triangle C, denoted 
( A U ~ ) ~  can be shown to be 

where& is the area of triangle C. Thus, this scheme, 
whicl is a Lax-Wendroff scheme, can be written as a 
flucfuation splitting scheme with 

where 

The same analysis, on a rectangle C, leads to  weights 

1 v, + vy a,, = -+- 
4 4 (194 
1 v, - vy 

a,w = - - - 
4 4 (19'4 
1 v, + vy arw = - - - 
4 4 ( 1 9 ~ )  
1 v, - vy 

are = -+- 
4 4 (194  

where 

This scheme, while more stable and more accurate 
than the Galerkin scheme, is well known to yield os- 
cillatory results for non-smooth initial conditions (or 
advection speeds that are a function of u). 

Linear Schemes and Positivity 
To avoid the oscillations which occur in both the 
Galerkin and Lax-Wendroff schemes, it is necessary 
to construct the fluctuation-splitting scheme such 
that the updated value at  a node is bounded by 
the previous values at  some collection of neighboring 
nodes, i.e. 

A necessary and sufficient condition for this bound- 
edness is that uY+' can be written as a convex com- 
bination of the u;'s; 

Typically, the values chosen to bound the update at  
i are all those values that enter in the difference for- 
mula for the update of ui. For the schemes described 
here, since the residual calculation and distribution 
steps for a cell are based entirely on the nodal values 
of u for that cell, it is convenient to base the positivity 
constraint only on these values as well. The analysis 
must theu be done on a "worst case" basis, which is 
more restrictive than the usual positivity constraint; 
for each cell contributing to the new value u;+', the 
fluctuation distribution from that cell is constrained 
so that it alone does not change u?+' by more than 
some fraction of the change that would take it outside 
the bounds of the old values at  the nodes making up 
the cell. 

The effect of one cell on its three nodes is 

For this update to meet the local positivity constraint 
defined above, it is necessary that the coefficients of 
each ui in the right-hand side of each of the above 
formulas be non-negative. Clearly, the signs of the 
ki's are important; since ki = $a ni, the sign of ki 
simply denotes whether face i is an inflow face or 
an outflow face. Since the ki's must sum to zero for 
a divergence-free advection field a, there cannot be 
three inflow sides or three outflow sides. Thus there 
are only two cases to consider: triangles of type I 
(one inflow side, and therefore one positive lei); and 
triangles of type I1 (two inflow sides, and therefore 
two positive ki's). These two cases are depicted in 
Figure 5. 

For triangles of type I,  only one of the ti's is pos- 
itive. Say, for example, that k1 is positive, and k2 
and kg are negative. In the equation for the update 
of u2, the coefficient of ul is then negative, if a 2  is 
positive. Similarly, in the equation for the update of 
u3, the coefficient of ul is negative, if a s  is positive. 
Therefore, for a postive update of u2 and us, it is nec- 
essary that a 2  and a3 be either zero or negative. The 
simplest scheme arises from taking them zero. Since 
the a's must sum to one, this implies that a1 = 1. 
In the equation for the update of ul ,  the coefficients 
of u2 and UQ are non-negative; the coefficient of ul is 
non-negative as long as 

In practice, the constraint 



the entire fluctuation to nodes 1 and 2, i.e the two 
nodes opposite inflow faces; 

This scheme meets the constraint of Equatim 27, and 
is positive as long as 

Type I Triangle 

A t  5 min - - [;':I . 
Again, a worst-case analysis strengthens this to 

Type II Triangle 

Figure 5: Type I (one inflow side) and Type I1 (two 
inflow sides) Triangles 

is used, where n is the number of triangles that con- 
tribute to the change at that node. For "good" tri- 
angulations, it can be shown that n = 2. Thus, for 
the local positivity constraint to be met for a type 
I triangle, the entire fluctuation can be sent to the 
node opposite the inflow side, as long as the above 
time-step constraint is met. 

For triangles of type 11, two of the ki's are positive. 
By similar arguments to those given above, it is easy 
to show that a positive scheme cannot be constructed, 
unless the ai 's depend upon the ui 's. If the ai7s are 
taken to be of the form 

where the Pi's satisfy 

the update becomes 

A scheme of this class, for a type I1 triangle with kl 
and k2 positive, can be derived by writing 

which comes from Equation 7 and the fact that the 
ki's sum to zero. A positive update based on this 
form of the residual may be constructed by sending 

The scheme is also linear, a fact that is a happy 
surprise, since the ai's are dependent on the ui's. 
As written above, however, the update is entirely in 
terms of the ki's, which depend only on the triangle 
geometry and the advection direction. The scheme 
described above is the optimal linear scheme for two- 
dimensional advection on triangles in the following 
senses: 

it has the largest time-step of any linear, positive 
scheme; 

it has, on meshes formed by an optimal subdivi- 
sion of rectangular meshes, the least truncation 
error of any scheme in its class [3]; 

it has the narrowest stencil of any scheme in its 
class; 

it is the only positive scheme which gives the 
exact solution to the advection equation when 
the advection speed is aligned with a triangle 
edge. 

Results for this scheme, called the N-scheme [3] 
for its narrow stencil and narrow discontinuities, are 
shown in Figure 6 for the circular advection problem. 

There is one important property that the N-scheme 
does not possess. It is not guaranteed that data for 
which all residuals are zero will remain unchanged. 
This is because the ai's, as defined in Equation 26, 
may not be finite, and so the Pi's may be finite even 
when Qc = 0. This property, i.e. the preservation of 
linear solutions (linearity preservation), is possessed 
by the Lax-Wendroff scheme above. Indeed, it can 
be shown [4] that linearity preservation is sufficient 
to ensure second-order accuracy on regular meshes in 
the steady state. 

Moreover, one can prove that there are no linear 
schemes of the form in Equation l t d  that are both 
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Figure 6: Contours of u for Circular Advection Prob- 
lem - N Scheme 

positive and linearity preserving. This is an analogue 
of Godunov's famous result for one-dimensional ad- 
vection, that no linear schemes are both monotone 
and second-order accurate. This motivates the search 
for a nonlinear scheme which is both positive and lin- 
earity preserving. 

NonLinear Schemes and the 
Solution- Gradient Direction 

Improvements in accuracy may be obtained by noting 
that a function u(z, y) that satisfies 

also satisfies au 
- + a * - V u = O ,  
at (34) 

where 
au au 

a* =a+X(,,-,) . (35) 

Adding this term does not affect the fluctuation 4c 
calculated for a triangle. It does, however, affect the 
"apparent" advection speed, and therefore the ki's. 
Because these now depend on the data, schemes gen- 
erated in this way are inherently nonlinear. 

It is becoming clear that many previous attempts 
to generalize from numerical schemes for Equation 33 
to more complex advection-dominated problems have 
come to grief because of the very natural assumption 
that the wave direction in Equation 33 is a/ la], and 

the wave speed is tat. A better case can be made 
for the argument that the wave direction is actually 
Vu/ IVul, and the wave speed is a . Vu/ IVuJ. This 
preserves a convention that all waves propagate nor- 
mal to their level lines, and makes for a ready general- 
ization to systems of equations [5]. A further advan- 
tage is that the wave speed defined in this new way is 
always slower than the usual definition. It therefore 
allows larger time-steps, particularly close to steady 
state. 

The new kf's are, in terms of the original ki's, 

If the philosophy taken for the linear scheme is fol- 
lowed, X may be chosen to maximize the allowable 
time-step. The resulting scheme may be presented as 
follows [6]:  

if (only ki > 0) then 
crj = 1 

else if (only kk < 0 ) then 
if( (ui - u,) (uj - uk) > 0 ) then 

u '-u 
pi = u;+tj -Lk 

U '-uk 
Ok = us+ij-2Uk 

else if( (ui - uk) q5C < 0 ) then 
cri = 1 

else 
( Y j  = 1 

end if 
end if 

It should be noted that the denominators in the 
pi and pj given above vanish only when the residual 
vanishes. Thus, numerical problems can be avoided, 
and the code may be sped up, by simply ignoring 
any triangles for which the residual falls below some 
specified threshold. This scheme, which depends non- 
linearly on the data, is called the NN (for nonlin- 
ear narrow) scheme [6];  other nonlinear schemes with 
very similar performance are detailed by Deconinck 
et a1 [7]. All of them are positive and linearity pre- 
serving, and second-order accurate inthe steady state. 

The resulting contours for the circular advection 
problem are shown in Figure 7. 

Nonlinear schemes for quadrilaterals can be derived 
in an analogous fashion. The fluctuation for a square 
cell may be written in the form 



Circular Advection - NN Scheme 
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Figure 7: Contours of u for Circular Advection Prob- 
lem - NN Scheme 

where sw, se, ne and nw denote the southwest, south- 
east, northeast and northwest nodes of the cell. As 
with the triangular case, the advection speeds can be 
altered, without changing the fluctuation for the cell, 
by adding a constant A multiplyinga vector normal to 
the solution gradient. The altered advection speeds 
(Equation 35) may be written 

A positive update scheme is then 

In all cases, 

Circular Convection - Quadrilatel Scheme 

Figure 8: Contours of u for Circular Advection Prob- 
lem - Quadrilateral Scheme 

Choosing A in Equation 35 so as to give the maximum 
time step yields 

The switching that occurs when lau/axI = lau/ay( 
(i.e. when the solution gradient is aligned with a 
cell diagonal) causes difficulties in convergence. A 
smoother scheme, defined by 

yields better results. Contours for this scheme, on a 
Cartesian mesh with the same number of boundary 
nodes as the mesh in Figure 1, are shown in Figure 8. 
For comparison, a second-order mesh-aligned result 
is shown in Figure 9. This standard scheme, though 
using a larger stencil than the fluctuation splitting 
scheme, introduces slightly more diffusion. 

A comparison of the distribution of u on the 
bottom boundary of the domain for the four local 
schemes (mesh-aligned upwind on triangles, the opti- 
mal linear scheme and the optimal nonlinear scheme 
on triangles, and the nonlinear scheme on quadrilat- 
erals) is shown in Figure 10. 

An entirely different approach to constructing com- 
pact positive schemes on rectangular grids is pre- 
sented in [3]. 



Nonlinear Problems 
Given a nonlinear scalar problem 

Circular Convection - Mesh-Aligned Scheme 

Z 

Figure 9: Contours of u for Circular Advection Prob- 
lem - Mesh-Aligned Scheme 

Compariaon of Scheme. 

the approach taken is to define an equivalent linear 
problem within each triangle. Thus, for each cell in 
the mesh, the problem 

is considered, where a c  and bc are constructed so 
that the residuals on C defined by Equations 43 
and 44 are numerically identical. 

By definition, 

Assuming that u varies linearly over the cell, 

dc = 

- [ J - - + d Y ] g .  (46) 

- Upwind 
-,- N scheme Identity between Equations 43 and 44 is therefore 
.-..-. NN scheme 

Quad Scheme ensured by taking 

af 
a c  - & l Z d x d y  (474 

bc - & ~ ~ d x d y ,  (47b) 

where the integrals are computed by assuming that 
u varies linearly over C. For simple (linear or 
quadratic) f and g, this is very easy. For the par- 
ticular nonlinearity involved in the Euler equations, 
a particular device is available [5]. 

As an example of a nonlinear advection problem, 
the equation solved is 

Figure 10: Comparison of Boundary Distribution 
of u for Circular Advection Problem - Mesh- (48) 
Aligned Upwind Scheme, Optimal Linear Scheme (N 
Scheme), Optimal Nonlinear Scheme (NN Scheme), the boundary conditions are 
and Quadrilateral Scheme 

u(z,O) = 1.5-22 (49a) 
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Figure 11: Solution of Nonlinear Problem - NN 
Scheme 

Results for the NN scheme are shown in Figure 11; for 
comparison, results of a second-order mesh-aligned 
scheme on a Cartesian mesh with the same number 
of boundary points is shown in Figure 12. 

Summary and Remarks 

New schemes for solving scalar advection problems 
have been presented. These improve hugely over first- 
order upwinding, while retaining very compact sten- 
cils. The first level of improvement comes from us- 
ing the full advection speed, rather than just its pro- 
jection on the the mesh directions, to motivate the 
differencing scheme. The second level of improve- 
ment comes from using data-dependent, and there- 
fore non-linear, schemes. These exploit the existence 
of two significant directions, by considering the so- 
lution gradient direction as well as the advection di- 
rection. This second level upgrades the schemes to 
second-order accuracy when a steady state is reached. 

Schemes can be constructed for both structured 
quadrilateral meshes and unstructured triangular 
meshes. The results shown here are somewhat bet- 
ter on quadrilateral meshes, but use has not yet been 
made of the ability to reconnect the nodes of an un- 
structured mesh so that the triangles become more 
aligned with the characteristic directions in the prob- 
lem being solved. 

The best results are actually slightly better than 
those of a state-of-the-art grid-aligned scheme, but 
this is not the main justification of the new schemes. 
For scalar advection, a dimension-by-dimension ap- 

Z 

Figure 12: Solution of Nonlinear Problem - Second- 
order Mesh-Aligned Scheme 

proach is valid a t  the level of the partial differen- 
tial equations, so the schemes really address only 
the numerical error introduced by the dimension-by- 
dimension approach. For systems of equations, that 
approach is generally not valid for finding discon- 
tinuous solutions, so that a physically-motivated ap- 
proach demands the use of techniques like those given 
here. The companion paper to this one [5] explains 
how the bridge from scalar to system case can be 
constructed. 

Although this paper deals entirely with the two- 
dimensional case, all of the ideas appear to extend 
to three dimensions quite naturally, although care is 
needed to choose among the very numerous alterna- 
tives that become available. The three-dimensional 
version of the N-scheme has been worked out by Roe 
and Sidilkover [8]. 
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