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Abstract 

A parallel adaptive mesh refinement (AMR) 
scheme is described for solving the hyperbolic system 
of partial-differential equations governing ideal mag- 
netohydrodynamic (MHD) flows in three space di- 
mensions. This highly parallelized algorithm adopts 
a cell-centered upwind finite-volume discretization 
procedure and uses limited solution reconstruction, 
approximate Riemann solvers, and explicit multi- 
stage time stepping to solve the MHD equations 
in divergence form, providing a combination of 
high solution accuracy and computational robust- 
ness across a large range in the plasma P (/3 is 
the ratio of thermal and magnetic pressures). A 
flexible block-based hierarchical data structure is 
used to facilitate automatic solution adaption on 
Cartesian mesh using physics-based refinement cri- 
teria. In addition, the data structure naturally 
lends itself to domain decomposition, thereby en- 
abling efficient and scalable implementations of the 
method on MIMD (multiple-instruction multiple- 
data) distributed-memory multi-processor architec- 
tures. The model has been developed on several 
massively parallel computer platforms and high par- 
allel performance has been achieved (342 GFlops 
has been attained on a 1,490-processor Cray T3E 
1200 with near-perfect scalability). Numerical re- 
sults for MHD simulations of magnetospheric and 
heliospheric plasma flows are described to demon- 
strate the validity and capabilities of the approach 
for space physics applications. 

*Assistant Research Scientist, Atmospheric, Oceanic and 
Space Sciences, Senior Member AIAA 

t Assistant Research Scientist, Atmospheric, Oceanic and 
Space Sciences, Member AIAA 

XAssociate Professor, Aerospace Engineering, Senior Mem- 
ber AIAA 

§Professor, Atmospheric, Oceanic and Space Sciences 
‘Professor, Electrical Engineering and Computer Science 

Copyright @I999 by the American Institute of Aeronautics 
and .4stronautics, Inc. All rights reserved. 

I. Introduction 

Gaining a better understanding of the often com- 
plicated physical processes associated with the flows 
of electrically conducting fluids and plasmas is of 
great interest and current importance both for fun- 
damental scientific research and new engineering 
technology. Numerical modeling is playing an ever 
increasing role in the study of these flows; however, 
the solution of the governing nonlinear partial dif- 
ferential equations (PDEs) for such flows, even for 
the somewhat rudimentary mathematical represen- 
tation given by the hyperbolic system of equations 
of ideal magnetohydrodynamics (MHD), is challeng- 
ing and necessitates special consideration. Solu- 
tions of the compressible MHD equations are char- 
acterized by complicated nonlinear wave structure 
and admit strong shocks and contact discontinu- 
ities. For many space and astrophysical plasma 
applications, the solutions may also exhibit rapid 
transitions between a wide range of highly differ- 
ent solution regimes including transitions from low 
speed subsonic to hypersonic and hyper-.4lfvknic 
regimes, from high-density high-temperature to low- 
density low-temperature regimes, and from strongly 
magnetized (low-p) to weakly magnetized (high-p) 
regimes, where p is the ratio of thermal and mag- 
netic pressures. In addition, the ideal MHD equa- 
tions exhibit solution degeneracies of a type that do 
not arise in conventional gas dynamics and, as they 
are normally written, have the added constraint of 
zero divergence of the magnetic field imposed by 
the condition that there are no observed magnetic 
monopoles. Numerical methods are needed that are 
capable of reliably and accurately resolving complex 
nonlinear wave structure, can cope with the discon- 
tinuous and degenerate nature of the solutions, and 
at the same time remain valid for a wide range of 
solution parameters. 

Numerical simulations of conducting fluids and 
plasmas in three space dimensions also place heavy 
demands on available computational resources. The 
solution of problems with between ten and one hun- 
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dred million degrees of freedom or more is typically 
required, and for time-dependent calculations, the 
solutions may require updating at between ten and 
one hundred thousand instances in time. For this 
reason, the ability to routinely perform such simula- 
tions virtually necessitates efficient and flexible algo- 
rithms that can harness the potential of current and 
future generations of massively parallel computer ar- 
chitectures. 

In the present work, a parallel adaptive mesh 
refinement (AMR) scheme is described for solving 
the equations governing ideal MHD flows in three 
space dimensions. This highly parallelized algo- 
rithm adopts a cell-centered upwind finite-volume 
discretization procedure and uses limited solution 
reconstruction, approximate Riemann solvers, and 
explicit multi-stage time stepping to solve the MHD 
equations in divergence form, providing a combina- 
tion of high solution accuracy and computational 
robustness across a large range in the plasma ,O. 
A flexible block-based hierarchical data structure 

I . is used to facilitate automatic solution adaption on 
~ Cartesian mesh using physics-based refinement cri- 

teria. In addition, the data structure naturally 
lends itself to domain decomposition, thereby en- 
abling efficient and scalable implementations of the 
method on MIMD (multiple-instruction multiple- 
data) distributed-memory multi-processor architec- 
tures. This combination of a robust finite-volume 
discretization of the governing equations, block- 
based AMR, domain decomposition, and parallel im- 
plementation yields an efficient, reliable, and power- 
ful numerical method for large-scale simulations of 
MHD flows on high-performance parallel machines. 

A description of the parallel solution-adaptive 
scheme is given in the following sections. Included 
are a presentation of the particular form of the MHD 
equations which are solved, details of the spatial 
and temporal discretization procedures used, and 
descriptions of the AMR strategy and hierarchi- 
cal block-based data structure for Cartesian mesh. 
The parallel implementation of the algorithm MIMD 
distributed-memory architectures is also discussed 
along with the resulting parallel performance. In 
particular, aspects of the algorithm and implementa- 
tion that are important to achieving high-speed scal- 
able performance are discussed. Finally, numerical 
results for MHD simulations of magnetospheric and 
heliospheric plasma flows are described to demon- 
strate the validity and capabilities of the approach 
for space physics applications. 

II. Governing Equations 

A. Symmetrizable Form of MHD Equations 

The hyperbolic system of PDEs governing com- 
pressible ideal MHD flows can be written in non- 
dimensional weak conservation (divergence) form as 

3”; &T - - 
at . ( > =S+Q, 

where the solution and source-like vectors 0 and 9 
are given by 

F is a flux tensor having the form 

r lT 
p= ,&iii+ ($+;P)I-BB , (3) 

i-&i-Bii u(E+p+p) - (B.a)B 1 
the total plasma energy, B, is given by 

In addition, the specific internal energy of the 
plasma is related to the pressure and density via 
the ideal-gas equation of state, Z = F/(y - l)fi 
and, for ideal MHD, the current density, J, follows 
from a reduced form of Ampere’s law and is given 
by j = 0 x &. Represented in the equation set 
are five equations for the conservation of mass, mo- 
mentum, and total plasma energy, as well as three 
equations describing the time evolution of the mag- 
netic field as described by Faraday’s Law. The non- 
dimensional variables p, 6, @, and fi correspond 
to the non-dimensional density, velocity, pressure, 
and magnetic field, respectively, and are related to 
their dimensional counterparts by the following non- 
dimensionalization: 

6 = P/PO (5) 
ii = u/a, (6) 
P = plpoaZ (7) 

13 = B/d= (8) 

where p. and a, are the density and ion-acoustic 
wave speed of a suitable reference solution state, and 
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y is the specific heat ratio of the plasma. In this for- 
mulation, the vector S contains terms arising in the 
MHD equations that cannot be expressed in diver- 
gence form and the column vector 0 contains pure 
source terms associated with the modeling of any 
additional physical processes, such as gravitational 
acceleration. 

The form of the ideal MHD equations given by 
Eqs. (l)-(4) is somewhat non-standard. The terms 
of column vector S are proportional to V . B, and 
arise solely from expressing Faraday’s Law in diver- 
gence form. It is more usual to make use of the 
solenoidal condition, V . fi = 0, to further simplify 
Eq. (1). The solenoidal condition amounts to an 
initial condition for the MHD equations and, physi- 
cally, implies that there are no magnetic monopoles. 
However, imposing this constraint in finite-volume 
based numerical solutions of the MHD equations 
has proven to be very challenging.’ Mathematically, 
dropping the source terms of S changes the char- 
acter of the MHD equations. Godunov has shown 
that Eq. (1) with the additional constraint is not 
symmetrizable. 2,3 The equations possess a degener- 
ate eigensystem, having only seven identifiable char- 
acteristic fields, and, furthermore, are not formally 
Galilean invariant. Godunov found that the MHD 
equations can only be rendered symmetrizable by 
adding the terms contained in S. Equation (1) with 
the source terms of !% has eight characteristic fields, 
satisfies an additional transport equation or balance 
law for the plasma entropy, and is Galilean invariant. 
Moreover, this form of the MHD equations allows 
the derivation of an eight-wave approximate Roe- 
type Riemann solver that can be used in the con- 
struction of an upwind finite-volume scheme.4 

The approach taken here, as first advocated by 
Powell,4 is to solve the governing PDEs in their 
symmetrizable form. This permits the construc- 
tion of a finite-volume scheme, based on approxi- 
mate Riemann solvers, that tightly couples the fluid- 
dynamics and magnetic field equations, is conserva- 
tive, correctly represents the propagation speeds of 
solution disturbances, and thereby satisfies the ap- 
propriate Rankine-Hugoniot jump relations for dis- 
continuities in the solution. Although the solenoidal 
condition is not enforced to machine accuracy, it can 
be shown that it is satisfied to the level of the trun- 
cation error of the solver without requiring the use of 
projection schemes and/or staggered mesh arrange- 
ments.596 Furthermore, T&h and OdstrEil’ have 
found that the addition of the terms proportional 
to V. 6 improve results for multidimensional MHD 
calculations with several methods and, in fact, re- 
duce errors in the computed parallel magnetic force. 
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B. Intrinsic and Deviatoric Magnetic Fields 

For some problems in which a strong “intrinsic” 
magnetic field dominates much of the flow solution 
(e.g., the intrinsic dipolar field of earth strongly in- 
fluences the magnetospheric magnetic field configu- 
ration arising from the interaction of the solar wind 
with the earth’s magnetic field), improved solution 
accuracy can be gained by solving for the deviatoric 
magnetic field, Bi, which is the measure of the de- 
viation of the full magnetic field from the intrinsic 
field, B, and is defined as follows: 

Bl = I3 - It&). (9) 

This approach was first employed by Tanaka7 and 
can lead to improved numerical solutions by allevi- 
ating the necessity of resolving the often large spatial 
gradients associated with the intrinsic fields and by 
ensuring that the divergence of the intrinsic com- 
ponent of the magnetic field is by definition zero. 
Assuming that the intrinsic magnetic field is both 
current free and time invariant such that 

a% o 
x= ) h30=o ) QxXBo=O, (10) 

then the symmetrizable form of the ideal MHD equa- 
tions can be rewritten as 

~+(a.i.l)T+(t-.e)T41+4, (11) 
where 

pii 

P;1 = 

i 

piiu+ Ij+p: I-G& 
( > 

ii& -&ii 

ii (B1 +p+ p:) - pl. 6) Es1 

- (13) 

e:= 
B,. BJ - 

( 
B& + B& 

> 
is, - i&u > (14) 

(8,.qu- (ii-&p, 

and where the total plasma energy in terms of the 
deviatoric magnetic field, ,?!?I, is given by 

(1% 
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Note that Eqs. (ll)-( 13) have been de_ived under 
the assumption that aB,/l% = 0 and V x B, = 0. 
It is possible to derive a more general formulation 
of the equations that accounts for time variations 
in the intrinsic magnetic field and current systems 
associated with the intrinsic field. 

III. Elements of the Parallel 
Solution-Adaptive Scheme 

As discussed in the introduction, the numerical 
solution of hyperbolic systems of PDEs of the type 
given by Eqs. (ll)-(15) is challenging. The algo- 
rithm described herein has been formulated to cap- 
italize on recent developments in three areas of sci- 
entific computing. They are: 1) advances in upwind 
finite-volume methods for hyperbolic conservation 
laws; 2) significant advances in solution-adaptive 
techniques; and 3) advances in parallel computer de- 
sign. A reliable, relatively efficient, and scalable par- 
allel .4MR finite-volume scheme for solving the ideal 
MHD equations has resulted. 

A. Finite-Volume Scheme 

Higher-order variants of the upwind finite-volume 
scheme originally proposed by Godunov8 have 
proven effective in the solution of hyperbolic sys- 
tems of equations. Robust and low dissipation 
shock-capturing schemes, providing reliable high- 
resolution of complicated wave structure and non- 
oscillatory solutions near discontinuities, have been 
devised for conventional gas dynamics.g-22 The 
studies of Brio and Wu23 and Zachary and Collela24 
represent the first application of Godunov-type tech- 
niques to the ideal MHD equations. Schemes based 
on Roe-type approximate Riemann solvers14 were 
developed for the one-dimensional form of the ideal 
MHD equations in both studies. In subsequent 
work, Roe and Balsara25 proposed a refinement to 
the eigenvector normalizations of the approximate 
Riemann solvers developed in this previous work 
and Tanaka? developed a Roe-type scheme for the 
three-dimensional MHD equations. Dai and Wood- 
ward26,27 developed a nonlinear approximate Rie- 
mann solver for MHD and used it to formulate a 
higher-order Godunov-type scheme for multidimen- 
sional problems. Other flux function formulations 
have also been proposed. Croisille et a1.28 have 
developed a kinetic-based scheme and Linde2g has 
developed a modified version of the HLLE method 
of Harten, Lax, Van Leer, and Einfeldt3’z31 for the 

MHD equations. 
In the present work, an explicit higher-order 

Godunov-type method is used to solve Eq. (11). In 
this finite-volume approach, the governing equations 
are integrated over computational cells, i, yielding 

do,. 1 
--& = --c(F1+G).nA 

dt vi faces 
Si -- 
vi c 6 .nA+g,, , (16) 

faces 

where Vi is the volume of cell i, A is the surface area 
of the faces forming the computational cell, n is the 
unit vector normal to the cell faces, 0~ is the cell- 
averaged conserved solution vector, and Si is given 
by 

0 

gi = - 1 1. BOi + Bli 
iii (17) 

The numerical face fluxes, I? + G . n, are defined (1 > 
in terms of the left and right interface solution states, 
UIL and Ul,, as follows 

where UI, and UI, are determined using piece-wise 
linear solution reconstruction applied to each com- 
putational cell. The least-squares limited linear re- 
construction procedure developed by Barth32 is used 
here. Given the left and right interface states, the 
flux function, 3, is then evaluated by using an ap- 
proximate Riemann solver. In the present work, the 
Roe-type linearized Riemann solver for MHD put 
forward by Powell4 and the HLLEtype flux func- 
tion due to Lindezg have both been implemented 
and may be used. Note that the use of limited lin- 
ear reconstruction and approximate Riemann solvers 
leads to a scheme that is robust, minimizes numeri- 
cal discretization errors, and provides accurate reso- 
lution of discontinuities and shocks. Further details 
of this spatial discretization procedure and the ap- 
proximate Riemann solvers used here are given else- 
,here.‘%2%33 

For steady-state (time-invariant) calculations, a 
time-marching method-of-lines approach is adopted 
and the system of ordinary differential equations re- 
sulting from the application of the spatial discretiza- 
tion procedure defined above are integrated in time 
using the optimally-smoothing multi-stage schemes 
developed by van Leer et a1.34 The general M-stage 
scheme for integrating Eq. (16) from time level n to 
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time level n + 1 can be written as 

p = 0”. 
1, 1, 

o!m) = 0:) + &AFR ($~-1’) m = 1.. . M 

1% 
= p 

1, 
where the residual R is equal to the right-hand-side 
of Eq. (16) and A?’ = ?‘+I - i” is the size of the 
time step. The multi-stage coefficients Pm and as- 
sociated time-step constraints are given by van Leer 
et al.34 One advantage of this integration procedure 
is its low storage requirements. Local time stepping 
is used to enhance the convergence of the scheme to 
the steady state solution. For time-accurate calcula- 
tions, a simple two-stage second-order Runge-Kutta 
time integration procedure is used to solve Eq. (16). 

B. Block-Based AMR on Cartesian Grids 

Adaptive mesh refinement techniques which auto- 
matically adapt the computational grid to the SD- 
lution of the governing PDEs can be very effective 
in treating problems with disparate length scales. 
Methods of this type avoid under-resolving the solu- 
tion in regions deemed of interest (e.g., high-gradient 
regions) and, conversely, avoid over-resolving the so- 
lution in other less interesting regions (low-gradient 
regions) and thereby saving orders of magnitude in 
computing resources for many problems. For typi- 
cal space plasma flows, length scales can range from 
tens of kilometers in the near Earth region to the 
Earth-Sun distance (1.5 x 1O’l m) and time scales 
can range from a few seconds near the Sun to the 
expansion time of the solar wind from the Sun to 
the Earth (- lo5 s). The use of AMR is extremely 
beneficial and almost a virtual necessity for solving 
problems with such disparate spatial and temporal 
scales. 

Borrowing from previous work by Berger and co- 
workers,35-3g Quirk,40l41 and De Zeeuw and Powell42 
and keeping in mind the desire for high performance 
on massively parallel computer architectures, a rel- 
atively simple yet effective block-based AMR tech- 
nique has been developed and is used in conjunction 
with the finite-volume scheme described above. The 
method has some similarities with the block-based 
approaches described by Quirk and Hanebutte41 and 
Berger and Saltzman. 3g Here, the governing equa- 
tions are integrated to obtain volume-averaged so- 
lution quantities within rectangular Cartesian com- 
putational cells. A representative cell is depicted 
in the schematic diagram of Fig. 1. The compu- 
tational cells are embedded in regular structured 

Z 

J-' 
v. t.1.k 

= Ax AyAz 

/ y 
X 

cm l I 
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Figure 1: Cartesian computational cell used in par- 
allel block-based AMR scheme. 

blocks of equal sized cells. The blocks are geomet- 
rically self-similar with dimensions L, x & x t!= and 
consist of Nz x NY x N, cells; where e,, &,, and iz 
are the non-dimensional lengths of the sides of the 
rectangular blocks and N,, NY, and N, are even, 
but not necessarily all equal, integers. Typically, 
blocks consisting of anywhere between 4 x 4 x 4 = 64 
and 12 x 12 x 12 = 1,728 cells are used. Refer to 
Fig. 2. Solution data associated with each block are 
stored in standard indexed array data structures. It 
is therefore straightforward to obtain solution infor- 
mation from neighboring cells within a block. 

Computational grids are then composed of many 
self-similar blocks. Although each block within a 
grid has the same data storage requirements, blocks 
may be of different sizes in terms volume of the phys- 
ical space that they occupy. Starting with an initial 
mesh consisting of blocks of equal size (i.e., equal 
resolution), adaption is accomplished by the divid- 
ing and coarsening of appropriate solution blocks. In 
regions requiring increased cell resolution, a “par- 
ent” block is refined by dividing itself into eight 
“children” or “offspring”. Each of the eight oc- 
tants of a parent block becomes a new block having 
the same number of cells as the parent and thereby 
doubling the cell resolution in the region of interest 
(A2 = e,/N,, Aji = iy/Ny and A2 = iz/Nz for 
the newly created block are each halved from their 
value on the parent block). Conversely, in regions 
that are deemed over-resolved, the refinement pro- 
cess is reversed and eight children are coarsened and 
coalesced into a single parent block. In this way, the 
cell resolution is reduced by a factor of two. Stan- 
dard multigrid-type restriction and prolongation op- 
erators are used to evaluate the solution on all blocks 
created by the coarsening and division processes, re- 
spectively. 

Two neighboring blocks, one of which has been 
refined and one of which has not, are shown in Fig. 2. 
.4ny of the blocks shown in the figure can in turn 
be refined, and so on: leading to successively finer 
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’ Figure 2: Self-similar blocks used in parallel block- 
based AMR scheme. 

/ 
I Figure 3: Self-similar blocks illustrating the double 

layer of ghost cells for both coarse and fine blocks. 

blocks. In the present method, mesh refinement is 
constrained such that the cell resolution changes by 
only a factor of two between adjacent blocks and 
such that the minimum resolution is not less than 

~ that of the initial mesh. 

~ . In order that the update scheme for a given itera- 
i tlon or time step can be applied directly to all blocks 

in an independent manner, some additional solution 
information is shared between adjacent blocks hav- 
ing common interfaces. This information is stored in 
an additional two layers of overlapping “ghost” cells 

1 associated with each block as shown in Fig. 3. At 
interfaces between blocks of equal resolution, these 

I ghost cells are simply assigned the solution values 
~ associated with the appropriate interior cells of the 
) adjacent blocks. At resolution changes, restriction 
, and prolongation operators, similar to those used in 
1 block coarsening and division, are employed to eval- 
~ uate the ghost cell solution values. After each stage 
i of the multi-stage time-stepping algorithm, ghost 

cell values are reevaluated to reflect the updated so- 
lution values of neighboring blocks. With the AMR 
approach, additional inter-block communication is 
also required at interfaces with resolution changes 

~ to strictly enforce the flux conservation properties 
of the finite-volume scheme.35-37 In particular, the 
interface fluxes computed on more refined blocks 
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Grid Blocks 

Refinement Level Octree n 

I 

Multiple Roots 

Figure 4: Solution blocks of a computational mesh 
with three refinement levels originating from two ini- 
tial blocks and the associated hierarchical multi-root 
octree data structure. Interconnects to neighbors are 
not shown. 

are used to correct the interface fluxes computed on 
coarser neighboring blocks so as to ensure the fluxes 
are conserved across block interfaces. 

A hierarchical tree-like data structure with mul- 
tiple “roots”, multiple “trees”, and additional inter- 
connects between the “leaves” of the trees is used to 
keep track of mesh refinement and the connectivity 
between solution blocks. This interconnected “for- 
est” data structure is depicted in Fig. 4. The blocks 
of the initial mesh are the roots of the forest which 
are stored in an indexed array data structure. As- 
sociated with each root is a separate “octree” data 
structure that contains all of the blocks making up 
the leaves of the tree which were created from the 
original parent blocks during mesh refinement. Each 
grid block corresponds to a node of the tree. Traver- 
sal of the multi-tree structure by recursively visit- 
ing the parents and children of solution blocks can 
be used to determine block connectively. However, 
in order to reduce overhead associated with access- 
ing solution information from adjacent blocks, the 
neighbors of each block are computed and stored 
directly, providing interconnects between blocks in 
the hierarchical data structure that are neighbors in 
physical space. 
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Figure 5: Evolution of a computational mesh illustrating grid adaptation in response to changes in the 
numerical solution. Cross sectional cuts through a 3D grid are shown for a solar wind calculation at four 
different instances in time. The computational cells are not shown for the smaller blocks. 

One of the advantages of the preceding hierarchi- 
cal data structure is that it is relatively easy to carry 
out local mesh refinement at anytime during a cal- 
culation. If, at some point in a computation, a par- 
ticular region of the flow is deemed to be sufficiently 
interesting, better resolution of that region can be 
attained by refining the solution blocks in that re- 
gion, without affecting the grid structure in other 
regions of the flow. Reducing the grid resolution in 
a region is equally easy. There is no need for com- 
pletely m-meshing the entire grid and recalculating 
block connectivity every time a mesh refinement is 
performed. Although other approaches are possible, 
for this study, the coarsening and division of blocks 
are directed using multiple physics-based refinement 
criteria.5l43744 In particular, decisions as to when to 
refine or coarsen blocks are made based on compar- 
isons of the maximum values of various local flow 
quantities determined in each block to specified re- 
finement threshold values. Three flow quantities or 
refinement criteria, Ek, are used herein. They have 
the forms 

These quantities represent local measures of the 
compressibility and rotationality of the plasma as 

well as the stretching of the magnetic field. They 
have proven to be quite effective in detecting so- 
lution features such as shocks, velocity shears, and 
current systems in the plasma flow and directing the 
mesh adaption to more accurately resolve such fea- 
tures. Note that the refinement thresholds are dy- 
namically adjusted so as to exercise some control 
over the total numbers of blocks, and hence cells, 
used in a calculation. 

An example illustrating the adaptation of the 
block-based Cartesian mesh to an evolving solution 
is shown in Fig. 5. The figure shows the grid at 
four different instances in time for an unsteady cal- 
culation and depicts both the solution blocks (thick 
lines) and computational cells (thin lines) of the 
evolving grid. As noted above, each level of refine- 
ment in the grid introduces cells that are smaller by 
a factor two in each dimension from those one level 
higher in the grid. Typically, calculations may have 
lo-15 levels of refinement; some calculations may 
have more than 20 levels of refinement. In the case 
of 20 levels of refinement, the finest cells on the mesh 
are more than one million times (220) smaller in each 
dimension than the coarsest cells. The block-based 
AMR approach described above has many similari- 
ties to the cell-based method proposed by De Zeeuw 
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and Powel1.42 Although the block-based approach is 
somewhat less flexible and incurs some inefficiencies 
in solution resolution as compared to a cell-based 
approach (i.e., for the same solution accuracy, gen- 
erally more computational cells are introduced into 
the adapted grid), as will now be shown, the block- 
based method offers many advantages over a cell- 
based technique when parallel implementations of 
the algorithms are considered and performance is- 
sues are taken into account. 

C. Parallel Implementation 

The current and future generations of massively 
parallel distributed-memory computers offer the po- 
tential of large increases in processing power and 
memory resources beyond those of single-processor 
machines. Capitalizing on the promise of these 
resources is, however, not always easily achieved. 
In many instances, solution algorithm speedup is 
achieved for small numbers of processors (l-32 pro- 
cessors); however, with added processors, not only 
does the method fail to scale as expected, but the 
performance of the algorithm may actually diminish 
with an increase in the number of processors. 

The block-based AMR finite-volume scheme for 
MHD described in the preceding subsections has 
been designed with a view to achieving very high 
performance on massively parallel architectures. In 
particular, there are several important design fea- 
tures of the method that have enabled high parallel 
performance. They are as follows: 

l For problems involving the numerical solution 
of PDEs, domain decomposition (i.e., the par- 
titioning of the problem by dividing the com- 
putational domain into subdomains, and farm- 
ing the subdomains off onto separate proces- 
sors) is a natural and practical approach to par- 
allelization. The hierarchical block-based data 
structure and self-similar nature of the solution 
blocks make domain decomposition of the prob- 
lem almost trivial and readily enable good load 
balancing, a crucial element for truly scalable 
computing. Furthermore, the local nature of 
the mesh refinement process means that mesh 
adaptation can be performed routinely without 
remapping all of the subdomains to the proces- 
sors, which would significantly increase inter- 
processor communication and reduce computa- 
tional performance. 

l The underlying upwind finite-volume solution 
algorithm, with explicit time stepping, has a 

very compact stencil and is therefore highly 
local in nature. This results in lower inter- 
processor communication requirements. For the 
block-based grid structure, update of the so- 
lution within the subdomains on each proces- 
sor can proceed almost independently and com- 
munication is limited to block interfaces and 
mainly involves the exchange of ghost-cell so- 
lution values and conservative flux corrections. 
The compact stencil and block data structure 
also result in high data locality and there- 
fore permits the more efficient use of proces- 
sor memory and cache. Poor usage of processor 
cache can often severely limit the serial (single- 
processor) performance, and hence parallel per- 
formance, that may ultimately be achieved. 

l The self-similar nature of the solution blocks 
also means that serial performance enhance- 
ments apply to all blocks and that fine grain 
parallelization of the algorithm is possible. 

A parallel implementation of the block-based 
.4MR scheme has been developed using the FOR- 
TRAN 90 programming language and the MPI (mes- 
sage passing interface) library. Use of these stan- 
dards greatly enhances the portability of the com- 
puter code and has enabled very good serial and 
parallel performance. Domain decomposition is ac- 
complished by merely farming the solution blocks 
out to the separate processors, with more than one 
block permitted on each processor. -4 simple stack 
is used to keep track of available (open) processors. 
For homogeneous architectures with multiple pro- 
cessors all of equal speed, an effective load balanc- 
ing is achieved by exploiting the self-similar nature 
of the solution blocks and simply distributing the 
blocks equally amongst the processors. In doing 
so, all blocks are treated equally and, currently, no 
use is made of the hierarchical data structure nor 
grid partitioning techniques to preferentially place 
neighboring blocks on the same processors. With 10 
blocks per processor, the load imbalance attained 
by this simple block distribution procedure is less 
than 10% and, with 100 blocks per node, the load , 
imbalance becomes less than 1%. For heterogeneous 
parallel machines, such as a network of workstations, 
a weighted distribution of the blocks’can be adopted 
to preferentially place more blocks on the faster pro- 
cessors and less blocks on the slower processors. 

In order to carry out mesh refinement and inter- 
block communication, the complete hierarchical oc- 
tree data structure is stored on every processor. This 
is possible because, unlike cell-based unstructured 
meshing techniques, the block-based tree data struc- 

8 
American Institute of Aeronautics and Astronautics 



(c)l999 American Institute of Aeronautics & Astronautics 

AIAA-99-3273 

CnyKtE-1200 
280 - 

- 

Number of Processors 

Figure 6: Parallel performance of the block-based 
AMR scheme for MHD on the Cray T3E600 and 
T3E1200 computers for both scale-up and speed- 
up problems. 

ture is not unreasonably large. The octree data 
structure must only keep track of connectivity be- 
tween the blocks and the number of solution blocks 
is clearly much less than the total number of cells in 
any given mesh. As mentioned, inter-processor com- 
munication is mainly restricted to block interfaces 
and primarily involves the exchange of ghost-cell so- 
lution values and conservative flux corrections. This 
communication of interface solution information is 
required at every stage of the multi-stage solution 
update procedure. Message passing of the ghost- 
cell values and flux corrections is performed in an 
asynchronous fashion with gathered wait states and 
message consolidation, and as such, typically only 
amounts to less than 3-5% of the processor time in 
most cases. 

Considerable fine grain parallelization of the al- 
gorithm has been carried out. In fact, the paral- 
lel implementation is such that even much of the 
grid adaptation is performed in parallel. Due to the 
self-similar nature of the solution blocks, enhance- 
ments to the serial performance of the algorithm 
also proved very effective in increasing the overall 
parallel performance of the method. The following 
strategies were particularly useful and when com- 
bined provided a more than two-fold increase in the 
single-processor performance: 

l The use of indirect addressing and allocat- 
able arrays was avoided when defining mem- 
ory for primary solution variables. In addition, 
padding of arrays was used to align the primary 
solution variables in memory. 

Number of Pr~cess~fs 

Figure 7: Parallel performance of the block-based 
.4MR scheme for a variety of parallel architectures. 
The dashed line indicates ideal scale-up performance 
based on single node performance and solid lines in- 
dicate actual performance achieved on each of the 
machines for a scale-up problem with 8 blocks per 
processor. 

l Inner loop optimization of the computationally 
intensive routines associated with the limited 
reconstruction procedure, flux function evalua- 
tion, and solution update was carried out. Stan- 
dard loop unrolling and code inlining techniques 
were used. -411 decisions related to the evalua- 
tion of loop counters were removed. Further- 
more, strip mining of computationally intensive 
loops using additional local array variables led 
to more efficient use of cache (i.e., high cache 
reuse is desirable) and considerable increases in 
performance. 

Implementation of the algorithm has been carried 
out on SGI and Linux workstations, SGI shared- 
memory Origin 200 and Origin 2000 machines, a 
Cray T3D, both Cray T3E600 and T3E1200 par- 
allel computers, several IBM SP2 machines, and a 
few Beowulf clusters. The parallel performance and 
scalability of the method for several of these archi- 
tectures are shown in Figs. 6 and 7. Performance 
results for both Cray T3E600 and T3E1200 par- 
allel computers are depicted in Fig. 6. The figure 
shows two curves for each of these machines: in the 
first, the performance measured in terms of the num- 
ber of floating point operations performed per sec- 
ond is shown for a problem that has a fixed num- 
ber of blocks per processor (the scale-up problem 
with 16 blocks per processor); in the second, the 
performance is shown for a problem that has a fixed 
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size of 2,024 blocks (the speed-up problem). Of the 
two, the second case is more challenging. This is be- 
cause as the speed-up problem is distributed across 
more and more processors, the ratio of communica- 
tion overhead to computing cost increases. As can 
be seen from the figure, for both scale-up and speed- 
up problems, the parallel performance of the block- 
based AMR scheme is linear and nearly 100% effi- 
cient for up to 1,024 processors on both the Cray 
T3E600 and T3E-1200. Furthermore, 342 GFlops 
has been attained on the Cray T3E1200 for the 
scale-up problem using 1,490 processors. In Fig. 7, 
the parallel performance obtained on several other 
architectures is shown and compared to the Cray 
performance for another scale-up problem with 8 
blocks per processor. Although there is generally 
a higher latency associated with message passing for 
these other machines, this second set of performance 
results demonstrate that the block-based algorithm 
method is portable to a wide range of machines and 
that reasonable scalability can be achieved, even for 
high-latency architectures such as a Beowulf cluster. 

IV. Numerica .l Results 

Simulation results are now described for several 
challenging problems in space plasma physics in or- 
der to demonstrate the capabilities of the present 
algorithm. Results are given for the terrestrial mag- 
netosphere, the background solar wind, and a tran- 
sient solar wind disturbance. 

A. Simulation of the Magnetosphere 

The intrinsic magnetic field of Earth presents an 
obstacle to the on-coming solar wind. The inter- 
action of the solar wind with the Earth’s magnetic 
field leads to the formation of a bow shock wave just 
upstream of the Earth. The solar wind is slowed, 
heated and deflected around the magnetic obstacle 
by hydrodynamic and electromagnetic forces. In ad- 
dition, the terrestrial magnetic field is rather flexi- 
ble and is distorted by the impinging solar wind. It 
is compressed on the sunward side and is stretched 
into a long tail behind the Earth on the night side. 
The Earth’s magnetic field forms an enclosed cavity 
in which solar wind particles are prevented, for the 
most part, from entering. This cavity is called the 
magnetosphere. 

Figures 8 and 9 show the results of a simulation 
of the interaction of the magnetosphere with the so- 
lar wind using the block-based AMR algorithm. In 

Figure 8: Simulation of the Earth’s magnetosphere 
for southward IMF showing the computed plasma 
pressure distribution and last closed field lines. 

this calculation Earth is represented by a non-tilted 
non-rotating magnetic dipole field with a strength 
of 0.3 G at the equator. Inner boundary conditions 
for the magnetosphere are imposed at 3 R, and a 
height-integrated ionosphere model is solved at 1.017 
R, which provides coupling between the ionosphere 
and magnetosphere+. The ionospheric conductances 
were taken to be constant with values of 5, 0, 5000 
S for the Petersen, Hall, and field-aligned conduc- 
tances, respectively. The solar wind is represented 
by a uniform solution state with a speed of 400 km/s 
(the on-coming solar wind flow is taken to be aligned 
with the x-axis of the Cartesian coordinate system 
such that u, = -400 km/s and uY = u, = 0), an 
ion density of 5 cme3, and an ion-acoustic Mach 
number of 8. The interplanetary magnetic field 
(IMF) is assumed to have a strength of 10 nT and 
a southward orientation such that B, = -10 nT 
and B, = B, = 0. For this calculation, the com- 
putational domain is a rectangular box that extends 
from x = 192 R, to x = -384 R, along the Sun- 
Earth direction and from -192 R, to 192 R, in the 
y, and z directions and 15,276 blocks, 977,664 cells, 
and 11 levels of refinement were used. 

Figure 8 depicts the three-dimensional configura- 

tFor magnetosphere simulations, the coupling between the 
magnetosphere and ionosphere must be taken into account. In 
the present model, a height-integrated electrostatic model of 
the ionosphere is used, in which closure of the field-aligned 
currents arising from the MHD solution is taken into account 
at the ionospheric boundary by applying the principle of cur- 
rent conservation and making use of Ohm’s Law applied to a 
thin spherical shell.45s46 The solution of an elliptic equation 
for the ionospheric electric potential on this spherical shell 
provides boundary conditions for plasma velocity of MHD so- 
lution at the magnetosphere-ionosphere interface. 
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Figure 9: Simulation of the Earth’s magnetosphere for southward IMF showing the.plasma density distribu- 
tion and open and closed field lines in the noon-midnight meridional plane and the ionospheric solution 

tion of the computed magnetosphere looking from 
the side and down on the equatorial plane. The 
shading indicates variations in the plasma pressure 
(the region of higher pressure on the dayside defines 
the edge of the bow shock and magnetosheath) and 
the last closed magnetic field lines are also shown. 
The sphere represents the inner boundary of the 
magnetosphere calculation at 3 R,. The last closed 
field lines effectively define the size of the magne- 
tosphere. The white field lines close at the mag- 
netopause and define the inner edge of the magne- 
tosheath. The darker shaded field lines close through 
the tail and define the location of neutral line lo- 
cated at about 15-17 R, on the night side. A merid- 
ional cut through the solution in the y = 0 (noon- 
midnight) plane showing the plasma density distri- 
bution (color code) is given in Figure 9. Closed and 
open field lines are shown in white and the black 
lines define actual computational cells used in the 
computation. The locations of the bow shock, mag- 
netopause, and neutral line are all quite evident. No- 
tice the adaptation of the grid to the discontinuous 
features of the solution. The computed ionospheric 
solution for the northern hemisphere is also given in 
the figure, showing the field-aligned and ionospheric 
current and ionospheric potential and convection. A 

classic two cell convection pattern is obtained in this 
case. 

The preceding magnetosphere simulation is actu- 
‘ally a very challenging computation as the plasma ,B 
varies by several orders of magnitudes within the so- 
lution domain. Near the inner boundary, the terres- 
trial dipole field dominates and ,B is very small, while 
in the free streaming solar wind ,8 is near unity. In 
addition, the Alfven speed is very large in the vicin- 
ity of Earth making the equations very stiff. The 
robustness of the solver makes it possible to handle 
plasma flow problems of this type with relative ease. 

B. Simulation of the Background Solar Wind 

The corona is the outermost region of the solar 
atmosphere and is composed almost entirely of high 
temperature, low density, quasi-neutral, proton- 
electron plasma. The extension of the corona plasma 
to large heliocentric distances is what forms the so- 
lar wind and carries the charged coronal particles 
and magnetic field emanating from the Sun out into 
interplanetary space at supersonic speeds. Obser- 
vations have shown that the solar wind is in many 
respects a two state phenomenon.47l48 High speed 
wind originates from coronal holes generally located 
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Figure 10: Four meridional snapshots of the computed CME solution depicting the initiation and evolution 
of the disturbance from t = 0 hrs to t = 24 hrs. 

at high latitudes in the polar regions of the solar 
surface and the s&called slow wind originates from 
lower latitudes. A numerical solution of the nomi- 
nal or background (‘steady” solar wind representa- 
tive of conditions during solar minimum (i.e., for the 
quiet Sun) has also been developed using the paral- 
lel AMR MHD solution algorithm described herein. 
While the solution represents an oversimplified mag- 
netic field configuration and is only relevant for solar 
minimum conditions, it represents an initial step to- 
wards developing more sophisticated models for the 
solar wind and is useful for the study of transient 
solar wind disturbances. 

The steady-state solar wind from 1 R, to nearly 
l/2 AU is modeled here by assuming that, at 1 R,, 
the inner solar corona is a large rotating reservoir 
of hot plasma with an embedded magnetic dipole 
field. The plasma temperature (the sum of the ion 
and electron temperatures) of the reservoir is taken 
to be 3.1 MK, the plasma density is assumed to be 
lo* cms3, and the strength of the magnetic field 
at the poles is taken to be 1 G. In an attempt to 
incorporate the effects of coronal heating and heat 
transfer and enable the use of a realistic value for 
the specific heat ratio (y = 5/3) such that the ef- 

fects of adiabatic cooling at large heliocentric dis- 
tances are correctly modeled, the coronal plasma 
is heated by an empirically formulated volumetric 
heating function in the vicinity of the Sun. Outflows 
from high-latitude coronal holes at the poles are then 
produced through the specification of boundary con- 
ditions and this heating function. The heat source 
is taken to be latitude dependent and decrease ex- 
ponentially with radial distance from the Sun with 
a scale height of 4.5 R,. The latitude dependence of 
the heating function is chosen such that outflows are 
produced from coronal holes for 0” 5 8 5 30” where 
0 is the helio-colatitude, no outflow and a closed 
field-line structure are produced for 30” 5 8 5 90”, 
and a realistic solution of the solar wind is obtained 
at large heliocentric distances, with fast and slow 
streams. A rectangular computational domain is 
used for the calculation with -35 R, 5 z 5 105 R,, 
-35R, 2 y 5 105R,, -5OR, 5 z _< 50R, and the 
adapted mesh consists of 9,444 blocks and 604,416 
cells with 9 refinement levels and a minimum cell 
size of l/16 R, at the solar surface. 

Figure 10a shows a meridional cut through the 
numerical solution of the background solar wind ob- 
tained using the parallel adaptive MHD model. The 
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Figure 11: Predicted solar wind velocity and stream 
lines and polar plot of the asymptotic value of the 
computed solar wind speed compared to the obser- 
vations of the Ulysses/SWOOPS instrument.48 

shading represents the logarithm of the magnitude of 
the magnetic field and the white lines correspond to 
predicted field lines. It is evident that the solution, 
which is dictated by a complex balance of pressure, 
magnetic, gravitational, and inertial forces, has re- 
gions of open and closed magnetic field lines that 
lead to the formation of a “helmet” streamer config- 
uration with associated neutral point and equatorial 
current sheet similar to the now classical solution 
obtained by Pneuman and Kop~.~~ However, unlike 
the Pneuman-Kopp model, because of the additional 
volumetric heating included in the present calcula- 
tions the solution more correctly mimics the dual 
state features of the solar wind. A fast solar wind 
(- 800 km/s) is produced above N 30” heliolatitude, 
a slow solar wind (- 400 km/s) is produced near the 
solar equator, and reasonable values for the solar 
wind temperature and and density and interplane- 
tary magnetic field are obtained at l/2 AU. The two- 
state nature of the computed solution is depicted in 
Figure 11. Shown is a polar diagram of the asymp- 
totic values of the computed solar wind speed as a 
function of heliolatitude. These predicted results are 
consistent with Ulysses observations4* as shown by 
the comparison to the Ulysses/SWOOPS data also 
shown in the figure. Note that the over-expanded 
plasma associated with streamers near the edges of 
coronal holes is the only source of the slow solar wind 
in this simulation as no mass flux is emerging from 
the closed field line regions. 
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C. Simulation of a Coronal Mass Ejection 

.:p 
Coronal mass ejections (CMEs) are highly tran- 

sient solar events involving the expulsion of mass 
and magnetic field from the solar surface. On the 
order of 1012 kg of plasma may be expelled from the 
solar surface during a typical event. These dynamic 
events originate in closed magnetic field regions of 
the corona. They produce large-scale reconfigura- 
tion of the coronal magnetic field and generate large 
solar wind disturbances that appear to be the pri- 
mary cause of major geomagnetic storms at Earth. 

Some initial numerical studies of the formation 
and evolution of CMEs in the inner heliosphere have 
also been carried out using the block-based AMR 
scheme. In these studies, the background solar wind 
solution described above was used as the initial so 
lution and CMEs were initiated solely by localized 
isothermal density and pressure enhancements and 
studied as an initial value problem. An example of 
such a CME simulation is shown in Figures lOa- 
d. The figure depicts four meridional snapshots of a 
computed CME solution. In this calculation, density 
and pressure enhancements were introduced at the 
solar surface at 11” in heliolatitude above the equa- 
torial plane. The density was allowed to gradually 
increase and reach a maximum of a 40: 1 increase in a 
three-dimensional region on the solar surface about 
0.06 R, wide (x 3.5” in longitude and latitude) and 
then to gradually return to its original values over 
a period of 16 hrs. Figure 10 shows the initial so- 
lar wind solution and the density-driven CME at 
times of 2, 4, and 24 hrs after onset, respectively. 
It can be seen that the density enhancement first 
leads to the “filling” of the closed magnetic field 
lines with additional plasma and subsequent expan- 
sion of the closed field line region. After a period of 
time the closed field lines are unable to contain the 
additional plasma and the density disturbance dis- 
rupts the streamers. The resulting CME then moves 
more rapidly through the inner corona and prop- 
agates outward into interplanetary space, dragging 
out closed field lines with it and disrupting the he- 
liospheric current sheet as it moves. As the CME is 
purely driven by a density enhancement, the emerg- 
ing CME magnetic field is largely poloidal (having 
only radial and latitudinal components) without any 
significant helicity (twist), a clear limitation of the 
present simplified calculations as the helicity of the 
emerging magnetic flux is thought to be an impor- 
tant aspect of CMEs. A magnetic cavity propagates 
behind the front of the disturbance, which moves at 
velocities nearing 450 km/s. 4t 17-19 hrs into the 
simulation, the density and pressure enhancements 
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at the solar surface have completely diminished and 
the CIME field lines begin disconnecting from the so- 
lar surface resulting in the reformation of the current 
sheet. The solution at t = 24 hrs in the lower right 
panel of Figure 10 depicts this reformation process. 

The preceding calculation of the CME covered a 
period of 24 hours of actual simulated time. The 
calculation took about 1.5 hours to perform on a 
512-node Cray T3E600, indicating that the parallel 
solver was running faster than real time by a factor 
of 16 for this particular simulation. 

V. Summary 

A new parallel solution-adaptive numerical 
scheme has been described for solving the govern- 
ing equations of ideal MHD. The combination of 
a robust upwind finite-volume discretization proce- 
dure and a parallel block-based AMR strategy has 
yielded a reliable and powerful numerical method 
for performing large-scale simulations of MHD flows 
on high-performance parallel machines that is capa- 
ble of resolving multiple solution scales. The viabil- 
ity of the method has been demonstrated for several 
problems of current interest in space plasma physics. 
Important details of the block-based AMR strategy, 
hierarchical data structure, and parallel implemen- 
tation leading to very high parallel performance on 
MIMD distributed-memory architectures have been 
described. Linear scalability of the solution-adaptive 
approach has been demonstrated. The algorithm 
has achieved 342 GFlops on a 1,490-processor Cray 
T3E1200 with near-perfect scalability. The method 
represents a significant improvement over the cur- 
rent generation of space plasma simulation tools, in 
terms of both computational performance and solu- 
tion resolution capabilities, and thereby permits the 
study of a much wider class of problems. 
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