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We present a discrete-time adaptive control law that is effective for systems that are
unstable, MIMO, and/or nonminimum phase. The adaptive control algorithm provides
guidelines concerning the modeling information needed for implementation. This informa-
tion includes a sufficient number of Markov parameters to capture the sign of the high-
frequency gain as well as the nonminimum-phase zeros. No additional information about
the poles or the zeros need be known. We present numerical examples to illustrate the
robustness of the algorithm under conditions of uncertainty.

I. Introduction

Unlike robust control, which fixes the control gains based on a prior, fixed level of modeling uncertainty,
adaptive control algorithms tune the feedback gains in response to the true plant and exogenous signals,
that is, commands and disturbances. Generally speaking, adaptive controllers require less a priori modeling
information than robust controllers, and thus can be viewed as highly parameter-robust control laws. The
price paid for the ability of adaptive control laws to operate with limited prior modeling information is the
complexity of analyzing and quantifying the stability and performance of the closed-loop system, especially
in light of the fact that adaptive control laws, even for linear plants, are nonlinear.

Stability and performance analysis of adaptive control laws often entails restrictive assumptions on the
dynamics of the plant. For example, a widely invoked assumption in adaptive control is passivity,' which is
restrictive and difficult to verify in practice. A related assumption is that the plant is minimum phase,? 3
which may entail the same difficulties. Beyond these assumptions, adaptive control laws are known to be
sensitive to unmodeled dynamics and sensor noise,*® which motivates robust adaptive control laws.5

In addition to these basic issues, adaptive control laws may entail unacceptable transients during adapta-
tion, which may be exacerbated by actuator limitations.”® In fact, adaptive control under extremely limited
modeling information such as uncertainty in the high-frequency gain'®!! may yield a transient response that
exceeds the practical limits of the plant. Therefore, the type and quality of the available modeling informa-
tion as well as the speed of adaptation must be considered in the analysis and implementation of adaptive
control laws. These issues are discussed in Anderson.!?

Adaptive control laws have been developed in both continuous time and discrete time. In the present
paper we consider discrete-time adaptive control laws since these control laws can be implemented directly
in embedded code without requiring an intermediate discretization step with potential loss of phase margin.
Although discrete-time adaptive control laws are less developed than their continuous-time counterparts, the
literature is substantial and growing.2 13717

The goal of the present paper is to present a discrete-time adaptive control law that is effective for
nonminimum-phase systems. In Goodwin, et al.,? a discrete-time adaptive control law with stability guar-
antees was developed under a minimum-phase assumption. Extensions given in Hoagg, et al.> based on
internal model control'® and Lyapunov analysis also invoke this assumption. To circumvent the minimum-
phase assumption, the zero annihilation periodic control law'® uses lifting to move all of the plant’s zeros to
the origin.
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The present paper is motivated by the adaptive control laws given by Venugopal and Bernstein®® and
Hoagg, et al.?> The former control law?? lacks a proof of stability, but is known numerically to be effective on
nonminimum-phase plants without recourse to lifting. Accordingly, we present an adaptive control law based
on Venugopal and Bernstein? and Hoagg, et al.?> for systems that are unstable, MIMO, and/or nonminimum
phase. The adaptive control algorithm provides guidelines concerning the modeling information needed for
implementation. This information includes a sufficient number of Markov parameters to capture the sign of
the high-frequency gain as well as the nonminimum-phase zeros. No additional information about the poles
or the zeros need be known.

The novel feature of this adaptive control law is the use of a retrospective correction filter (RCF). The
RCF provides an inner loop to the adaptive control law by modifying the sensor measurements based on
the difference between the actual past control inputs and the recomputed past control inputs based on the
current control law. This technique is inherent in Venugopal and Bernstein?® in the use of the estimated
performance variable, but is more fully developed in the present algorithm. Details of the RCF algorithm
are given in Santillo and Bernstein.?!

The goal of the present paper is to demonstrate the RCF adaptive control algorithm’s effectiveness in
handling nonminimum-phase zeros. We thus present several numerical examples to illustrate the response
of the algorithm under modeling error in the relative degree and Markov parameters, measurement noise,
and actuator and sensor saturations. To this end we systematically consider a sequence of examples of
increasing complexity, ranging from SISO, minimum-phase plants to MIMO, nonminimum-phase plants,
including stable and unstable cases. We then revisit these plants under off-nominal conditions, that is, with
uncertainty in the required plant modeling information. In each case, we illuminate the role of the weighting
parameter «, which governs the rate of convergence. Our goal is thus to develop rules of thumb for choosing
a based on the level of model fidelity.

These numerical studies show that the RCF adaptive control algorithm is effective for handling nonminimum-
phase zeros under minimal modeling assumptions. These studies also provide guidance into the choice of « for
stable response and acceptable transient behavior. This guidance can provide the basis for Lyapunov-based
stability and performance analysis in future work.

II. Problem Formulation
Consider the MIMO discrete-time system

o(k+1) = Ax(k) + Bu(k) + Dyw(k), (1)
y(k) = Cx(k) + Daw(k), (2)
2(k) = Eyz(k) + Eow(k), (3)

where x(k) € R™, y(k) € Rlv, z(k) € R, u(k) € Rl», w(k) € Rlv, and k > 0. Our goal is to develop an
adaptive output feedback controller under which the performance variable z is minimized in the presence
of the exogenous signal w. Note that w can represent either a command signal to be followed, an external
disturbance to be rejected, or both. For example, if D; = 0 and Ey # 0, then the objective is to have
the output Ejz follow the command signal —FEyw. On the other hand, if D; # 0 and Ey = 0, then the
objective is to reject the disturbance w from the performance measurement Eix. The combined command
following and disturbance rejection problem is addressed when D; and Ej are block matrices. More precisely,

ifD1=[D1 0],E0=[0 Eo},andw(k):llwulgg

command —FEyw, while rejecting the disturbance w;. Lastly, if D; and Ey are empty matrices, then the
objective is output stabilization, that is, convergence of z to zero.

] , then the objective is to have Fjz follow the

Model reference adaptive control (MRAC) is a special case of (1)—(3) where z 2 Y1 — Ym is the difference
between the measured output of the plant G and reference model Gy,. For MRAC, the exogenous command
w is available to the controller as an additional measurement variable y,, as shown in Figure 1.

ITI. Controller Construction

In this section we give a brief overview of an adaptive control algorithm for the general control problem
represented by (1)-(3). The algorithm is derived from the work of Venugopal and Bernstein?® and Hoagg,
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Figure 1. Model reference adaptive control problem.

et al.? The full details of the algorithm are presented in Santillo and Bernstein.?!

We use a strictly proper time-series controller of order n., such that the control u(k) is given by
u(k) =Y Mi(kyulk — i)+ > Ni(k)y(k — i), (4)
i=1 i=1

where, for all i = 1,...,n., M; € Rl and N; € Rl«*lv are given by an adaptive update law. The control
can be expressed as

u(k) = 6(k)o(k), (5)
where

0(k) 2 [ Ni(k) -+ Ny (k) My(k) --- M, (k) } € Rluxne(lutly) (6)

is the controller parameter block matriz, and the regressor vector ¢(k) is given by

[ y(k—1)
o) 2 | T | e Rttty @
L u(k —ne) |

For positive integers p and pu, we define the extended performance vector Z(k), and the extended control
vector U(k) by

z(k) u(k)
z(k—.p—i-l) u(k—%oc—i—l)

where p. 2 w+p.
From (5), it follows that the extended control vector U(k) can be written as

Uk) 2 iLiG(k—i+1)¢(k7i+ 1), (9)
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where

Oi—1)1u %l
I, € Rreluxlu, (10)

0(pc *Z‘)lu Xly

1>

L;

We define the surrogate performance vector Z(0(k), k) by
A A A — A~
2(0(k), k) £ Z(k) = Bo (UKR) = U(R) ), (1)

where U (k) 2 el LiO(k)p(k — i+ 1), 0(k) € RZHX"CEl"Hy) is the surrogate controller parameter block
matriz, and the block-Toeplitz surrogate control matriz B., € RP!=*Pelu is given by

Orxt, - Ouxt, Ha - Hy Oyxi, - Opxi,

N VT

Bzu: .' ) (12)
N t. c. t. c. Olleu
Onxt,  Ouxty Onxty -+ Opxi, Hqg -+ Hy

where the relative degree d is the smallest positive integer ¢ such that the ith Markov parameter H; =
E,A""'B is nonzero. The leading zeros in the first row of B,, account for the nonzero relative degree d.
The algorithm places no constraints on either the value of d or the rank of Hy or B,,,.

The adaptive update law presented in Santillo and Bernstein?! depends on a time-varying weighting
parameter a(k) € (0,00), referred to as the learning rate since it affects convergence speed of the adaptive
control algorithm. As « is increased, convergence speed is lowered. Likewise, as « is decreased, converge
speed is raised. For the nominal examples in the next section, a is a small number. In the off-nominal
examples presented later, « is increased to account for the lack of model fidelity.

The novel feature of the adaptive control algorithm (5) is the use of the retrospective correction filter
(RCF) (11), as shown in Figure 2 for p = 1. The RCF provides an inner loop to the adaptive control law
by modifying the performance variable Z (k) based on the difference between the actual past control inputs
U(k) and the recomputed past control inputs based on the current control law U (k).

IV. Numerical Examples - Nominal Case

We now present numerical examples to illustrate the response of the RCF adaptive control algorithm
under nominal conditions. We consider a sequence of examples of increasing complexity, ranging from SISO,
minimum-phase plants to MIMO, nonminimum-phase plants, including stable and unstable cases. Each
plant can be viewed as a sampled-data discretization of a continuous-time plant sampled at Ty = 0.01 sec.
All of the following examples assume z = y.

Unless otherwise noted, each example is taken to be a disturbance rejection simulation, that is, Ey = 0,
with unknown sinusoidal disturbance given by

w(k) = l S?nQTFVlk‘TS 7 (13)
sin 2w kT

where v; = 5 Hz and v = 13 Hz. The RCF adaptive control algorithm requires no information about w.

I

With each plant realized in controllable canonical form, we take D, = [ ] , and, therefore, the disturbance

is not matched.

Example IV.1 (SISO, Minimum Phase, Stable Plant). Consider a plant with poles {0.5 &+ 0.57, —0.5 &+
0.57,£0.9, £0.79} and zeros {0.3 £ 0.75, —0.7 £ 0.37,0.5}. We take n, = 15, p = 1, p = 3, and o = 25.
The closed-loop response is shown in Figure 3. The control is turned on at ¢ = 2sec, and the performance
variable reduces to zero within 1sec. The control algorithm converges to an internal model controller with
high gain at the disturbance frequency, as seen in Figure 4. |
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Figure 2. Closed-loop system including adaptive control algorithm with the retrospective correction filter (dash box)
for p=1.
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Figure 3. Closed-loop disturbance rejection response for a stable, minimum phase, SISO plant. The control is turned
on at t = 2sec. The controller order is n. = 15 with parameters p =1, = 3, a = 25.
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Figure 4. Bode magnitude plot of the adaptive controller at { = 10 sec. The adaptive controller places poles at the
disturbance frequencies v; = 5 Hz and v» = 13 Hz. The controller magnitude |G.(e’*7%)| is plotted for w up to the

Nyquist frequency wnyq = ﬂ = 314 rad/sec.

Example IV.2 (SISO, Nonminimum Phase, Stable Plant). Consider a plant with poles {0.5+0.57, —0.5 +
0.57,£0.9, £0.7} and zeros {0.3 + 0.7, —0.7 + 0.3,2}. We take n. = 15, p =1, p = 7, and o = 25. The
closed-loop response is shown in Figure 5. The control is turned on at ¢ = 2sec, and, after a slight transient,
the performance variable reduces to zero. |

10

Performance Variable y(k)
o

-15 ! ! ! !
0 2 4 6 8 10

Time (sec)

Control Input u(k)
o

Figure 5. Closed-loop disturbance rejection response for a stable, nonminimum phase, SISO plant. The control is
turned on at t = 2sec. The controller order is n. = 15 with parameters p =1,y =7, a = 25.
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Example IV.3 (SISO, Minimum Phase, Unstable Plant). Consider a plant with poles {0.5 4+ 0.55, —0.5 &
0.57,£1.04,0.1+1.025y} and zeros {0.3+£0.77, —0.7+0.35,0.5}. We take n. =15, p =1, u = 10, and o = 25.
The closed-loop response is shown in Figure 6. The control is turned on at ¢ = 2sec, and, after a transient,
the performance variable reduces to zero. |
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Figure 6. Closed-loop disturbance rejection response for an unstable, minimum phase, SISO plant. The control is
turned on at t = 2sec. The controller order is n. = 15 with parameters p =1,y = 10, a« = 25.

Example IV.4 (MIMO, Minimum Phase, Stable Plant). Consider a two-input, two-output plant with poles
{=0.54+0.57,0.9,40.77,—0.5+0.57,0.9, £0.77} and transmission zeros {0.3+0.77,0.5,0.5}. We take n. = 15,
p=1, p =10, and = 1. The closed-loop response is shown in Figure 7. The control is turned on at
t = 2sec, and the performance variable reduces to zero. |

Example IV.5 (MIMO, Nonminimum Phase, Stable Plant). Consider a two-input, two-output plant with
poles {—0.5 +0.57,0.9, —0.5 + 0.5,0.9} and transmission zero {2}. We take n. = 20, p = 1, u = 6, and
a = 1. The closed-loop response is shown in Figure 8. The control is turned on at t = 2sec, and, after a
slight transient, the performance variable reduces to zero. |

Example IV.6 (Ex. IV.1 with Command Following and Disturbance Rejection). We consider a combined
step-command following and disturbance rejection problem with command and disturbance given by

wik) = wi (k) _ | sin 2 kT . (14)
wa (k) 5
With the plant realized in controllable canonical form, we take D; = (1) 8 and Fy = { 0 -1 }

Therefore, w; is the disturbance to be rejected, while wsy is the command to be followed.

We take n, =20, p =1, p =3, and a = 50. The closed-loop response is shown in Figure 9. The control
is turned on at t = 2 sec, and the performance variable reduces to zero, that is, the disturbance w; is rejected
while the command w» is followed. |

Example IV.7 (Command Following with Unstable Plant). We consider a double integrator plant with
command given by w(k) = 1. With the plant realized in controllable canonical form, we take D; = 0 and
Ey=-1.
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Figure 7. Closed-loop disturbance rejection response for a stable, minimum phase, two-input two-output plant. The
control is turned on at ¢t = 2sec. The controller order is n. = 15 with parameters p =1, = 10,a = 1.
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Figure 8. Closed-loop disturbance rejection response for a stable, nonminimum phase, two-input two-output plant.
The control is turned on at ¢t = 2sec. The controller order is n, = 20 with parameters p =1, =6,a = 1.

The SISO plant is unstable and minimum phase with poles {0.5 + 0.57,—0.5 &+ 0.57,1,1} and zeros
{0.3£0.75,0.5}. We take n. =10, p =5, u = 10, and « = 5. The closed-loop response is shown in Figure
10. The control is turned on at t = 2sec, and, after a transient, the performance variable reduces to zero,
that is, the step-command w is followed. |
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Figure 9. Closed-loop response for a stable, minimum phase, SISO plant with a step command and sinusoidal distur-
bance. The control is turned on at ¢ = 2sec. The controller order is n, = 20 with parameters p =1, = 3, « = 50.
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Figure 10. Closed-loop response for an unstable, minimum phase, SISO plant with a step command. The control is

turned on at t = 2sec. The controller order is n. = 10 with parameters p =5, 4 = 10,a = 5.

V. Numerical Examples - Off-nominal Cases

We now present numerical examples to illustrate the response of the RCF adaptive control algorithm
under modeling errors in the relative degree and Markov parameters, measurement noise, and actuator and
sensor saturations. Therefore, we revisit examples from the previous section under off-nominal conditions,
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that is, with uncertainty in the required plant modeling information. In each case, we illuminate the role
of the learning rate «, which governs the rate of convergence. Our goal is thus to develop rules of thumb
for choosing o based on the level of model fidelity. Each example is taken to be a disturbance rejection
simulation with z = y, as presented in Section IV.

Example V.1 (Ex. IV.2 with Relative Degree Error and Unknown Latency). Consider model error in the
relative degree. The system has relative degree d = 3.

First, for controller implementation, we use the erroneous d = 2. We take ne =15, p=1, up =10, and
« = 1000. The closed-loop response is shown in Figure 11. The control is turned on at ¢ = 2sec, and the
performance variable reduces to zero.
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Figure 11. Closed-loop disturbance rejection response for a stable, nonminimum phase, relative degree d = 3 SISO
plant where the controller is created assuming the plant has relative degree d = 2. The control is turned on at t = 2sec.
The controller order is n. = 15 with parameters p = 1, u = 10, = 1000. To compensate for uncertainty in the relative
degree d, the tuning parameter « is increased to slow down the adaptation.

Now let d = 4. We take n. = 15, p =1, p = 10, and a = 1000. The closed-loop response is shown in
Figure 12. The control is turned on at ¢ = 2sec, and the performance variable converges to zero.

These simulations show that the adaptive controller is sensitive to errors in relative degree, which is
equivalent to an unknown latency, that is, implementation delay. However, the effect of a known latency of
I steps can be addressed by simply replacing d by d + [ in the construction of B,,,. |

Example V.2 (Ex. IV.1 with Uncertain H;). We now assess the algorithm’s robustness to knowledge of
the first nonzero Markov parameter Hy. The first nonzero Markov parameter is Hy = 1.

We first assume that the first nonzero Markov parameter is H; = 0.05H;3. We take n. = 15, p=1,u=3,
and o = 25. The closed-loop response is shown in Figure 13. The control is turned on at ¢ = 2sec, and the
performance variable converges within 6 sec.

Now, we assume that the first nonzero Markov parameter is Hs = 20H5. We take no = 15, p=1, u=3,
and a = 25. The closed-loop response is shown in Figure 14. The control is turned on at ¢ = 2sec, and the
performance variable converges to zero.

In the case where the sign of the high-frequency gain is wrong, that is, Hs = —Hj, the weighting
parameter « must be chosen so large that the adaptation is essentially stopped. As the fidelity of Hy
decreases, convergence is slowed. From these results it is seen that increasing error in Hy is equivalent to
increasing «, and thus slowing down the convergence. |

Example V.3 (Noisy Markov Parameters). We investigate model error in the Markov parameters.
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Figure 12. Closed-loop disturbance rejection response for a stable, nonminimum phase, relative degree d = 3 SISO

plant where the controller is created assuming the plant has relative degree d = 4. The control is turned on at t = 2sec.
The controller order is n. = 15 with parameters p =1, u = 10, « = 1000.
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Figure 13. Closed-loop disturbance rejection response for a stable, minimum phase, SISO plant with H; = 1 where

the controller is created with I:Id = 0.05. The control is turned on at t = 2sec. The controller order is n. = 15 with

parameters p = 1,4 = 3, = 25. With H,; underestimated, the closed-loop converges more slowly than in the nominal
case.

First, consider Example IV.1. The system has relative degree d = 3 with H3 = 1. For controller
implementation, we perturb each Markov parameter H;, ¢ = 1...pu, by adding zero-mean Gaussian white
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Figure 14. Closed-loop disturbance rejection response for a stable, minimum phase, SISO plant with H; = 1 where the
controller is created with H; = 20. The control is turned on at ¢t = 2sec. The controller order is n. = 15 with parameters
p=1,p=3,a=25. With H, overestimated, the closed-loop converges more slowly than in the nominal case.

noise with standard deviation o = 0.25. We take n, = 15, p = 1, p = 3, and o = 25. The closed-loop
response is shown in Figure 15. The control is turned on at ¢ = 2sec, and the performance variable reduces
to zero.
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Figure 15. Closed-loop disturbance rejection response for a stable, minimum phase, relative degree d = 3, SISO

plant where the controller is created with Markov parameters perturbed by zero-mean Gaussian white noise with
standard deviation o = 0.25. The control is turned on at t = 2sec. The controller order is n. = 15 with parameters
p=1u=3a=25.
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Next, consider Example IV.2 with model error in the Markov parameters. The system has relative degree
d = 3 with H3 = 1. For controller implementation, we perturb each Markov parameter H;, ¢ = 1...pu, by
adding zero-mean Gaussian white noise with standard deviation o = 0.25. We take n. =15, p =1, p = 10,
and a = 25. The closed-loop response is shown in Figure 16. The control is turned on at ¢ = 2sec, and the
performance variable reduces to zero.
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Figure 16. Closed-loop disturbance rejection response for a stable, nonminimum phase, relative degree d = 3, SISO
plant where the controller is created with Markov parameters perturbed by zero-mean Gaussian white noise with
standard deviation o = 0.25. The control is turned on at t = 2sec. The controller order is n. = 15 with parameters
p=1nu=10,a = 25.

These simulations show that the adaptive control algorithm is robust to errors in the Markov parameters.
|

Example V.4 (Ex. IV.1 with Noisy Measurements). To assess the performance of the adaptive algorithm
with added sensor noise, we modify the sensor equation (2) by

2(k) = Cax(k) + Dyw(k) + v(k), (15)

where v(k) € Rlv is zero-mean Gaussian white noise with standard deviation o = 0.1.

We take n, = 15, p =1, p = 3, and a = 25. The closed-loop response is shown in Figure 17. The control
is turned on at ¢t = 2sec, and the performance variable is reduced to the level of the additive sensor noise
v(k). Analogous results are obtained for sinusoidal sensor noise and measurement bias, that is, constant
measurement noise. Bursting was not observed in any of the simulations. |

Example V.5 (Ex. IV.1 with Actuator and Sensor Saturation). In addition to the issues discussed above,
physical systems are constrained by actuator and sensor limitations. In particular, we consider the perfor-
mance of the adaptive algorithm under actuator and sensor saturation.

The control input u(k) is subject to saturation at £1.5, while the sensor measurement y(k) is subject to
saturation at £2. We take n, = 15, p =1, p = 3, and o = 25. The closed-loop response is shown in Figure
18. The control is turned on at ¢ = 2sec, and the performance variable is reduced to a level consistent with
what the saturated control can provide. |

Example V.6 (Ex. IV.1 Command Following with Actuator Saturation). We consider a command given
by w(k) = 1. With the plant realized in controllable canonical form, we take D; = 0 and Ey = —1.
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Figure 17. Closed-loop disturbance rejection response for a stable, minimum phase, SISO plant with random white
noise added to the measurement. The control is turned on at ¢ = 2sec. The controller order is n. = 15 with parameters
p=1,up=3,a =25. The performance variable y(k) is reduced to the level of the additive sensor noise v(k).
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Figure 18. Closed-loop disturbance rejection response for a stable minimum phase SISO plant where the actuator is
saturated at +1.5 and the sensor is saturated at 2. The control is turned on at ¢t = 2sec. The controller order is n. = 15
with parameters p = 1, u = 3, = 25. The saturations reduce overall steady-state performance.

First, consider the case with no actuator saturation. We take n. = 15, p =1, p = 3, and a = 25. The
closed-loop response is shown in Figure 19. The control is turned on at ¢ = 2sec, and, after a transient, the
performance variable reduces to zero, that is, the step-command w is followed.
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Figure 19. Closed-loop response for a stable, minimum phase, SISO plant with a step command. The control is turned
on at t = 2sec. The controller order is n. = 15 with parameters p =1,y = 3, a = 25.

Now, consider the case with actuator saturation at £0.1. We take n, =15, p =1, p = 3, and o = 25.
The closed-loop response is shown in Figure 20. The control is turned on at ¢ = 2sec, and the performance
variable reduces to a level consistent with what the saturated control can provide. |
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Figure 20. Closed-loop response for a stable, minimum phase, SISO plant with a step command subject to actuator
saturation at £0.1. The control is turned on at ¢t = 2sec. The controller order is n. = 15 with parameters p =1,y = 3,a =
25.
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VI. Numerical Examples - Model Reference Adaptive Control

We now present a numerical example to illustrate the response of the RCF adaptive control algorithm
for model reference adaptive control (see Figure 1). Consider the longitudinal dynamics of a Boeing 747
aircraft, linearized about steady flight at 40,000 ft and 774 ft/sec. The inputs to the dynamical system are
taken to be elevator deflection and thrust. The output of the dynamical system is taken to be pitch angle.
The continuous-time equations of motion are thus given by

i [ —0.003  0.039 0 —0.322 u 0.010 1
w | | —0.065 —0.319 7.74 0 w | | —0180 —0.040 Se (16)
q 0.020 —0.101 —0.429 0 q ~1.160  0.598 o |’
0 . 0 0 1 0 0 0 0
_ u
2 0000 q 1
0

2 =91~ Ym, (18)
where w is the exogenous command and y,, is the output of the reference model

Yin(s) 0.0131
= = . 1
Gn8) = 375 = S+ 0165 + 00131 (19)

We discretize (16)—(19) using a zero-order hold and sampling time Ty = 0.01 sec. The reference command
is taken to be a 1deg step command in pitch angle. The controller order is n. = 10 with parameters
p = 1,u = 10, = 40. The closed-loop response is shown in Figure 21. The controller is turned on
immediately and the performance variable reduces to zero within about 20 sec.

Performance Variable: z(k)
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5 e
O oL/ 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Time (sec)
0.4 T
<
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Figure 21. Closed-loop model reference adaptive control of Boeing 747 longitudinal dynamics. The controller order is
ne = 10 with parameters p = 1, u = 10, « = 40. The performance variable converges within about 20 sec.
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VII. Numerical Examples - Missile Longitudinal Dynamics

We now present numerical examples for MRAC of missile longitudinal dynamics under off-nominal or
damage situations. The MRAC control architecture is shown in Figure 1. The basic missile longitudinal
plant?? is derived from the short period approximation of the longitudinal equations of motion, given by

_ —1.064 1 oA —0.25 ", (20)
290.26 0 —331.4
_ —123.34 0 Y —13.51 ", (21)
0 1 0
where
A o« A A,
',I" = b) y = )
q q

and X € (0, 1] represents the control effectiveness. Nominally A = 1.

The open-loop system (20), (21) is statically unstable. To overcome this instability, a classical three-loop
autopilot?? is wrapped around the basic missile longitudinal plant. The adaptive controller then augments
the closed-loop system to provide control in off-nominal cases, that is, when A < 1. The autopilot and
adaptive controller inputs are denoted wu,, and u,c, respectively. Thus, the total control input v = uap + Uac-
The reference model Gy, consists of the basic missile longitudinal plant with A = 1 and the classical three-loop
autopilot. An actuator saturation of +30deg is included in the model, but no actuator or sensor dynamics
are included.

Our goal is for the missile to follow a pitch acceleration command w consisting of a 1-g amplitude 1-Hz
square wave. The performance variable z is the difference between the measured pitch acceleration A, and

the reference model pitch acceleration A}, that is, z = A, — A%. The closed-loop response is shown in Figure
22 for A = 1. Since the plant and reference model are identical in the nominal case, the adaptive control
input u,. = 0.

Control Effectiveness = 1

1 0.3 15
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2 =1 c 05
2 € £
= ~ ©
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Figure 22. Closed-loop model reference adaptive control of missile longitudinal dynamics. The control effectiveness
A = 1, thus the plant and reference model are identical. Therefore, the adaptive control input u,. = 0.
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All of the following examples use the same adaptive controller parameters. The adaptive controller is
implemented at a sampling rate of 300 Hz. We take n, = 3, p =1, and p = 20. A time-varying learning rate
« is used such that, initially, controller adaptation is fast, and, as performance improves, the adaptation
slows. The learning rate is identical for each simulation. System identification using the Observer/Kalman
filter identification (OKID) algorithm?? is used to obtain the 20 Markov parameters required for controller
implementation. The offline identification procedure is performed with a nominal simulation (A = 1) by
injecting band-limited white noise at the adaptive controller input u,. and recording the performance vari-
able z while the autopilot is in-the-loop. No external disturbances are assumed to be present during the

identification procedure.

Example VIIL.1 (75% Control Effectiveness). Consider A = 0.75. First, Figure 23 shows simulation results
with the adaptive controller turned off, that is, autopilot-only control.

Control Effectiveness = 0.75
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Figure 23. Missile longitudinal dynamics with control effectiveness A = 0.75 and adaptive controller turned off, that is,
autopilot-only control.

Now, with the adaptive controller turned on, that is, augmented autopilot plus adaptive controller,
simulation results are shown in Figure 24. After a small transient, the augmented controllers result in better
performance than the autopilot-only simulation. |

Example VIIL.2 (50% Control Effectiveness). Consider A = 0.50. First, Figure 25 shows simulation results
with the adaptive controller turned off, that is, autopilot-only control.

Now, with the adaptive controller turned on, that is, augmented autopilot plus adaptive controller,
simulation results are shown in Figure 26. After a transient, the augmented controllers result in better
performance than the autopilot-only simulation. |

Example VII.3 (25% Control Effectiveness). Consider A = 0.25. With the adaptive controller turned
off, that is, autopilot-only control, the simulation fails. With the adaptive controller turned on, that is,
augmented autopilot plus adaptive controller, simulation results are shown in Figure 27. After a transient,
the augmented controllers stabilize the system whereas the autopilot-only simulation fails.

Figure 27 shows that the total control input u reaches the actuator saturation level of +30 deg. To reduce
the initial transient, a more finely tuned learning rate can be implemented or the adaptive controller can
be initialized with nonzero gains. Therefore, we now initialize the adaptive controller with the converged
control gains € from the 50% control effectiveness case. We use the gains of the 50% case since it is a median
starting point. Simulation results are shown in Figure 28. The initial transient is reduced as compared with
initializing the control gains to zero. In this case, the actuator saturation level is never reached. |
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Control Effectiveness = 0.75
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Figure 24. Closed-loop model reference adaptive control of missile longitudinal dynamics with control effectiveness
A = 0.75. The augmented controllers result in better performance than the autopilot-only simulation.
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Figure 25. Missile longitudinal dynamics with control effectiveness A = 0.50 and adaptive controller turned off, that is,

autopilot-only control.

VIII.

Conclusions

We gave a brief overview of the RCF adaptive control algorithm and demonstrated its effectiveness in
handling nonminimum-phase zeros through numerical examples illustrating the response of the algorithm
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Closed-loop model reference adaptive control of missile longitudinal dynamics with control effectiveness

A = 0.50. The augmented controllers result in better performance than the autopilot-only simulation.
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Figure 27.
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Closed-loop model reference adaptive control of missile longitudinal dynamics with control effectiveness

A = 0.25. After a transient, the augmented controllers stabilize the system whereas the autopilot-only simulation fails.
Note that the system is stabilized despite the total control input u reaching the actuator saturation level of +30 deg.

under modeling error in the relative degree and Markov parameters, measurement noise, and actuator and
sensor saturations. We thus developed rules of thumb for choosing the learning rate a based on the level of
model fidelity. Bursting was not observed in any of the simulations.

These numerical studies serve as guidance with regard to the development of system identification algo-
rithms that can estimate the required plant parameters with suitable accuracy. Future work includes the
development of such identification algorithms as well as Lyapunov-based stability and robustness analysis of
the RCF adaptive control algorithm.
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Figure 28. Closed-loop model reference adaptive control of missile longitudinal dynamics with control effectiveness
A = 0.25. The adaptive controller is initialized with the converged gains from the 50% control effectiveness case. The
initial transient is reduced as compared with initializing the control gains to zero. In this case, the actuator saturation
level is never reached.
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