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Dynamic loading constraints due to maneuver and gust loads are an important design
consideration for novel aircraft configurations. Incorporating these constraints in the early
design process with an appropriate level of fidelity presents a significant challenge, due
both to the need for more detailed aerodynamics and control modeling, and to the stochas-
tic nature of the gust encounter problem. This paper presents a stochastic gust analysis
approach that is suitable for a multidisciplinary design optimization setting that incorpo-
rates dynamic loading constraints. The analysis approach employs Lyapunov and matched
filter theory methods to address the stochastic nature of the gust response. A set of gust
simulation studies are carried out to assess the relative importance of the various physics
involved in aircraft gust encounters and the effects of different modeling assumptions. The
study demonstrates the importance of modeling rigid body motion, pitch dynamics, and
aircraft flexibility, but shows that for gust encounters at typical flight conditions, a quasi-
steady aerodynamics assumption is reasonable for load predictions over the majority of the
wing acerage, meaning that full unsteady aerodynamic simulations are likely not required
for typical gust lengths.

I. Introduction

In order to meet air capacity goals without compromising environmental impact, future transport air-
craft must satisfy increasingly stringent and diverse requirements that include constraints on fuel burn,
emissions, and noise. Advanced technologies, such as new materials, constructive use of aeroelasticity, and
active management of aircraft loads are already being incorporated into commercial aircraft; future environ-
mental prospects demand a step change, which can only be achieved by more aggressive deployment of such
technologies together with novel aircraft configurations. In this paper, we consider the specific problem of
dynamic loading constraints due to maneuver and gust loads, which are an important design consideration
for novel aircraft configurations that employ high aspect ratios, advanced structural layouts, and/or active
management of aircraft loads.

Incorporating dynamic loading constraints in the early design process with an appropriate level of fidelity
presents a significant challenge. The first challenge is the tight coupling between aerodynamics and control. In
the conceptual design phase, which traditionally relies on low-fidelity empirical models, simple aerodynamic
models may not capture the essential flow physics. Further, definitions of the control architecture, sensor
placement, actuation models, etc. are typically not available early in the design process. A second challenge is
the stochastic nature of the gust encounter problem, which must be carefully considered when optimal control
strategies are used for load reduction or when optimizing the wing design. For example, simulation of several
gust profiles will be needed at each optimization step, including an element of randomness to ensure that
the optimizer does not anticipate and/or exploit knowledge of the gust shape. The controller design process
must include not just the power spectral densities specified in the Federal Aviation Regulations, but also
appropriate random amplitudes and phases in the combined spectrum. In addition, there are nonlinearities
associated with section stall, surface deflection, and actuator rate limits that must be included.
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The objective of this work is to propose an approach to multidisciplinary design optimization that incor-
porates dynamic load constraints, including the effects of stochastic gusts, as illustrated in Figure 1. The
specific contribution of this paper is to define a gust modeling approach that is suitable for the optimization
setting, with a particular focus on two challenges: first, to handle the stochastic element in an effective
manner, and second, to address the need for computational efficiency. We address the first challenge by
using Lyapunov and matched filter theory approaches, which allow explicit consideration of uncertainty and
provide rigorous bounds for the linear case. We address the second challenge through a set of gust simulation
studies that assess the relative importance of the various physics involved in aircraft gust encounters and
the effects of different modeling assumptions.
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Figure 1. Optimization framework for aircraft design studies,1 showing modules related to active gust
load alleviation.

Section II of the paper presents the three gust analysis approaches that are considered in this work:
direct power spectral density integration, a Lyapunov equation approach, and matched filter theory. These
methods are implemented and compared for a simple two degree of freedom aircraft model. In Section III,
the gust analysis methods are applied to a realistic dynamical system obtained from a coupled aerodynamics
and structural simulation code. Discrete gust encounter simulations with the same code additionally give
insight into the physics of gust responses. Finally, we present conclusions and directions of ongoing work in
Section IV.

II. Gust Analysis Approaches

II.A. Background

Gust-load alleviation has been a long-time research area in aircraft analysis and design. Nissim et al. com-
bined analytical aerodynamic models with forward-in-time numerical simulations to analyze the effect of
inboard control strips on rigid body motions caused by discrete gust encounters.2 Swaim et al. present a
full-state gain feedback gust-load alleviation control strategy that uses a gust prefilter and requires solution
of a Riccati equation to minimize the mean square of a load of interest.3 Nam et al. consider a full multidis-
ciplinary design optimization of a wing, incorporating a gust-load alleviation system through sizable control
surfaces in addition to shape and structural design variables such as planform dimensions and composite ply
orientation.4 An alternate design strategy is presented by Aouf et al. , who consider robust control design
for a B-52 aircraft model with flexible modes.5

Related research also exists on incorporating control surface deflection into design. Kolonay et al. consider
the use of active control surface deflections to minimize drag at off-design cruise conditions.6 Thompson
et al. present a novel analysis technique for induced drag minimization, in which trailing-edge surfaces are
simulated via transpiration boundary conditions, thus eliminating the need for grid motion in an Euler finite
volume solver.7

This work will focus on developing an analysis approach that takes into account the stochastic nature of
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atmospheric gusts and that is suitable for use in optimization. The following subsections setup the problem
and review two gust options for gust analysis: one based on solving Lyapunov equations, and another based
on matched filter theory. In addition, these approaches are validated for a simple two-degree of freedom
aircraft in the last subsection.

II.B. Problem setup

The Federal Aviation Regulations (FAR) require transport aircraft to be analyzed by discrete gust and
continuous turbulence analyses.8 The discrete gust is represented by a single 1-cos gust profile in the
time domain with varying gust gradient length while the continuous turbulence is defined by the statistical
measures of the Von Karman spectrum in the frequency domain. The continuous turbulence requirement is
further divided into the design envelope and the mission analysis criteria.

In the design envelope analysis the root-mean-square (RMS) response due to unit RMS gust, Ā, is first
calculated and then scaled by a design gust velocity, Uσ and added to the 1-g mean response, y1g, giving

ydesign = ĀUσ + y1g.

Here, a response refers to an output of interest such as bending moment, acceleration, deflection, etc. In the
mission analysis, the RMS responses are first calculated for a number of flight segments in a typical flight
mission. Exceedance curves are generated accounting for the duration of each flight segment ti, the storm
and non-storm gust intensities in each segment (b1,i and b2,i) and the probability of encountering those gust
intensities (P1,i and P2,i). From the exceedance curves, a limit design load is defined as the value that is
exceeded 2 × 10−5 times per hour.

A key challenge addressed within this project is to incorporate the gust analysis in the design optimization
setting. Specifically, we must address the problem of how to represent the stochastic nature of the problem.
If we were to use a 1-cos gust profile, the optimization would anticipate the gust and choose optimal design
variable values to exploit this knowledge. The resulting design would be optimized for the 1-cos gust, but
otherwise practically useless when subjected to other gust excitations. Other methods to determine the gust
limit design value (such as Monte Carlo sampling) are too expensive to be used within the optimization
context. Our approach will be to use linear gust analysis methods within the optimization loop, and then
check nonlinear effects a posteriori. A linear analysis is used to exploit the structure of the dynamical system
and allows us to take advantage of efficient analysis methods.

In the following, two approaches are presented for analyzing linear airplane models subjected to gust
excitation. The complete system consists of input white noise, ww(t), passing through a gust filter to
produce a gust velocity, wg(t), as illustrated in Figure 2. The prefilter dynamics are given by

{ẋg(t)} = [Ag]{xg(t)} + {Bg}ww(t),

wg(t) = [Cg]{xg(t)},

where {xg} is the state vector of gust variables and the matrices [Ag], {Bg}, and [Cg] constitute a realization
of the gust filter. The aircraft dynamics are given by

{ẋ(t)} = [A]{x(t)} + {B}wg(t),

y(t) = [C]{x(t)},

where {x} is the aircraft state vector, y is the output response, and the matrices [A], {B}, and [C] define
the aircraft dynamics. The complete input-to-output dynamics can be written as

{ẋw(t)} = [Aw]{xw(t)} + {Bw}ww(t),

y(t) = [Cw]{xw(t)},

Aircraft dynamics Outpt responseWhite Noise Gust prefilter
wg

Figure 2. Schematic of the white noise to output mapping used for linear gust analysis.
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where

{xw} =

{

xg

x

}

, [Aw ] =

[

Ag 0

BCg A

]

, {Bw} =

{

Bg

0

}

.

Alternatively, defining Ggw(s) as the prefilter transfer function and Hyg(s) as the aircraft transfer function,
the input-to-output dynamics can be written as

Y (s) = Hyw(s)Ww(s) = Hyg(s)Ggw(s)Ww(s),

where s is the Laplace variable and Y (s) denotes the Laplace transform of y(t).

II.C. Lyapunov Equation Approach

For a linear, stable aircraft model excited by white noise, the design value of the state covariance matrix
[Γw] can be calculated directly by solving the Lyapunov equation,9–11

[Aw][Γw] + [Γw][Aw]T = −{Bw}U
2
σ{Bw}

T , (1)

where Uσ is the gust velocity. The design gust response then becomes

ydesign =
√

[Cw][Γw][Cw]T + y1g.

The advantage of this approach is that the covariance matrix and the root-mean-square response can be
calculated without numerical integration in the frequency domain. Livne showed that the Lyapunov equation
can be solved efficiently with an alternate approach based on the eigenvectors and eigenvalues of the system.11

The complex right eigenvectors and eigenvalues of the [Aw] matrix are calculated and the eigenvectors are
first assembled in a matrix,

{ψi}λi = [Aw]{ψi} [Ψ] = [ψ1, ψ2, ..., ψN ],

where {ψi} is the ith eigenvector of [Aw] and λi is the corresponding eigenvalue. Note that the set of
eigenvectors includes aeroservoelactic modes since the full dynamics of the aircraft is modeled. It can then
be shown that the state covariance matrix can be calculated from

[Γw] = [Ψ][D][Ψ]T ,

where the i, j term of the matrix [D] is calculated from

Dij =

(
−[Ψ]−1{Bw}U

2
σ{Bw}

T [Ψ]−T
)

ij

λi + λj

. (2)

Due to the presence of aeroservoelastic eigenvalues in the denominator of (2), the state covariance matrix
becomes infinite when the damping of any of the aeroelastic modes approaches zero. This phenomenon was
observed and utilized in generating efficient approximations for the state covariance for use in gradient-based
design optimization.11, 12

Another advantage of the Lyapunov equation approach is that the analytical sensitivities of the state
covariance matrix (and hence the design gust response) to a design variable pj can be found by solving
another Lyapunov equation:

[Aw]

[
dΓw

dpj

]

+

[
dΓw

dpj

]

[Aw]T = −

{
dBw

dpj

}

U2
σ{B̃}T − {B̃}U2

σ

{
dBw

dpj

}T

−

[
dAw

dpj

]

[Γw] − [Γw]

[
dAw

dpj

]T

.

II.D. Matched Filter Theory

In the matched filter theory (MFT) approach,13–17 the white noise excitation input is replaced by a waveform
wx(t) that will result in a worst case gust response:

Y (iω) = Hyw(iω)Wx(iω),

4
American Institute of Aeronautics and Astronautics



where Y (iω) is the Fourier-transform of the output, Wx(iω) is the Fourier-transform of wx(t), and Hyw is
the white noise to output transfer function. The waveform that produces the worst-case gust response can
be found using the following approach and is called the matched excitation waveform.

The matched excitation waveform is calculated as the normalized unit impulse response of the system
Hyw(s) reversed in time and shifted by time t0,

13

wx(t) = hy(t0 − t)/K,

where the unit impulse response is:

hy(t) =
1

2π

∫
∞

−∞

Hyw(iω)eiωtdω.

The constant K is chosen to be equal to the standard deviation of the impulse response,

K = σhy
=

√

1

2π

∫
∞

−∞

Hyw(−iω)Hyw(iω)dω

such that the energy of the matched filter is unity.
The MFT approach has been proposed as a method for calculating gust loads since the late 80’s in a

paper by Zeiler and Pototzky.13 The promise of the MFT is that it would not only generate a gust response
time history with a worst-case peak, but also the gust excitation waveform that produced this peak. In
the 1990s there was a focus on showing the relationship between the MFT and the Power Spectral Density
(PSD) approach and exploring extension of MFT to include nonlinear effects.14, 17

From the above definitions

Wx(ω) =

∫
∞

−∞

wx(t)e−iωtdt =
1

σhy

∫
∞

−∞

hy(t0 − t)e−iωtdt =
1

σhy

Hyw(−iω)e−iωt0 .

The gust response time history is defined by

y(t) =
1

2π

∫
∞

−∞

Y (iω)eiωtdω =
1

2π

∫
∞

−∞

Hyw(iω)Wx(iω)eiωtdω =
1

σhy

Ryy(t− t0), (3)

where Ryy(τ) is the autocorrelation function

Ryy(τ) =
1

2π

∫
∞

−∞

Syy(ω)eiωτdω,

and Syy = Hyw(iω)Hyw(−iω) is the response spectrum of y(t) due to white noise excitation.
Eqn. 3 states that the output gust response time history is proportional to the autocorrelation function

centered on time t0. The autocorrelation function is an even function centered at τ = 0, with a maximum
value at τ = 0 equal to the variance of the impulse response, Ryy(0) = σ2

hy
, and diminishing to zero for

extreme positive and negative values of τ . The response time history then yields a maximum of σhy
at time

equal to t0,
ymax = y(t = t0) = σhy

.

The maximum of the PSD gust response is also defined as the RMS value σhy
and is found as the square-root

of the integrated value of the response spectrum over all frequencies. In other words, the MFT response
time history is the autocorrelation function offset with a time value of t0.

The gust excitation wave form that generates ymax = y(t = t0) = σhy
can be calculated from

wgy(t) =
1

2π

∫
∞

−∞

Ggw(iω)Wx(iω)eiωtdω =
1

σhy

1

2π

∫
∞

−∞

Ggw(iω)Hyw(−iω)eiω(t−t0)dω =
1

σhy

Rgy(t− t0),

where Rgy() is the cross-correlation function between the gust velocity wg(t) and the response y(t). The
gust excitation wgy(t) will only ensure that the response y(t) reaches a maximum of σhy

at t = t0. Another
output quantity, z(t) will reach a maximum value with a different gust excitation waveform. In other words,
each response quantity will be maximized by a unique gust excitation waveform.

An output response z(t) that is time correlated with y(t) is calculated from

zy(t) =
1

σhy

1

2π

∫
∞

−∞

Hzw(iω)Hyw(−iω)eiω(t−t0)dω =
1

σhy

Rzy(t− t0),

i.e. proportional to the cross-correlation function between z(t) and y(t).
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II.E. Analysis Method Comparison

To test the gust analysis approaches presented in the previous section, a simple two-degree of freedom aircraft
model was created. The model is illustrated in Figure 3 and the nominal specifications are given in Table 1.
The equations of motion for this model are as follows:

Figure 3. A simplified aircraft model with two degrees of freedom: pitch (θ) and plunge (z).

Table 1. Nominal aircraft specifications for the two degree of freedom model.

W : aircraft weight 100,000 lb

ry : pitch inertia radius of gyration 400 in

S : wing reference area 1000 ft2

c̄ : reference chord 150 in

V : aircraft forward speed 800 ft/s

Clα : lift curve slope 7.0 rad−1

Cmα : pitching moment slope -3.0 rad−1

Clq : lift curve due to pitch rate 10 c̄/(2V )1/(rad/s)

Cmq : pitching moment due to pitch rate -50 c̄/(2V )1/(rad/s)

r1 : root bending moment coefficient (scales lift) 100 in

r2 : root bending moment coefficient (scales mass) 20 in

r3 : distance between pilot station and center of gravity 400 in

W

q∞Sg

[

1 0

0 r2y/c̄

]

︸ ︷︷ ︸

M

[

z̈

θ̈

]

=

[

0 Clα

0 Cmα

]

︸ ︷︷ ︸

A0

[

z

θ

]

+

[

−Clα/V Clq

−Cmα/V Cmq

]

︸ ︷︷ ︸

A1

[

ż

θ̇

]

+

[

Clα/V

Cmα/V

]

︸ ︷︷ ︸

Ag

[

αg

]

where g is the acceleration due to gravity, q∞ is the dynamic pressure, αg is the gust-induced perturbation in
the angle of attack, and the other notation is defined in Table 1. This equation can be reduced to state-space
form by defining

x1 =

[

z

θ

]

, x2 = ẋ1, (4)

resulting in,
[

ẋ1

ẋ2

]

=

[

0 I

M−1A0 M−1A1

][

x1

x2

]

+

[

0

M−1Ag

]
[

αg

]

(5)

The two outputs of interest in this sample problem are the root bending moment and the pilot acceleration.
These are lumped into one vector y, as follows:

y =

[

Root bending moment

Pilot acceleration

]

=

[

q∞Sr1Clα

(
θ − ż

V
+ αg

)
− r2

W
g
z̈

z̈ + r3θ̈

]

.
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This expression can be written in terms of x1, x2, and αg, by using Eqns. 4 and 5.
With the above state space system, stochastic gust analyses were performed using the methods described

in Section II. For success of the Lyapunov approach, the model was modified by grounding the aircraft
using soft springs. This addition was necessary to stabilize modes with roots on the imaginary axis. Critical
damping was also added to these modes to make them well-behaved. For the Von Karman spectrum/gust
filter, a gust length of L = 2500 ft and a gust velocity of Uσ = 75 ft/s were used.

A comparison of the RMS outputs obtained using the various approaches is shown in Table 2. The
results are very similar for the different methods. Differences can be attributed to the number of frequency
samples used in the numerical frequency integration and to the number of samples used in the discrete
Fourier transforms for the matched filter theory approach.

Table 2. RMS outputs for the two degree of freedom aircraft.

Method Bending moment (106 in-lb) Pilot acceleration (in/s2)

Frequency integration (spectrum) 20.256 824.33

Frequency integration (filter) 20.127 819.16

Lyapunov equation 20.291 825.78

Matched filter theory 20.614 828.76

Out of the methods tested, the direct frequency integration approach is the most expensive, as the
numerical integration requires sampling the output response at a large number of frequencies. Solving the
Lyapunov equations or calculating a single system impulse response for the MFT approach are much less
expensive, and this effect is especially important for large systems. In addition, the Lyapunov approach
has the advantage of an analytical equation for sensitivity calculations, while the MFT approach yields a
worst-case gust profile that can be incorporated into optimization.

III. Application to a Coupled Aerodynamics Structural Model

The stochastic gust analysis methods were applied to a large system obtained from a coupled aerody-
namics and structural simulation of a realistic aircraft. The following sections describe the aircraft model
and the associated stochastic gust analysis.

III.A. Problem Setup

A coupled aerodynamics-structural simulation of a transport aircraft was performed in ASWING, which is a
configuration development code for flexible aircraft.18 ASWING features a finite difference discretization of
the Euler-Bernoulli beam equations for each structure (fuselage, wing, tail) coupled with enhanced unsteady
lifting line aerodynamics. The software is capable of time-accurate simulations via a second order backward
difference discretization, and it allows for user-defined gust fields. For the simulations in this study, a
Prandtl-Glauert compressibility correction is employed.

The aircraft model used for this study is based roughly on a Boeing 737-400 transport aircraft. The
model geometry, along with the finite difference discretization sections, is illustrated in Figure 4. The weight
distribution was chosen approximately to yield an adequate static stability margin, including point masses
for the landing gear and engines. The wing stiffness distribution varied exponentially from root to tip and
was calibrated using wing tip deflection at cruise.

The coupled aerodynamics-structural finite-difference discretization results in an unsteady residual equa-
tion at each time step of the form

r(x, ẋ) = 0, (6)

where x is the state vector composed of the structural state variables of each beam section, the aerodynamic
circulation coefficients for each lifting surface, and global variables such as beam joint moments, aircraft
position and velocity, etc. For the simulations in this work, a total of 1261 degrees of freedom were used.
Note, not all components of x appear as rates in the residual equations.
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Figure 4. ASWING model planform. Based on a Boeing 737-400.

III.B. Gust Encounter Simulations

One of the contributions of this paper is to document a set of detailed simulation studies that assess the
relative importance of the various physics involved in aircraft gust encounters. This assessment then leads
us to a simplified analysis approach that retains the key physics at the required fidelity (to ensure realistic
designs), but gives a model that is computationally tractable and suitable for use within a design optimization
setting.

Therefore, prior to stochastic gust analyses, a detailed set of discrete gust-encounter simulations were
performed using vertical “1-cos” gusts, in which the gust profile is given by

Vz =
Vz,max

2

(

1 − cos

(
πd

H

) )

, for 0 ≤ d ≤ 2H,

where Vz,max is the maximum gust velocity, H is the gust gradient length, and d is the distance into the
gust. Contours of a sample gust profile are shown in Figure 5. For the initial condition, the aircraft was
trimmed for level flight at 20,000 ft altitude and 800 ft/s true air speed. A constant Vz,max = 40ft/s was
used for all of the runs.

The gust encounter studies were used to determine the appropriate level of modeling required (e.g.
unsteady versus quasi-steady analysis), for determining the range of gust lengths that are likely to be critical
in the design, and for assessing the impact of using a flexible versus rigid wing model. The following sections
summarize relevant results of these studies.

Flexible Versus Rigid Wing

A nearly-rigid wing was modeled by increasing the wing bending and torsional stiffnesses by a factor of
1000. A simulation of the rigid wing was performed for gust gradient lengths of H = 100, 300, 600, 1000ft.
Figure 6 compares the wing root bending moment for the rigid and flexible cases. As shown, flexibility of
the wing alleviates the root bending moment. The rigid wing exhibits a higher initial moment and a lack of
oscillations following the passage of the gust.

Free Versus Anchored Analysis

An anchored analysis was performed by grounding the fuselage near the CG, preventing translation and
rotation. Variation in elevation angle and vertical position was therefore zero. The wing remained flexible,
however. Figure 7 compares a simulation for H = 100, 300, 600, 1000ft to a free (unanchored) case. The
motion of the aircraft in the dynamic simulation reduces the peak loads.
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Figure 5. Gust field, H = 100ft.
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Figure 6. Dynamic simulation comparing a flexible wing versus a rigid wing.
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Figure 7. Flexible wing: dynamic simulation versus an anchored simulation.

Free Versus Plunge-Only Analysis

A plunge-only analysis was performed similarly to the anchored case, except that vertical displacement
(plunge) was allowed. Variation in elevation angle was constrained to be zero. The wing remained flexible.
Figure 8 compares a simulation for H = 100, 300, 600, 1000ft to an free case. The agreement in the initial
loads is good, and the extrema are captured. The smaller secondary oscillations are not captured accurately,
especially for large H .
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Figure 8. Flexible wing: dynamic simulation versus a plunge-only simulation.

Effect of Unsteady Aerodynamics

In ASWING, unsteady aerodynamic loads are computed using the unsteady vector form of the Kutta-
Joukowsky theorem, which takes into account the time rate of change of the bound vortices, dΓ/dt. However,
assumptions are made when calculating the induced velocities. First, a flat, freestream-aligned wake is used,
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effectively assuming that the velocity variations of the aircraft are small compared to the freestream velocity.
Second, unsteady shed vortices are assumed to only affect the surface that shed them. For example, the
unsteady vortices shed from the main wing do not affect the induced velocity on the tail. However, the tail
is still affected by the steady vortex sheet. Third, the unsteady downwash produced by a shed vortex from a
surface is only modeled approximately. That is, integration is not performed over all previously shed vortices
to compute the downwash. Rather, the effect of the shed vortices is modeled using an empirical lag term: a
factor multiplying dΓ/dt is added to the downwash on the surface. The factor is chosen to asymptotically
match Theodorsen’s 2D results for large reduced frequencies.

This study compares the results obtained with the unsteady lag term present (“unsteady aerodynamics”)
to those obtained with the lag term disabled (“quasi-steady aerodynamics”). As stated in the ASWING
documentation, disabling the lag term contribution allows one to determine the importance of unsteady
aerodynamics in a given application.

For the flexible aircraft, dynamic simulations were run with varying H , with unsteady aerodynamics
turned off. Figure 9 compares the results to those using unsteady aerodynamics. The differences are small
for the H values considered.
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Figure 9. Quasi-steady versus unsteady aerodynamics.

Short-Gust Simulations

The previous sub-sections considered gust lengths H ≥ 100ft. A short-gust study, with H = 30, 50, 100ft,
was also performed to assess the validity of the quasi-steady assumption and the criticalness of short gusts
on outer portions of the wing. To study effects on the outer wing, the bending moment was measured not
just at the root, but also at 2y/b = 0.5, 0.75, 0.9, where y is the spanwise coordinate, zero at the root, and b
is the full span.

Figure 10 shows the bending moment time histories at four locations along the wing, for the three gust
lengths. The largest bending moment is observed for the H = 100 ft gust for all locations. Quasi-steady
aerodynamics results are also shown for each gust encounter simulation. Differences between the unsteady
and quasi-steady results are present, but they are not large.

The results in Figure 10 show that the moment amplitude increases with H for the three gust lengths
considered. The response oscillation frequency, however, is approximately the same for all of the gust lengths,
with the longer gust lengths lagging in phase behind the shorter gust lengths. A possible explanation for
this effect is that all three gust lengths excite the same primary vibration mode(s) in the wing, with the
excitement amplitude depending on the time spent in the gust. Specifically, as the aircraft enters the gust,
the wing sections experience an increasing lift force due to the 1-cos gust profile. For the longer gust lengths,
this forcing time is longer, leading to a greater impulse and a larger, delayed maximum moment before the
free vibrations of the wing begin.
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Figure 10. Bending moment time histories at four span locations for H = 30, 50, 100 ft gusts. Dashed
lines represent quasi-steady results. Note the different ranges for the bending moment on the plots.
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Gust Encounter Study Summary

A 1-cos gust encounter for an approximate Boeing 737-400 model was simulated using ASWING. These
simulations provide insight into the variation of the wing response with respect to gust length, the importance
of pitch dynamics, and the importance of unsteady aerodynamics. Key points from the analysis are:

• An anchored (static) analysis yields greatly-overestimated loads compared to a full dynamic analysis,
which includes rigid body motion that relieves the gust loads. Hence, a dynamic analysis is crucial for
accurate load prediction.

• Longitudinal dynamics becomes important at longer gust lengths, making a plunge-only assumption
invalid. Thus, pitch dynamics should be included in simulations at long gust lengths.

• For gust encounters at typical flight conditions, a quasi-steady aerodynamics assumption appears rea-
sonable for the majority of the wing acerage, at gust lengths H > 30ft. Thus, full unsteady simulations
are likely not required for typical gust lengths.

These conclusions provide a roadmap for the approximations that can be made when the gust analysis is
incorporated into a design optimization. Of course, the gust simulations were performed on one “typical”
transport aircraft. For significantly different designs the simulations should be repeated with a wide range
of gust lengths to verify that the modeling assumptions still hold.

III.C. Stochastic Gust Analysis Results

For the stochastic gust analysis, the nonlinear equations in Eqn. 6 must first be linearized. This linearization
is performed about a steady-state deformed state, x0; that is, we define x(t) = x0 + δx(t). The resulting
equations are:

[M ]δẍ = [A]δx + {B}αg, (7)

δy = [C]δx,

where [M ] = −∂r/∂ẋ, [A] = ∂r/∂x, and {B} is obtained from the derivative of r with respect to the aircraft
vertical velocity. y consists of the bending moment at the root and 50% span location along the wing, and
[C] is obtained from the sensor feature in ASWING. Since not all components of x appear as rates in the
residual equations, the mass matrix [M ] is singular, and hence the dynamics are represented by a descriptor
system. Each matrix is stored in a sparse storage format.

Using the linearized system in Eqn. 7, two stochastic gust analyses were performed to calculate the RMS
root bending moment. First, a direct integration of the output power spectral density was carried out, as
described in Section II, yielding an RMS root bending moment of σy = 7.72× 105 lb-ft. While simple, such
a direct integration is expensive for the large linear system under consideration.

A second stochastic gust analysis was performed using matched filter theory. In this approach, a nor-
malized, reversed, and time-shifted system impulse response serves as the critical excitation waveform. The
system impulse response was obtained by first calculating the impulse response of the gust filter, and then
running a forward time simulation of the plant (i.e. the aircraft dynamics). Both the impulse response and
the critical excitation waveform are shown in Figure 11.

Note that the critical excitation waveform is the input to the gust filter. The associated critical gust
profile is then the corresponding output of the gust filter. The output response is the output of the aircraft
dynamics plant to the critical gust profile. Both the critical gust profile and the root bending moment output
response are shown in Figure 12. The shape of the critical gust profile, a downdraft followed suddenly by
a sharp updraft, agrees with intuition. The maximum output value is σy = 7.74 × 105 lb-ft, which is also
the RMS output response according to matched filter theory. This value agrees well with the direct PSD
integration.

According to matched-filter theory, the critical gust profile yields the maximum output response for all
waveforms with the same energy in excitation space. To test the validity of the results, 1-cos gust profiles
were created with various gust gradient lengths, H , and with amplitudes scaled so that each profile had the
same energy as the critical gust profile in excitation space. The gust profiles along with the corresponding
output responses are shown in Figure 13. The critical gust profile yields the maximum response, although
this maximum value is not overly conservative.
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Figure 11. Impulse response of ASWING model root bending moment, and the corresponding critical
excitation waveform.
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Figure 12. Critical gust profile obtained from the critical excitation waveform, and the resulting root
bending moment response.
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Figure 13. Comparison of root bending moment output responses to the critical gust profile and 1-cos
profiles of the same energy in excitation space.

IV. Conclusions and Ongoing Work

We have presented several approaches for stochastic gust analysis and their application to a large dy-
namical system. The result of each analysis is a root-mean-square (RMS) value for one or more outputs
of interest that can be used for design purposes as prescribed by the Federal Aviation Regulations. For a
simple two degree of freedom aircraft model, all of these analysis approaches yielded the same RMS values,
to numerical approximation errors. Two of the methods, power-spectral density integration and matched-
filter theory, were also applied to a large system obtained from a coupled aero-structural simulation. Again,
similar RMS values were obtained from both approaches. An advantage of the matched filter theory analysis
is that it yields a critical gust profile in addition to the RMS output value. We note that all of the methods
are presented only for linear systems. Determining the effects of nonlinearities and extension to nonlinear
systems will be the subject of future work.

Future work will also incorporate one or more of the stochastic gust analysis approaches into an aircraft
design optimization setting. An important challenge in the optimization approach is the design of a gust-
load alleviation controller. This is not a trivial task, as many variables play a role in controller design,
including the control architecture, sensor placement, actuation models, etc, and because much of this detail
is traditionally not available in the conceptual design stage. In our ongoing work, we use a decomposition
approach to formulating and solving the optimization problem, which permits use of specialized controller
design techniques. In addition, future work will research the benefits of using multifidelity models to decrease
the computational costs associated with the high fidelity analyses that may be necessary to capture the
important physics.
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