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This paper proves that deterministic relative attitude determination is possible for a formation of three vehicles.

The results provide an assessment of the accuracy of the deterministic attitude solutions, given statistical properties

of the assumednoisymeasurements. Each vehicle is assumed to be equippedwith sensors to provide line-of-sight, and

possibly range, measurements between them. Three vehicles are chosen because this is the minimum number

required to determine all attitudes given minimal measurement information. Three cases are studied. The first

determines the absolute (inertial) attitude of a vehicle knowing the absolute positions of the other two. The second

assumes parallel beams between each vehicle to determine relative attitudes, and the third assumes nonparallel

beams for relative attitude determination, which requires range information to find deterministic solutions.

Covariance analyses are provided to gain insight on the stochastic properties of the attitude errors and the

observability for all three cases.

I. Introduction

A TTITUDE determination is the calculation of the orientation
between two reference frames, two objects, or a reference frame

and an object. The amount of research conducted for this task as well
as the quantity of related publications is quite extensive, mostly
shown in the spacecraft community. For example, a star tracker is
used onboard a space vehicle to observe line-of-sight (LOS) vectors
to stars, which are compared with known inertial LOS vectors to
estimate the inertial attitude of the space vehicle. It is obvious why
this topic has acquired so much attention, as nearly every spacecraft
ever launched into space requires at least some knowledge of its
orientation.

Several sensors can be employed to determine the attitude of a
vehicle. Basically, these sensors provide arc length or dihedral-angle
information, which can be used for practical purposes to provide
entire directions. For example, a star tracker [1] provides a direction,
and a Global-Positioning System attitude determination system [2]
provides the cosine of an angle. Attitude determination can be broken
into two categories: 1) purely deterministic, where a minimal set of
data is provided, and 2) overdeterministic, where more than the
minimal set is provided. A purely deterministic solution example
involves one direction and one angle, essentially giving three
equations and three unknowns. A solution for this case is shown in
[3]. Two nonparallel directions, such as two LOS vectors to different
stars, provide an overdeterministic case, because there are four
equations and three unknowns. Solutions to this case generally

involve solving the classic Wahba problem [4], which has been well
studied. A survey of algorithms that solve Wahba’s problem is
presented in [5].

Formation flying employs multiple vehicles to maintain a specific
relative attitude/position, either a statically or a dynamically closed
trajectory. Here, relative is defined as being between two vehicles.
Relative information is needed to maintain formation attitude
through control. Applications are numerous, involving all types of
vehicles, including land (robotics [6]), sea (autonomous underwater
vehicles [7]), space (spacecraft formations [8]), and air (uninhabited
air vehicles [9]) systems. Relative attitude and position estimation
schemes based on the Kalman filter have been shown for both
spacecraft [10] and aircraft [11] formations. LOS observations are
assumed between vehicles based on a system consisting of an optical
sensor combined with a specific light source (emitter) to achieve
selective vision [12]. Deterministic solutions for both relative
attitude and position are possible using multiple emitters [13]. A
similar concept has been employed in [14] for robotic pose esti-
mation using multiple LOS observations from image data instead of
emitter sources. Other sensors, such as aligned laser commu-
nication devices [15], can also be used to provide LOS observations.
The use of laser communication devices has increased in recent
years. The approach shown in this paper can use these already-
employed devices to determine relative attitude information without
the use of other (external) attitude sensors, such as star trackers.

In the aforementioned applications, multiple LOS vectors are used
to determine relative attitude between vehicles. For example,
consider a two-vehicle system with multiple emitters on the deputy
vehicle and a focal-plane detector (FPD) on the chief vehicle. For the
sake of simplicity, let us assume that the relative position is known.
Because the emitter location is known with respect to the deputy
frame, then a corresponding reference deputy-frame vector is given.
Using the LOS observation from the FPD gives a vector with respect
to the chief frame. These vectors are related through the attitude
matrix. It is well known that using only one emitter source provides
only two of the three pieces of needed attitude information. Hence,
multiple LOS observations from multiple emitter sources must be
employed to determine a full attitude solution. This is related to the
classic photogrammetry problem [16]. The key contribution of this
paper is to show that a relative attitude solution can be obtained
using single-LOS observations between two pairs of vehicles but
employing a three-vehicle formation system. A relative attitude

Received 19 December 2008; revision received 17 March 2009; accepted
for publication 31 March 2009. Copyright © 2009 by the American Institute
of Aeronautics andAstronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0731-5090/09 and $10.00 in
correspondence with the CCC.

∗Graduate Student, Department of Mechanical & Aerospace Engineering;
msandrle@buffalo.edu.

†Professor, Department of Mechanical & Aerospace Engineering;
johnc@buffalo.edu. Associate Fellow AIAA.

‡Undergraduate Student, Department of Mechanical & Aerospace
Engineering; linares2@buffalo.edu.

§Research Assistant Professor, Department of Mechanical & Aerospace
Engineering; cheng3@buffalo.edu. Senior Member AIAA.

¶Graduate Student, Department of Aerospace Engineering; bhyun@
umich.edu. Student Member AIAA.

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 32, No. 4, July–August 2009

1077

http://dx.doi.org/10.2514/1.42849


solution is not possible if only each vehicle pair in the formation is
considered separately. But when all three vehicle LOS observations
are considered together, then a purely deterministic solution is
possible, which is shown here.

The organization of this paper is as follows. First, the problem
definition and notation are stated for the three-vehicle formation.
Then the sensor model for the LOSmeasurements is reviewed. Next,
three attitude determination cases are shown: 1) an inertial attitude
case, 2) a parallel-beam case for relative attitude determination,
and 3) a nonparallel-beam case for relative attitude determination.
Covariance expressions are also derived for all three cases. Finally,
simulation results are shown.

II. Problem Definition

The geometry of the problem is described in Fig. 1. There are three
vehicles flying in formation, each vehicle equippedwith optical-type
sensors, such as a beacon or laser communication system, that use a
FPD. Through the sensor, a vehicle measures the LOS vector to the
two other vehicles, and this applies to each vehicle, making three
pairs of LOS measurements. All LOS measurements from the
different vehicles contain noise, even for measurements of the
same LOS vector using a different reference frame. The attitude
solutions are obtained using a centralized approach in the sense that
information from all vehicles is assumed to be transmitted to one
location. Decentralized attitude estimation is discussed in [17]. Also,
it is assumed that no communication delays are present in the system.
A discussion and a mitigation approach for communication delays is
shown in [18].

Both theoretical research and supporting simulations will require
LOS vectors that describe, with respect to one object or frame, what
direction another given object is along. Because different reference
frames are used to represent the various LOS vectors, a structured
notation is required here aswell. A subscript will describe the vehicle
for which the LOS is taken both from and to, and a superscript will
denote to which reference frame the LOS is both represented by and
measured in. For example, bxx=y ��bxy=x is a LOS vector beginning

at x (using an emitter) and ending at y (using a detector), and it is both
expressed in and observed from frame X . Note that from Fig. 1, the
detectors measure all vectors that point into the vehicles, and the
emitters are used to generate vectors that point away from the
vehicles. Now the LOS vectors in Fig. 1 are properly defined.

For the relative attitudematrix, the notationAyx denotes the attitude
matrix that maps components expressed in X -frame coordinates to
components expressed in Y-frame coordinates, and so bxx=y�
Axyb

y
x=y. The inverse operator is simplyAy

T

x � Axy. There are only two
relative attitudes to be determined for the three-vehicle system.
Using the characteristic of the attitude matrix, the third attitude is
easily obtainable if two relative attitudes are given. For example,

knowingAd1c andAd2c givesAd2d1 � A
d2
c A

dT
1
c . Using the configuration of

the LOS vector measurements between vehicles, this paper will
prove that a deterministic solution for the relative attitude can be

found. More detailed literature about deterministic attitude
determination can be found in [3].

Three cases will be shown in this paper:
1) In the inertial attitude case, the two deputies are treated as

reference points and the inertial positions of each vehicle are
assumed to be known. For this case, only LOS vectors from the chief
to each deputy are required (not between the two deputies) and the
determined attitude is with respect to an inertial frame.

2) In the parallel-beam case, the beams between vehicles are
assumed to be parallel, and so common vectors are given between
vehicles but in different coordinates. For example, for a laser
communication system, a feedback device can be employed to
ensure that parallel beams are given in real time. As long as the
communication system latencies are sufficiently known and the link
distance divided by the speed of light is greater than the latencies, the
communication system can simply be used as a repeater (or relay if
the signal strength is sufficient). It will be shown that deterministic
solutions for all relative attitudes with three vehicles are possible for
the parallel-beam case.

3) In the nonparallel-beam case, it is assumed that nonparallel
beams are present. To achieve common vectors, additional knowl-
edge of range information is required in this case. The attitude
solutions are identical to the parallel-beam case; however, additional
attitude errors are introduced as a result of the range measurements.

Although the unknown relative attitude is deterministically
solvable, LOS vector measurements are usually associated with
measurement errors. Therefore, it is critical to investigate the
confidence of the attitude solution that is given deterministically
with respect to the amount of error that is involved in the LOS
measurement. A covariance analysis gives an analytical inter-
pretation regarding this issue. Before showing this analysis,
though, we begin with the sensor model used for the LOS
measurements.

III. Sensor Model

AFPD sensor is assumed for all LOS observations, where � and �
are the image-space LOS observations. Denoting � and � by the
2 � 1 vector m � �� � �T , the measurement model follows:

~m�m� w (1)

where ~m denotes measurement. A typical noise model used to
describe the uncertainty in the focal-plane coordinate observations is
given as [10]

w �N 	0; Rfocal
 (2a)

Rfocal � �2

1� d	�2 � �2

	1� d�2
2 	d��
2
	d��
2 	1� d�2
2

� �
(2b)

where �2 is the variance of the measurement errors associated with �
and �, and d is on the order of 1.

Fig. 1 Vehicle formation.
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Assuming a focal length of unity, the sensor LOS observations can
be expressed in unit vector form, which is given by

b � 1��������������������������
1� �2 � �2

p �
�
1

2
4

3
5 (3)

The measurement vector is defined as

~b� b� � (4)

with

� �N 	0;�
 (5)

Under the assumption that the focal-plane measurements are
normally distributed with known mean and covariance, it is further
assumed that under the focal-plane-to-LOS transformation, the
resulting LOS uncertainty is approximately Gaussian. Also recall
that because a LOS vector is of unit length it must lie on the unit
sphere, which leads to a rank-deficient covariance matrix in R3. To
characterize the LOS noise process resulting from the focal-plane
model, Shuster [19] suggests the following approximation:

� � Ef��Tg � �2	I3�3 � bbT
 (6)

known as the QUEST measurement model (QMM). A geometric
interpretation of the covariance given by the QMM can be obtained
by first considering the outer product. The operator formed by the
outer product of a vector, b with itself, is a projection operator for
which the image is the component of the domain spanned by b.
Similarly, the operator (I3�3 � bbT) is also a projection, this time
yielding an image perpendicular to b.

What thismeans for the covariance given in Eq. (6) is that the error

in the vector ~b is assumed to lie in a plane tangent to the focal sphere.
It is clear that this is only valid for small � and � values in which a
tangent plane closely approximates the surface of a unit sphere. For
small � and � values, the QMMmodel agrees well with the inferred
measurement model for the real sensor though [19]. For wide-field-
of-view (WFOV) sensors, whichmay produce large� and� values, a
more accurate measurement covariance is shown in [20]. This
formulation employs a first-order Taylor series approximation about
the focal-plane axes. The partial derivative operator is used to
linearly expand the focal-plane covariance in Eq. (2), given by

H � @b

@m
� 1��������������������������

1� �2 � �2
p 1 0

0 1

0 0

2
4

3
5 � 1

1� �2 � �2
bmT (7)

Then the WFOV covariance model is given by

��HRfocalHT (8)

If a small-field-of-view model is valid, then Eq. (8) can still be used
but is nearly identical to Eq. (6). For both equations,� is a singular
matrix [20]. The implications of this singularity will be discussed
later. Also note that fromEq. (8), different body-frame vectorsb give
different corresponding covariance matrices. Hence, from this point
forward, the notation will specifically show the frames used for both
the body vector and its associated covariance. In particular, the six
body-vector measurements from the onboard sensors, along with
their respective error characteristics, are given by

~b d2
d2=d1
� bd2d2=d1 � �

d2
d2=d1

; �d2d2=d1 �N 	0;�d2
d2=d1

 (9a)

~b d1
d2=d1
� bd1d2=d1 � �

d1
d2=d1

; �d1d2=d1 �N 	0;�d1
d2=d1

 (9b)

~b c
c=d1
� bcc=d1 � �

c
c=d1
; �cc=d1 �N 	0;�c

c=d1

 (9c)

~b d1
c=d1
� bd1c=d1 � �

d1
c=d1
; �d1c=d1 �N 	0;�d1

c=d1

 (9d)

~b c
c=d2
� bcc=d2 � �

c
c=d2
; �cc=d2 �N 	0;�c

c=d2

 (9e)

~b d2
c=d2
� bd2c=d2 � �

d2
c=d2
; �d2c=d2 �N 	0;�d2

c=d2

 (9f)

Note that all noise terms in Eq. (9) are assumed to be uncorrelated.

IV. Inertial Attitude Case

The problem to be solved here is as follows: given relative LOS
vectors and inertial positions of each vehicle, determine the inertial
attitude of one vehicle at a time. Once the inertial attitudes are
determined, then converting them to relative attitudes is straight-
forward. This case assumes a three-vehicle configuration in which
each vehicle communicates with its two neighbors. Using only
relative LOS observations between each vehicle does not allow for a
deterministic inertial attitude solution in this case. Hence, more
information must be employed. Here, it is assumed that the absolute
position of each vehicle is known. Figure 2 shows the inertial
position vectors for a chief and deputy case, inwhich the superscript i
denotes inertial coordinates and pic=d1 � pid1 � pic. The absolute

position of a deputy can be determined using relative observations
between vehicles and absolute information of one vehicle in the
formation. The relative unit vector is given by

r ic=d1 � pic=d1=kp
i
c=d1
k (10)

This vector is observed in the body frame of the vehicle, denoted by
bcc=d1 . The mapping between the vectors ric=d1 and bcc=d1 is given by

b c
c=d1
� Aci ric=d1 (11)

where Aci is the attitude matrix. The same mapping can be applied to
the chief and second deputy vectors, giving ric=d2 and b

c
c=d2

with the

same attitude mapping Aci .
The main issue here is that noise is present not only in the LOS

observations, but also in the position knowledge. Ignoring subscripts
and superscripts for the moment, the measurement model follows:

~b� A~r� � (12)

where ~r is themeasured quantity of r, and� has covariance�, which
has been previously discussed. If the position error is small, then a
first-order expansion of the noise process in ~r is possible. The error
process for the position vector is given by

~p� p� �p (13)

where �p is the first-order error term in the position vector. The
covariance of �p is denoted by�p. Using a Taylor series expansion
and neglecting second-order terms, to within first order, ~r is
approximated by

~r� r� �r (14)

where the covariance of �r is given by

�r �
�
@r

@p

�
�p

�
@r

@p

�
T

(15)

Deputy 1

p i
c/d

1p id
1

p i c

Chief

Inertial 
 Frame

Fig. 2 Inertial position vectors for chief and deputy 1.
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with

@r

@p
� kpk�1	I3�3 � kpk�2ppT
 � �kpk�3�p��2 (16)

where �p�� is the standard cross-product matrix [21]. Therefore,
assuming that � and �r are uncorrelated, the measurement-error
covariance for � in Eq. (12) is given by

R� A�rA
T �� (17)

Note that R is a function of the unknown attitude matrix. We now
prove that this matrix is a singular matrix using the QMM for �.
Using the identity A�p�� � �Ap��A (see [21]) and the identity
b� Ap=kpk, then the matrix A�rA

T can be written as

A�rA
T � kpk�2�b��2A�pA

T �b��2 (18)

It is obvious now that Rb� 0, which means that R is singular. This
matrix is also singular using the WFOV model, because b is in the
null space of� given by Eq. (8), due to HTb� 0, and is also in the
null space of A�rA

T .
A discussion on a probability density function (pdf)with a singular

covariance matrix is now given. This is required later to develop the
negative log-likelihood function. Suppose that x is a zero-mean
Gaussian distribution with nonsingular covariance Rx. Its pdf is
given by

p	x
 � 1

�det	2�Rx
�1=2
exp

�
� 1

2
xTR�1x x

�
(19)

Let y �Ux, where UTU� I and U maps x into a higher
dimensional space. So x�UTy, and the singular covariance matrix
of y is given by Ry �URxUT . Rewriting p	x
 in terms of y leads to

p	y
 � 1

�det	2�UTRyU
�1=2
exp

�
� 1

2
yTR†

yy

�
(20)

where y is in a subspace in the higher dimensional space defined by
the mappingU,R†

y �UR�1x UT denotes the pseudoinverse ofRy, and
UTRyU� Rx. The value of det	UTRyU
 � det	Rx
 is equal to the
product of the nonzero eigenvalues of Ry. For our work, we have
Ry � R, where R is the singular matrix given by Eq. (17). The
singularity of R means that the probability density function is
effectively two-dimensional. Instead of including a term ln �det	R
�,
the negative log-likelihood function associated with this singular
covariance matrix includes a term ln �det	UTRU
�, with the 3 � 2
matrix U satisfying UUT � I3�3 � bbT . The ln - det term can
be ignored in the log-likelihood function, because UTRU is
independent of b or A, which results from our assumption that the
noise distribution in the plane perpendicular tob is independent ofb.
Note that the null vector of theWFOVmodel in Eq. (8) is alsob [20],
and so the same statement applies to this model as well.

The negative log-likelihood function to determine Aci is given by

J	Aci 
 � 1
2
	 ~bcc=d1 � Aci ~ric=d1


TR�1c=d1	 ~b
c
c=d1
� Aci ~ric=d1


� 1
2
	 ~bcc=d2 � Aci ~ric=d2


TR�1c=d2 	 ~b
c
c=d2
� Aci ~ric=d2
 (21)

with

Rc=d1 � Aci
�
@ric=d1
@pic=d1

�
�p1

�
@ric=d1
@pic=d1

�
T

Ac
T

i ��c
c=d1

(22a)

Rc=d2 � Aci
�
@ric=d2
@pic=d2

�
�p2

�
@ric=d2
@pic=d2

�
T

Ac
T

i ��c
c=d2

(22b)

where�p1
and�p2

are the covariances associated with the errors in
~pic=d1 and ~pic=d2 , respectively. As shown previously, the matrices

Rc=d1 and Rc=d2 are singular. However, Shuster [22] has shown that
these matrices can effectively be replacedwith nonsingular matrices,

which does not affect the likelihood function. This approach was
expanded for wide fields of view in [20]. For example, the matrix

Rc=d1 can be replaced by Rc=d1 � 1
2
bcc=d1b

cT

c=d1
tr	Rc=d1 
, which is a

nonsingular matrix. The resulting new matrices are generally
not diagonal matrices, and so a standard attitude determination
algorithm, such as QUEST [23], cannot be directly applied. A
solution can be found by assuming that Rc=d1 and Rc=d2 are diagonal,
using QUEST to find an approximate solution, which is then used in
an iterative least-squares approach to determine the optimal estimate
for Aci [24]. Also, the approach in [25] can be used to determine the
attitude-error covariance of Aci , which can be shown to be given by

Pic � f�bcc=d1���Rc=d1 �
1
2
bcc=d1b

cT

c=d1
tr	Rc=d1
��1�bcc=d1��

T

� �bcc=d2���Rc=d2 �
1
2
bcc=d2b

cT

c=d2
tr	Rc=d2
��1�bcc=d2��

Tg�1 (23)

Note that Pic is evaluated using the true values, but the measured or
estimated ones can be used, which leads to only second-order effects
[25].

A simulation is now shown that assesses how the position errors
affect the overall covariance given in Eq. (22). In particular, only the
first term on the right-hand side of Eq. (22) is investigated; the second
term is independent of position error and position. A two-spacecraft
configuration is used with relative positions starting at low Earth
orbit (300 km) up to geostationary orbits (42,164 km) separated by
2 deg. The attitude matrix of the chief is assumed to be the identity
matrix. The position-error covariance is assumed to be isotropic (a
scalar times identity matrix), with 3� bounds for the position errors
ranging from 0.1 to 100 km. The average 3� bounds for the noise
induced by the position errors are shown in Fig. 3. Clearly, the
position errors can provide significant error effects into the overall
process if precise attitude knowledge is required.

V. Parallel-Beam Case

The problem to be solved here is as follows: given relative and
parallel LOS vector pairs, determine the relative attitudes between
each vehicle. The LOS measurement equations for each vehicle pair
are given by

~b c
c=d1
� Acd1 ~b

d1
c=d1

(24a)

~b c
c=d2
� Acd2 ~b

d2
c=d2

(24b)

~b d2
d2=d1
� Ad2c Acd1 ~b

d1
d2=d1
� Ad2d1 ~b

d1
d2=d1

(24c)

The model in Eq. (24) assumes parallel-beams, which must be
maintained through hardware calibrations. Taking the dot product of
Eqs. (24a) and (24b) gives

Fig. 3 Average 3� bounds.
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~b cT

c=d2
~bcc=d1 � ~b

dT
2

c=d2
Ad2d1

~bd1c=d1 (25)

Equations (24c) and (25) represent a direction and an angle,

respectively, which can be used to determine Ad2d1 , given by an

algorithm in [3]. This algorithm is now reviewed. Considering the
measurements shown in Fig. 4, to determine the full attitude between
the D2 and D1 frames, we must find the attitude matrix that satisfies
the following general relations:

w 1 � Av1 (26a)

d� sTAv2 (26b)

where d and all vectors in Eq. (26) are given. Also, all vectors have
unit length. The solution can be found by first finding an attitude
matrix that satisfies Eq. (26a) and thenfinding the angle that onemust
rotate about the reference direction to satisfy Eq. (26b). The first
rotation can be found by rotating about any direction by an angle �,
with B� R	n1; �
, where R	n1; �
 is a general rotation about some
rotational axis n1 that satisfies w1 � Bv1. The choice of the initial
rotation axis is arbitrary; here, the vector between the two reference-
direction vectors is used, and so

B� 	v1 � w1
	v1 � w1
T
	1� vT1w1


� I3�3 (27)

where n1 � v1 � w1. The vector w� is now defined, which is the
vector produced after applying the rotation B on the vector v2. This
will allow us to determine the second rotation needed tomap v2 to the
second frame: w� � Bv2. Because the rotation axis is about the w1

vector, this vector will be invariant under this transformation, and the
solution to the full attitude can be written as A� R	n2; �
B. A
rotation that satisfies the following equation must be found:
d� sTR	n2; �
w�, where

R	n2; �
 � cos	�
I3�3 � �1 � cos	�
�n2n
T
2 � sin	�
�n2�� (28)

Substituting Eq. (28) withn2 � w1 into d and then rearranging terms
leads to

ks � w1kkw1 � w�k cos	� � ’
 � 	sTw1
	wT1w�
 � d (29a)

’� atan2�sT	w1 � w�
; sT	w1 � 	w1 � w�

� (29b)

Then the angle for the rotation about w1 is

�� ’� cos�1
�
	sTw1
	wT1w�
 � d
ks � w1kkw1 � w�k

�
(30)

The inverse cosine function returns the same solution for angles in
the first and forth quadrants and for angles in the second and third
quadrants. This will create a twofold ambiguity, which is easily
resolved from the geometry of the vehicle system. For example, once
an attitude solution has been determined, then it can be used to
compute estimated body vectors, which can be checked to see
whether or not they are within the field of view of the sensor. The
argument of this function cannot be greater than one, and so the
following inequality must be satisfied for a solution to exist:

j	sTw1
	wT1w�
 � dj � ks � w1kkw1 � w�k (31)

With this attitude determination method, there are some cases in
which a solution does not exist. It will be shown later that planar
vectors yield an unobservable system.

The attitude solution is given by

A� R	w1; �
B (32)

For example, to determine Ad2d1 , choose d� ~bc
T

c=d2
~bcc=d1 , w1 � ~bd2d2=d1 ,

v1 � ~bd1d2=d1 , s� ~bd2c=d2 , and v2 � ~bd1c=d1 . The first step is to determine

the matrix B in Eq. (27). Then the rotation angle is determined using
Eq. (30), followed by determination of the matrix R	n2; �
 using
Eq. (28). Finally, the attitude is determined using Eq. (32). It is
important to note that without the resolution of the attitude
ambiguity, any covariance developed would have no meaning. If the
wrong attitude is used, then the errors may be fairly large and not
bounded by the attitude-error covariance.

The same procedure can be used to determine the remaining
attitudes; however, once the first relative attitude is determined, a
standard and computationally efficient attitude determination
approach is employed instead. To determine one of the remaining
attitudes, the TRIAD algorithm can be employed:

A�McM
T
d (33)

Mc �
�
c1

c1�c2
kc1�c2k

c1�	c1�c2

kc1�	c1�c2
k

�
(34)

Md �
�
d1

d1�d2
kd1�d2k

d1�	d1�d2

kd1�	d1�d2
k

�
(35)

For example, to find Acd1 , choose c1 � ~bcc=d1 , c2 � ~bcc=d2 , d1 � ~bd1c=d1 ,

and d2 � Ad1d2 ~b
d2
c=d2

. Once this attitude is found, the final relative

attitude can be determined by simply using Acd2 � A
c
d1
Ad1d2 .

A. Covariance Analysis

To determine the covariance of the attitude error for Ad2d1 , the
covariance of the LOS measurement vector in Eq. (24c), and the
variance of the dot product in Eq. (25) must be determined, because
the solution uses these equations. The attitude-error covariance will
be derived using a log-likelihood approach that involves these
quantities.

1. Vector LOS Covariance

Note that Eq. (24c) has two noise terms: one associated with
~bd1d2=d1 and one associated with ~bd2d2=d1 . To determine the overall

measurement-error covariance, which is a combination of
both terms, the following vector is first defined:

~�
d2
d2=d1
� Ad2d1 ~b

d1
d2=d1
� ~bd2d2=d1

Substituting Eq. (9) into ~�
d2
d2=d1

leads to

~�
d2
d2=d1
� Ad2d1�

d1
d2=d1
� �d2d2=d1 (36)

Equation (36) is linear in the noise terms �, and as a result, ~�
d2
d2=d1

has

Gaussian distributed uncertainty that can be described by two

parameters: the mean and covariance�d2d2=d1 andR
d2
d2=d1

, respectively:

� d2
d2=d1
� Ef ~�d2d2=d1g � 0 (37)

Rd2d2=d1 � Ef	 ~�
d2
d2=d1
� �d2d2=d1 
	 ~�

d2
d2=d1
� �d2d2=d1


Tg (38)

Substituting Eqs. (36) and (37) into Eq. (38) and expanding leads to
the following expression:Fig. 4 Vectors used for attitude solution.
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Rd2d2=d1 � EfA
d2
d1
�d1d2=d1�

dT
1

d2=d1
A
dT
2

d1
� Ad2d1�

d1
d2=d1

�
dT
2

d2=d1

� �d2d2=d1�
dT
1

d2=d1
A
dT
2

d1
� �d2d2=d1�

dT
2

d2=d1
g (39)

Completing the term-by-term expectation in Eq. (39) leads
immediately to the measurement covariance expression for the
vector LOS:

Rd2d2=d1 � A
d2
d1
�
d1
d2=d1

A
dT
2

d1
��

d2
d2=d1

(40)

This covariance is a function of the true (and not known) attitude
matrix as well as the assumed known noise process characteristics of
the vehicle sensors. The two-term solution in Eq. (40) is indicative of
the fact that both the measured LOS and the reference vector contain

uncertainty. The covariance associated with ~bd1d2=d1 needs to be

transformed to the D2 coordinate space before being summed with

the covariance of ~bd2d2=d1 .
There are two primary approaches to address the fact that the

covariance is a function of the unknown true relative attitude matrix.
First, the true attitude matrix can be approximated by the estimated
attitude matrix. This simply requires that the true attitude matrix be
replaced by its estimate in all covariance expressions. This method is
a good approximation that produces second-order error effects that
can be ignored [25]. Second, because each pair of LOS vectors is
parallel, the focal planes for each of the two involved sensors are
aligned. The body vectors from each emitter/receiver pair are
the same once the coordinate transformation is made of the respec-
tive covariance, as seen by Eq. (6). Under the logical assumption
that both sensors have the same noise characteristics, we have

Ad2d1�
d1
d2=d1

A
dT
2

d1
��

d2
d2=d1

. Making this substitution into Eq. (40) leads

to the attitude-independent expression for the covariance, namely,

Rd2d2=d1 � 2�
d2
d2=d1

(41)

This relation is clearly obvious using the QMM. For the WFOV
model, Eq. (41) is only approximately correct. The eigenvectors
of both the QMM and the WFOV model are identical; the only
difference is in their nonzero eigenvalues [20]. The nonzero
eigenvalues of the QMM are both given by �2. If the nonzero
eigenvalues of the WFOV model are close to �2, then Eq. (41) is a
approximately valid. This can easily be checked using the available
measurements. Also, because a purely deterministic solution is
possible with a three-vehicle formation, then the covariance of the
measurement errors does not affect the attitude solution. That is,
there are exactly the same number of equations as unknowns to find a
solution, and anyweighting of themeasurements does not change the
solution. Hence, Eq. (41) is only needed to study the bounds on the
expected measurement errors, which may be used to perform an
initial assessment, using Eq. (40) to determine a more accurate one if
needed.

2. Angle Cosine Variance

Substituting Eq. (9) into Eq. (25) leads to

	bcc=d2 � �
c
c=d2

T	bcc=d1 � �

c
c=d1



� 	bd2c=d2 � �
d2
c=d2

TAd2d1	b

d1
c=d1
� �d1c=d1
 (42)

Similar to the vector LOS analysis, Eq. (42) can be expanded and
solved for the measured angle. The result of this is given by

bc
T

c=d2
bcc=d1 � b

dT
2

c=d2
Ad2d1b

d1
c=d1
� b

dT
2

c=d2
Ad2d1�

d1
c=d1
� �d

T
2

c=d2
Ad2d1b

d1
c=d1

� �d
T
2

c=d2
Ad2d1�

d1
c=d1
� bc

T

c=d2
�cc=d1 � �

cT

c=d2
bcc=d1 � �

cT

c=d2
�cc=d1 (43)

The expression in Eq. (43) can be used to determine the mean and
covariance of the angle cosine, which entirely describes the
probability distribution of this relationship. This methodology is
again permitted by the properties assumed of the measurement noise
and the linearity of the expression:

�� � E
n
bc

T

c=d2
bcc=d1

o
� b

dT
2

c=d2
Ad2d1b

d1
c=d1

(44)

R�d2=d1
� E

n�
bc

T

c=d2
bcc=d1 � ��

�
2
o

(45)

To complete the expression for the angle variance, Eqs. (43) and
(44) are substituted into Eq. (45) and then expanded to yield the
expression given by

R�d2=d1
� Efbd

T
2

c=d2
Ad2d1�

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
bd2c=d2

� b
dT
2

c=d2
Ad2d1�

d1
c=d1

b
dT
1

c=d1
A
dT
2

d1
�d2c=d2 � b

dT
2

c=d2
Ad2d1�

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
�d2c=d2

� b
dT
2

c=d2
Ad2d1�

d1
c=d1
�c

T

c=d1
bcc=d2 � b

dT
2

c=d2
Ad2d1�

d1
c=d1

bc
T

c=d1
�cc=d2

� b
dT
2

c=d2
Ad2d1�

d1
c=d1
�c

T

c=d1
�cc=d2 � �

dT
2

c=d2
Ad2d1b

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
bd2c=d2

� �d
T
2

c=d2
Ad2d1b

d1
c=d1

b
dT
1

c=d1
A
dT
2

d1
�d2c=d2 � �

dT
2

c=d2
Ad2d1b

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
�d2c=d2

� �d
T
2

c=d2
Ad2d1b

d1
c=d1
�c

T

c=d1
bcc=d2 � �

dT
2

c=d2
Ad2d1b

d1
c=d1

bc
T

c=d1
�cc=d2

� �d
T
2

c=d2
Ad2d1b

d1
c=d1
�c

T

c=d1
�cc=d2 � �

dT
2

c=d2
Ad2d1�

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
bd2c=d2

� �d
T
2

c=d2
Ad2d1�

d1
c=d1

b
dT
1

c=d1
A
dT
2

d1
�d2c=d2 � �

dT
2

c=d2
Ad2d1�

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
�d2c=d2

� �d
T
2

c=d2
Ad2d1�

d1
c=d1
�c

T

c=d1
bcc=d2 � �

dT
2

c=d2
Ad2d1�

d1
c=d1

bc
T

c=d1
�cc=d2

� �d
T
2

c=d2
Ad2d1�

d1
c=d1
�c

T

c=d1
�cc=d2 � bc

T

c=d2
�cc=d1�

dT
1

c=d1
A
dT
2

d1
bd1c=d1

� bc
T

c=d2
�cc=d1b

dT
1

c=d1
A
dT
2

d1
�d2c=d2 � bc

T

c=d2
�cc=d1�

dT
1

c=d1
A
dT
2

d1
�d2c=d2

� bc
T

c=d2
�cc=d1�

cT

c=d1
bcc=d2 � bc

T

c=d2
�cc=d1b

cT

c=d1
�cc=d2

� bc
T

c=d2
�cc=d1�

cT

c=d1
�cc=d2 � �

cT

c=d2
bcc=d1�

dT
1

c=d1
A
dT
2

d1
bd2c=d2

� �cTc=d2b
c
c=d1

b
dT
1

c=d1
A
dT
2

d1
�d2c=d2 � �

cT

c=d2
bcc=d1�

dT
1

c=d1
A
dT
2

d1
�d2c=d2

� �cTc=d2b
c
c=d1
�c

T

c=d1
bcc=d2 � �

cT

c=d2
bcc=d1b

cT

c=d1
�cc=d2

� �cTc=d2b
c
c=d1
�c

T

c=d1
�cc=d2 � �

cT

c=d2
�cc=d1�

dT
1

c=d1
A
dT
2

d1
bd2c=d2

� �cTc=d2�
c
c=d1

b
dT
1

c=d1
A
dT
2

d1
�d2c=d2 � �

cT

c=d2
�cc=d1�

dT
1

c=d1
A
dT
2

d1
�d2c=d2

� �cTc=d2�
c
c=d1
�c

T

c=d1
bcc=d2 � �

cT

c=d2
�cc=d1b

cT

c=d1
�cc=d2

� �cTc=d2�
c
c=d1
�c

T

c=d1
�cc=d2g (46)

Fortunately, some valid simplifications exist that decrease the
complexity of the variance. First, as with the LOS analysis, it has
been assumed that all the noise processes are uncorrelated. As a
result, all the terms with products of unlike noise components are
zero. Additionally, third moments of the given noise processes are
also zero due to parity (this would parallel the integral of an odd
function over an even interval). After the cancellation of these terms,
the variance is given by

R�d2=d1
� E

n
b
dT
2

c=d2
Ad2d1�

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
bd2c=d2

� �d
T
2

c=d2
Ad2d1b

d1
c=d1

b
dT
1

c=d1
A
dT
2

d1
�d2c=d2 � �

cT

c=d2
�cc=d1�

cT

c=d1
�cc=d2

� �d
T
2

c=d2
Ad2d1�

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
�d2c=d2 � bc

T

c=d2
�cc=d1�

cT

c=d1
bcc=d2

� �cTc=d2b
c
c=d1

bc
T

c=d1
�cc=d2

o
(47)

Evaluation of the expectation in Eq. (47) requires that most of the
terms be examined individually (as permitted by the linearity of the
expectation over summation). The resulting components from the
first and fifth terms are immediately acquired by factoring out the
deterministic quantities from the expectation:

E
n
b
dT
2

c=d2
Ad2d1�

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
bd2c=d2

o
� b

dT
2

c=d2
Ad2d1�

d1
c=d1
A
dT
2

d1
bd2c=d2 (48a)
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E
n
bc

T

c=d2
�cc=d1�

cT

c=d1
bcc=d2

o
� bc

T

c=d2
�
d2
c=d2

bcc=d2 (48b)

It is also helpful to note the property that the inner product is equal to
the trace of its outer product counterpart, given mathematically as
aTb� tr	baT
. This can be applied to the second and sixth terms
of the variance. By grouping vector quantities, we note that the
following equalities are true:

�
dT
2

c=d2
Ad2d1b

d1
c=d1

b
dT
1

c=d1
A
dT
2

d1
�d2c=d2 �

�
�
dT
2

c=d2
Ad2d1b

d1
c=d1

b
dT
1

c=d1

��
A
dT
2

d1
�d2c=d2

�
� tr

n�
A
dT
2

d1
�d2c=d2

��
�
dT
2

c=d2
Ad2d1b

d1
c=d1

b
dT
1

c=d1

�o
(49)

� cT

c=d2
bcc=d1b

cT

c=d1
�cc=d2 � tr

n�
bc

T

c=d1
�cc=d2

��
�c

T

c=d2
bcc=d1

�o
(50)

The expectation operator can be carried inside the trace functional in
Eqs. (49) and (50). The third and fourth terms of Eq. (47) require an
additional step. These terms are first factored into their trace
counterparts:

� cT

c=d2
�cc=d1�

cT

c=d1
�cc=d2 � tr

n�
�cc=d1�

cT

c=d1
�cc=d2

��
�c

T

c=d2

�o
(51)

�
dT
2

c=d2
Ad2d1�

d1
c=d1
�
dT
1

c=d1
A
dT
2

d1
�d2c=d2

� tr
n�
�d1c=d1�

dT
1

c=d1
A
dT
2

d1
�d2c=d2

��
�
dT
2

c=d2
Ad2d1

�o
(52)

Equations (51) and (52) are different from the previous terms dealt
with because they involve second moments of two different random
variables.We recall that given two randomvariables x1 and x2, under
the assumption that they are zero mean and mutually independent,
the expectation of their product squares is given as Efx21x22g�
Efx21gEfx22g. Applying this property to the remaining terms and
collecting the previous results leads to the angle scalar variance:

R�d2=d1
� tr

�
bd2c=d2b

dT
2

c=d2
Ad2d1�

d1
c=d1
A
dT
2

d1

�
�tr

�
bd1c=d1b

dT
1

c=d1
A
dT
2

d1
�
d2
c=d2
Ad2d1

�
�tr

�
Ad2d1�

d1
c=d1
A
dT
2

d1
�
d2
c=d2

�
� tr

�
bcc=d2b

cT

c=d2
�c
c=d1

�
�tr

�
bcc=d1b

cT

c=d1
�c
c=d2

�
�tr

�
�c
c=d1

�c
c=d2

�
(53)

If the approximation used to obtain Eq. (41) is valid for all
covariance expressions in Eq. (53), then the angle cosine variance
can be simplified and be determined by known quantities from the
LOS observations. Noting the property tr	baTA
 � aTAb, where A
is a square matrix, and the fact that an attitude matrix can be split into

two different matrices as Ad2d1 � A
d2
c A

dT
1
c , then the first term on the

right-hand side of Eq. (53) can be simplified to

tr
�
bd2c=d2b

dT
2

c=d2
Ad2d1�

d1
c=d1
A
dT
2

d1

�
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dT
2

c=d2
Ad2c Acd1�
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T
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dT
2
c bd2c=d2

� b
dT
2

c=d2
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c=d1
A
dT
2
c bd2c=d2 �

�
Acd2b

d2
c=d2

�
T
�c
c=d1
Acd2b

d2
c=d2

� bc
T

c=d2
�c
c=d1

bcc=d2 (54)

The second term can be simplified using the same method:

tr
�
bd1c=d1b

dT
1

c=d1
A
dT
2

d1
�
d2
c=d2
Ad2d1

�
� bc

T

c=d1
�c
c=d2

bcc=d1 (55)

Using the cyclic property of the trace, the third term can be modified
as

tr
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Ad2d �
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c=d1
A
dT
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d1
�
d2
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�
� tr
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d1
c=d1
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� tr
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� tr
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� tr
�
�c
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�c
c=d2

�
(56)

The fourth and the fifth terms are, respectively, identical to the first
and the second terms, and the last term is the same as the third term.
Thus, the angle cosine variance becomes

R�d2=d1
� 2�bcTc=d2�

c
c=d1

bcc=d2 � bc
T

c=d1
�c
c=d2

bcc=d1 � tr	�c
c=d1

�c
c=d2

�
(57)

which is not a function of the attitude matrix Ad2d1 .

B. Attitude Estimate Covariance

With the uncertainty of all the LOS measurements characterized

withinR� andR
d2
d2=d1

, a theoretical bound can be found for the relative

attitude estimate error. As described earlier, a Gaussian distribution
requires only the mean and (co)variance to describe it. In the current
case, the mean is zero and expressions for the (co)variances have
been determined. We now seek a characterization of P, the
covariance for the attitude-angle errors ��.

Characterization of the attitude-angle-error covariance is accom-
plished using the Cramèr–Rao inequality. A theoretical lower bound
for the covariance can be found using the Fisher information matrix
F. The estimate covariance P is bounded by the following
relationship:

P� Ef	x̂ � x
	x̂ � x
Tg 
 F�1 (58)

where x is the truth, x̂ is its corresponding estimate, and the Fisher
information matrix is given by

F��E
�

@2

@x@xT
ln L	~y;x


	
(59)

where L	~y;x
 is the likelihood function for a measurement ~y.
Clearly, to bound the estimate covariance, all that is needed is the
second derivative of the negative log-likelihood function constructed
using vector measurements with their theoretical covariance ex-
pressions previously calculated. For a discussion on how x is related
to the attitude matrix, see [25].

The uncertainty of all the measurements has been captured in the
following measurements:

~y �
~bd2d2=d1

~bc
T

c=d2
~bcc=d1

" #
(60)

The covariance and variance for the LOS and angle measurement,

given, respectively, by Rd2d2=d1 and R�, have been determined in

Eqs. (40) and (53) and are restated as follows:

~b d2
d2=d1
�N

�
bd2d2=d1 ; R

d2
d2=d1

�
(61a)

~b cT

c=d2
~bcc=d1 �N

�
bc

T

c=d2
bcc=d1 ; R�d2=d1

�
(61b)

Using both the measurements from Eq. (60), those taken as
deterministic quantities, and the known probability density functions
described by Eq. (61), a negative log-likelihood function can be
constructed (neglecting terms independent of the attitude):

J
�
Ad2d1

�
� 1

2

�
~bc

T

c=d2
~bcc=d1 � ~b

dT
2

c=d2
Ad2d1

~bd1c=d1

�
2
R�1�d2=d1

� 1
2

�
~bd2d2=d1 � A

d2
d1
~bd1d2=d1

�
T
R
d�1
2

d2=d1

�
~bd2d2=d1 � A

d2
d1
~bd1d2=d1

�
(62)

Because the attitude error is not expected to be large, a small-error-
angle assumption is made in Eq. (62). The attitude can be expressed
in terms of the true attitude and the angle errors ��, understood here
to map D1 true to D2 [25]:

Ad2d1 �
�
I3�3 �

h
��d2d1�

i�
Ad2d1true (63)

Substituting Eq. (63) into Eq. (62) and taking the appropriate partials
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with respect to ��d2d1 leads to the following covariance:

Pd2d1 � E
n
��d2d1��
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o
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d1
c=d1
�
i
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2
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�
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T
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�
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2
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h
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�
i
T
��1

(64)

where the subscript true has been removed because it is understood
that thismatrix is evaluated using the true variables (see [25] formore

details). Note that Rd2d2=d1 , given by Eq. (41), is a singular matrix. As

shown before, this matrix can be effectively replaced by

Rd2d2=d1 �
1
2
bd2d2=d1b

dT
2

d2=d1
tr	Rd2d2=d1


which is a nonsingular matrix. The estimated attitude matrix must be
used in Eq. (64) to compute the covariance. Also, the true values for
the b vectors can effectively be replaced with their respective
measured or estimated values, which leads to only second-order error
effects, as stated previously.

A discussion on the observability of the three-vehicle configu-

ration is nowgiven. The Fisher informationmatrixFd2d1 is given by the

inverse of Pd2d1 . Using the attitude mappings in Eq. (64), this matrix

can be written as

Fd2d1 �
h
bd2c=d1�

i
bd2c=d2R

�1
�d2=d1

b
dT
2

c=d2

h
bd2c=d1�

i
T

�
h
bd2d2=d1�

i
R
d�1
2

d2=d1

h
bd2d2=d1�

i
T

(65)

We now show that using planar vectors yields an unobservable
system. For this case, one vector can be represented by a linear
combination of the other vectors, and so, for example,

b d2
c=d1
� c1bd2c=d2 � c2b

d2
d2=d1

(66)

with arbitrary c1 and c2 in [�1, 1]. Substituting Eq. (66) into Eq. (65)
yields

Fd2d1 �
h
bd2d2=d1�

i�
c22b

d2
c=d2
R�1�d2=d1

b
dT
2

c=d2
� Rd

�1
2

d2=d1

�h
bd2d2=d1�

i
T

(67)

Clearly, this matrix is singular, which means that using planar
vectors yields an unobservable system. One of the vectors must be
out of the plane formed by the other two vectors for observability.
This requires that the sensor/emitter location of one vehicle is not in
the sameplane as that formed by the sensors of the other two vehicles.

A simulation case is now shown to assess the effects of moving a
vector out of the plane formed by the first two vectors. For this

simulation, bd2c=d1 � � 1 0 0 �T , bd2c=d2 � � 0 1 0 �T , and

b d2
d2=d1
� � 	

���
2
p
=2
 cos	�
 	

���
2
p
=2
 cos	�
 sin	�
 �T

where � varies from near 0 deg (i.e., nearly planar vectors) to 90 deg.

For simplicity, Rd2d2=d1 is assumed to be isotropic with scalar value

equal to R�d2=d1
, which is assumed to be 	17 � 10�6
2 rad2. A plot of

the average 3� bounds versus � is shown in Fig. 5. This shows that
even a small movement of the vector out of the plane can provide
significant improvements in attitude accuracy.

Because the analysis for the relative attitude mappings from C to
D1 and from C toD2 follows similarly to the previous analysis, only
the results will be given. The equations for the C-to-D1 mapping are
given by

b d1
c=d1
� Ad1c bcc=d1 (68a)

b
dT
2

d2=d1
bd2c=d2 �

�
Ad2d1b

d1
d2=d1

�
T
�
Ad2c bcc=d2

�
� b

dT
1

d2=d1
Ad1c bcc=d2 (68b)

The LOS measurement-error covariance can be shown to be

Rd1c=d1 � A
d1
c �c

c=d1
A
dT
1
c ��

d1
c=d1

(69)

The variance for the angle cosine, b
dT
2

d2=d1
bd2c=d2 , is similarly given by

R�c=d1
� tr

�
bd1d2=d1b

dT
1

d2=d1
Ad1c �c

c=d2
A
dT
1
c

�
� tr

�
bc

T

c=d2
A
dT
1
c �

d1
d2=d1

Ad1c bcc=d2

�
� tr

�
�c
c=d2
A
dT
1
c �

d1
d2=d1

Ad1c
�

� tr
�
bd2d2=d1b

dT
2

d2=d1
�
d2
c=d2

�
� tr

�
bd2c=d2b

dT
2

c=d2
�
d2
d2=d1

�
� tr

�
�
d2
c=d2

�
d2
d2=d1

�
(70)

which can be simplified to

R�c=d1
� 2

n
b
dT
2

d2=d1
�
d2
c=d2

bd2c=d2 � b
dT
2

c=d2
�
d2
d2=d1

bd2c=d2

� tr
�
�
d2
c=d2

�
d2
d2=d1

�o
(71)

Constructing the appropriate negative log-likelihood function
counterpart to Eq. (62) and following through the same progression
of simplifications will yield an analog to Eq. (64):

Pd1c �
�h
Ad1c bcc=d2�

i
bd1d2=d1R

�1
�c=d1

b
dT
1

d2=d1

h
Ad1c bcc=d2�

i
T

�
h
Ad1c bcc=d1�

i
R
d�1
1

c=d1

h
Ad1c bcc=d1�

i
T
��1

(72)

The equations for the C-to-D2 mapping are given by

b d2
c=d2
� Ad2c bcc=d2 (73a)

b
dT
1

d1=d2
bd1c=d1 �

�
Ad1d2b

d2
d1=d2

�
T
�
Ad1c bcc=d1

�
� b

dT
2

d1=d2
Ad2c bcc=d1 (73b)

The LOS measurement-error covariance can be shown to be

Rd2c=d2 � A
d2
c �c

c=d2
A
dT
2
c ��

d2
c=d2

(74)

The variance for the angle cosine, b
dT
1

d1=d2
bd1c=d1 , is similarly given by
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Fig. 5 Assessment of out-of-plane vector effect.
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cT
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(75)

which can be simplified to

R�c=d2
� 2

n
b
dT
1

d1=d2
�
d1
c=d1

bd1d1=d2 � b
dT
1

c=d1
�
d1
d1=d2

bd1c=d1

� tr
�
�
d1
c=d1

�
d1
d1=d2

�o
(76)

Constructing the appropriate negative log-likelihood function
counterpart to Eq. (62) and following through the same progression
of simplifications will yield an analog to Eq. (64):

Pd2c �
�h
Ad2c bcc=d1�

i
bd2d1=d2R

�1
�c=d2

b
dT
2

d1=d2

h
Ad2c bcc=d1�

i
T

�
h
Ad2c bcc=d2�

i
R
d�1
2

c=d2

h
Ad2c bcc=d2�

i
T
��1

(77)

VI. Nonparallel-Beam Case

All previous cases assume perfect alignment in the beams
transmitted between the neighboring vehicles. The third case
assumes nonparallel beams. The intent is to replace the LOS vectors
in Sec. V with the source-to-source LOS vectors, as shown in Fig. 6,
using the range measurement and FPD-source displacement. The
misalignment in the beams can arise when the FPD and the beam
source do not reside in the same location, as shown in Fig. 6. To
establish a common vector represented in two different coordinate
frames, the displacement vectors between each beam source and
respective FPDmust be used for each vehicle, denoted by zcc=c for the

chief and zd1d1=d1 for the deputy. These vectors arewell known through
calibration procedures and remain fixed with respect to the vehicle
body. Because the FPD measurement gives a unit vector in the
direction of the incoming beam, then range information is also
needed to determine the relative position between the FPD on the
receiving vehicle and the beam source of the other vehicle. This
vector and the displacement between the FPD and laser on the chief
frame can be used to generate a triangle. From Fig. 6, we have

y cc=d1 � rcc=d1 � zcc=c (78a)

y d1c=d1 � rd1c=d1 � zd1d1=d1 (78b)

where rcc=d1 � r
c
c=d1

bcc=d1 and rd1c=d1 � r
d1
c=d1

bd1c=d1 . The quantities

rcc=d1 � kr
c
c=d1
k and rd1c=d1 � kr

d1
c=d1
k are given from range

observations between vehicles. The vectors ycc=d1 and yd1c=d1 are

common sides of the triangle. Note that the respective measured

vectors for ycc=d1 and y
d1
c=d1

may not have the same length, due to noise.

Therefore, these common vector observations are related between
frames by the following attitude transformation:

�b c
c=d1
� Acd1 �b

d1
c=d1

(79)

where �bcc=d1 � ycc=d1=ky
c
c=d1
k and �bd1c=d1 � yd1c=d1=ky

d1
c=d1
k are unit

vectors. Measurement errors exist for both the range measurements
and focal-plane measurements. Ignoring subscripts and superscripts,
we wish to obtain a linear measurement-error model as follows:
~�b� �b� ��. The measured y vector, denoted by ~y, can be written in
terms of the measured LOS and range:

~y � 	r� vr
	b� �
 � z� y � w (80)

where the variance of the range error vr is denoted by $2, the
covariance of � is� as before, and w � vrb� r�� vr�. Because
vr and � are uncorrelated, then EfwwTg �$2bbT � r2�. The

covariance of ��, denoted by ��, can be derived using the same
approach as shown in Sec. IV:

���
�
@ �b

@y

�
	$2bbT � r2�


�
@ �b

@y

�
T

(81)

with

@ �b

@y
� kyk�1	I3�3 � kyk�2yyT
 (82)

The algorithms and attitude-error covariances shown in Sec. V can

nowbe directly applied using the appropriate ~�bmeasurement vectors

and �� covariances.
Intuitively speaking, as the distance between vehicles becomes

large, the beams become more parallel. We now study this effect on
the measurement covariance by explicitly multiplying out the terms
in Eq. (82) and using the QMM for �, which leads to

��� r
2�2

kyk2 �I3�3 �
�b �bT � 	 �bTb
2bbT � 	 �bTb
	 �bbT � b �bT


� bbT � � $2

kyk2 �	
�bTb
2bbT � 	 �bTb
	 �bbT � b �bT
 � bbT �

(83)

where �b � y=kyk has been used. When r!1, then kyk ! r and
�b! b. Thus, Eq. (83) reduces down to

��� �2	I3�3 � bbT
 �� (84)

The preceding analysis demonstrates that as the distance between
vehicles increases, the error in the measurement approaches and
converges to that of the parallel case. Therefore, any additional error,
induced by the range measurement in the nonparallel case, becomes
less significant when the formation distance is large, as expected.
However, the vectors also become more planar as the distance
increases, and observability tends to slip away, as discussed
previously. Therefore, a tradeoff exists between errors induced by
the range measurements versus accuracy/observability issues for
near-planar vectors. It should be noted that many three-vehicle
systems may involve short-range distances though, for example,
such as aircraft and robotic systems.

VII. Simulations

The simulations use a static formation of three vehicles, with each
vehicle having two FPDs and light source devices. The relative
attitude mapping between each vehicle’s body frame is determined
from LOS measurements, assuming perfect alignment between
beams. The formation configuration uses the following true LOSFig. 6 Nonparallel beams.
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vectors:

b c
c=d1
�

sin	�30 deg
 cos	35 deg

sin	35 deg


cos	30 deg
 cos	35 deg


" #

bcc=d2 �
sin	30 deg
 cos	25 deg


sin	25 deg

cos	30 deg
 cos	25 deg


2
4

3
5

bd1d1=d2 �
� cos	45 deg
 cos	10 deg


sin	10 deg

sin	�45 deg
 cos	10 deg


2
4

3
5 (85)

The remaining three LOS truth vectors are determined from those
listed in Eq. (24), without noise added, using the appropriate attitude
transformation. For this configuration, the true relative attitudes are
given by

Ad1c �
0 0 �1
0 1 0

1 0 0

2
4

3
5; Ad2c �

1 0 0

0 0 1

0 �1 0

2
4

3
5 (86)

For this test case, the angle from the plane formed by the vectorsbcc=d1
and bcc=d2 to the vector bcd1=d2 is about 22 deg. The LOS vectors are

determined from the focal-plane measurements containing noise,
which is described in Sec. III, with � � 17 � 10�6 rad and d� 1.
Also, the focal length is assumed to be one. In practice, each vehicle
must have two FPDs to ensure that the light source is acquired for any
relative orientation; this will generally be required formany systems,
such as laser communication devices. The letter S is used to denote
the sensor frame. The six matrix orthogonal transformations for their
respective sensor frames, denoted by a subscript, used to orientate the
FPD to the specific vehicle, denoted by the superscript, are given by

Acsd1
�
�0:9131 �0:1871 �0:3624
�0:1871 �0:5973 0; 7799
�0:3624 0:7799 0:5103

2
4

3
5

Ad1sc �
�0:1623 0:0840 0:9832
0:0840 �0:9916 0:0986
0:9832 0:0986 0:1539

2
4

3
5 (87a)

Ad2sd1 �
�0:6541 �0:3990 �0:6427
�0:3990 �0:5399 0:7412
�0:6427 0:7412 0:1939

2
4

3
5

Acsd2 �
�0:4394 0:5125 0:7378
0:5125 �0:5316 0:6744
0:7378 0:6744 �0:0290

2
4

3
5 (87b)

Ad1sc �
�0:5232 0:3952 0:7550
0:3952 �0:6724 0:6259
0:7550 0:6259 0:1955

2
4

3
5

Ad2sc �
�0:9698 �0:0721 0:2330
�0:0721 �0:8280 �0:5561
0:2330 �0:5561 0:7978

2
4

3
5 (87c)

Because each FPD has its own boresight axis, and the measurement
covariance in Eq. (2) is described with respect to the boresight,
individual sensor frames must be defined to generate the FPD
measurements. The measurement-error covariance for each FPD is
determinedwith respect to the corresponding sensor frames andmust
be rotated to the vehicle’s body frame aswell. The estimated attitude-
error covariance for each mapping is determined using either
Eq. (64), Eq. (72), or Eq. (77). The relative attitude estimates are
calculated by the method outlined in Sec. V from the measurement
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Fig. 7 Relative attitude estimate errors.
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containing random noise described by the measurement covariance.
The configuration is considered for 1000 Monte Carlo trials.
Measurements are generated in the sensor frame and rotated to the
body frame to be combined with the other measurements to
determine the full relative attitudes. TheWFOVmeasurement model
for the FPD LOS covariance is used. Relative attitude-angle errors
are displayed with their theoretical 3� bounds. Figure 7a shows the
errors for the D1-to-D2 mapping. Figure 7b shows the errors for the
C-to-D1 mapping, and Fig. 7c shows the errors for the final relative
attitude mapping of C to D2. Clearly, the theoretical covariance
expressions provide an accurate means to predict expected per-
formance.

A comparison of the attitude error for the nonparallel case with
the parallel case as the relative distance between vehicles increases
is now shown. The same three-vehicle configuration as the last
simulation is considered, with each vector having the same sensor
displacement, denoted by z. The relative distance between each
vehicle is assumed to be equal, denoted by r. From the observation
geometry shown in Fig. 6, the FPD and the range measurements
made in each frame can be deduced from the true LOS vector and
distance between vehicles. Rangemeasurements are generated using
a zero-mean Gaussian white noise with a standard deviation of 1 m.
FPD measurement errors are generated using the same standard
deviation as before, � � 17 � 10�6 rad. This formation is then
expanded out, incrementing all the distances between vehicles by an
equal amount. The average theoretical 3� bounds for increasing r=z
are shown in Fig. 8. Clearly, as the formation size increases, for this
case when r=z approaches a value of 30, the relative attitude error for
the nonparallel case approaches that of the parallel case, which
confirms the analysis leading to Eq. (84).

VIII. Conclusions

This paper has shown that with a three-vehicle configuration,
deterministic attitude solutions are possible, assuming line-of-sight
information between each vehicle pair. Covariance expressions were
derived to determine the attitude-error 3� bounds, which closely
matched with Monte Carlo simulations. Three cases were shown.
One involved using the two deputy vehicles as reference points to
determine the inertial attitude of the chief. Caremust be taken for this
case, because the attitude accuracy depends not only on the line-of-
sight errors, but also on the position errors of the deputies. The
second case involved using parallel beams. The advantage of
this approach is that no other information, such as position-type
knowledge, is required to find a solution; however, a feedback
mechanism must be employed at each light source to maintain the
parallel beams. Also, the closer the three vectors are to forming a
plane, the worse the attitude accuracy becomes. The third case
involved nonparallel beams. Additional information involving range
knowledge between vehicles must be given for this case; however,
the adverse effects from this range measurement become less

important as the distance between the vehicles becomes larger. But,
as the distance increases, the resulting vectors become more planar,
which adversely affects attitude accuracy. The derived covariance
expressions can be used to assess these range and planar vector
effects. It is important to note that although the examples discussed in
this paper primarily involve spacecraft applications, the relative
attitude determination approaches shown herein can be employed to
any three-vehicle system with similar sensors used here.
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