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Projected requirements for efficient, economical orbit-raising propulsion systems have generated investiga-
tions into several potentially high-specific-impulse, moderate-thrust advanced systems. One of these systems,
laser thermal propulsion, utilizes a high-temperature plasma as the enthalpy source. The plasma is sustained by a
focused laser beam that maintains the plasma temperature at levels near 15,000 K. Since such temperature levels
lead to total dissociation and high ionization, the plasma thruster system potentially has a high-specific-impulse
decrement due to recombination losses. The nozzle flow is expected to be sufficiently non-equilibrium to warrant
concern over the achievable specific impulse. This investigation was an attempt to evaluate those losses. The one-
dimensional kinetics option of the two-dimensional kinetics computer program was used with an available
literature-based chemical kinetics rate set to determine the chemical kinetics energy losses for typical plasma
thruster conditions. The rates were varied about the nominal accepted values to bound the possible losses.
Kinetic losses were shown to be highly significant for a laser thermal thruster using hydrogen. A 30% reduction
in specific impulse is possible, due simply to the inability to completely extract molecular recombination energy.

Nomenclature
A = principle chemical kinetic rate constant
Ae = nozzle exit area
A * = nozzle throat area
b = activation energy
CR = contraction ratio
K = equilibrium constant
kf = chemical kinetic rate—forward direction
kr = chemical kinetic rate—reverse direction
M — third body collision partner
n = temperature exponent
PC = stagnation pressure
R = universal gas constant
RI = normalized inlet wall radius of curvature
RSTAR = nozzle throat radius and normalizing parameter
RWTD = downstream normalized throat radius of

curvature
R WTU = upstream normalized throat radius of curvature
T = temperature
Tc = stagnation temperature
61 = inlet angle
6 = cone angle

Introduction

T HE NASA George C. Marshall Space Flight Center
(MSFC) has been involved in research of the physical

phenomena associated with implementation of an advanced
propulsion concept for orbit raising, i.e., laser thermal pro-
pulsion. The concept employs a single propellant, in all prob-
ability hydrogen, that is not combusted, but has its enthalpy
increased by energy addition from a beamed energy source, a
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laser. The energy addition can take place through a variety of
different absorption mechanisms: blackbody, molecular, or
plasma. Using the plasma absorption method, a plasma is in-
itially created by some auxiliary scheme and then sustained by
the laser beam continuum absorption process, inverse
Bremsstrahlung. For hydrogen using a CO2 (10.6 /mi
wavelength) laser beam, the maximum plasma temperature
obtained in such a process will be near 17,400 K, the peak in
the absorption coefficient/temperature curve. MSFC research
has been directed toward developing a reliable plasma initia-
tion scheme and measuring the beam absorption efficiency of
hydrogen plasmas as a function of gas flow parameters. The
initial results from these experiments1 indicate a high absorp-
tion efficiency and give strong support to the conjecture that a
2500 s specific impulse can be achieved for laser thermal
rockets operating at moderate thrust levels (5-1000 N).

The 2500 s specific impulse value is based upon an efficient
use of the resulting hydrogen propellant enthalpy. Unfor-
tunately, the plasma is expected to represent only a small frac-
tion of the total chamber volume and the losses associated
with having such a small, extremely hot core flow can be large.
As part of the MSFC efforts, it has been a goal to estimate
these losses. Attempts at applying state-of-the-art computa-
tional models to the problem have met with minimal success.2
As a result, a set of analyses were undertaken to individually
characterize the various losses; nonuniform flow, boundary
layer, chemical kinetic, etc., based upon limited knowledge of
the flowfield. This paper represents the results of the initial
study, the effect of chemical nonequilibrium losses on the
thruster performance.

For low-pressure, pure hydrogen flows, the chemical kinetic
reaction system is simple. Even at high temperatures, the
system of reactions is small and, therefore, the range of uncer-
tainty is determined by a limited number of rates. Unfor-
tunately, the uncertainties in the chemical kinetic rates for the
temperature and pressure regimes of interest in laser thermal
thrusters are large. For this reason, the study was conducted as
a sensitivity study, where the best available rates, obtained by
literature search and personal queries, were varied based upon
their estimated uncertainties. These rates were applied to a
single thruster design for a range of operating parameters
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estimated to be typical of a full-scale system. The premise used
in the study was that a bulk equilibrium temperature could be
defined and one-dimensional kinetic calculations performed
which would be representative of the kinetic losses. This bulk
temperature was treated as a variable to evaluate the range of
losses that could be anticipated. In addition, pressure,
temperature, nozzle area ratio, nozzle half-angle, and the rates
themselves were varied to complete the assessment. Specific
impulse was used as the central evaluation criteria.

Analysis
Thruster Design/Definition

Figure 1 is a conceptual schematic diagram of a hydrogen
laser thermal thruster. The laser beam, from either a space-
based or Earth-based laser source, is brought to a focus in the
absorption chamber of the thruster. Hydrogen, which is also
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Fig. 1 Schematic diagram of a hydrogen-fueled laser thermal
thruster.

Fig. 2 Conical nozzle design.

Table 1 Conical nozzle parameters
Parameters
RSTAR, cm
RWTD
RWTU
RI
01, deg
0, deg
CR

Nozzle 1
5.08
6.78
1.91
5.16
21
21
4

Nozzle 2
5.08
6.78
1.91
5.16
21
14
4

Nozzle 3
5.08
6.78
1.91
5.16
21
7
4

used to cool the thruster, enters the absorption chamber and
part of it flows through the plasma region where the hydrogen
absorbs energy directly from the focused beam. The plasma
region is somewhat analogous to the combustion region that
would exist in a conventional system. The high-temperature
plasma transfers heat to the surrounding hydrogen, chamber
walls, and optical window. Expansion of the high-temperature
hydrogen provides the thrust. A more detailed discussion of
laser thermal thruster systems and components has been given
by Jones and Keefer.3

Once the combustion chamber fluid in characterized, the
problem in investigating kinetic effects reverts to a simple
nonequilibrium throat/nozzle flow problem. The significance
of the kinetic effects were studied using three conical nozzles,
highlighted in Fig. 2. Table 1 provides the design parameters
for the nozzles. The cone angle and the area ratio were the
variable parameters chosen for the study. The nozzle design
and radii are typical for small thrusters. The throat area was
chosen to provide the mass flow rate (0.05 kg/s) required to
produce choked flow at a thrust of 890 N (200 Ibf) with a
stagnation temperature of 5000 K. The upper limit to the
stagnation temperature may be greater than 5000 K, but that
value is consistent with practical heat loads for a small thruster
utilizing LH2 transpiration cooling. Although the plasma
results in an increased temperature in the center of the
chamber, the one-dimensional calculation inherently assumes
a flat, uniform thermal profile. The effect of two- and three-
dimensionality is to be included in future analyses. It is re-
cognized that these effects will be significant and an effective
mixing approach must be developed to take advantage of the
thruster's true potential.

Rate Equations
A number of elementary reactions influencing the thruster

performance occur in the nonequilibrium hydrogen plasma
system. The importance of a given reaction within a set is a
function of the chemical kinetic rate at the plasma
temperature and its effect on the useful enthalpy. The effects
of the kinetic rates were evaluated using the one-dimensional
kinetics (ODK) option of the two-dimensional kinetics (TDK)
computer code.4 An extensive literature search was conducted
to determine the reactions with significant influence in the
system. These reactions, with their accompanying rates, are
presented in Table 2. Several hydrogen reactions, not included
in Table 2, were excluded from the analysis because they were
estimated to play an insignificant role due to their very slow
reaction rates and miniscule species concentrations. Atomic
third-body efficiencies were generally assumed to be unity.
Table 2 presents forward reaction rates for the reactions used
in the analysis. The rate constant K is in the units cmVmol2 • s.
As previously mentioned, the chemical kinetic rates were
chosen based upon the best data available from literature
search and personal communications. Performance calcula-
tions were made for equilibrium, frozen, and kinetic expan-
sions. For the kinetic expansions, two rate sets, 1 and 2, were
used. Rate set 1 employed baseline (slower) or worse-case rates
from a performance viewpoint. This rate set represents the
currently accepted values as can be determined from available

Table 2 High-temperature hydrogen rate sets

Reaction Rate set 1 Rate set 2

H+ +e~ +M-H + M

H

H

.
= 5.26x\026T~5/2C

7.83 xlO1 4

3.77xl013r-°-58e

£ = 3.62xl018r- lb

A:=1.00xl027r-5/2°

: = 7.83xl01

£=i.30xio18:r-
r = . x

£=1.30xl019r-1/2

aFrom Ref. 5. bFrom Ref. 6. cFrom Ref. 7, with calculation. dFrom Ref. 8. eFrom Ref. 9, with calculations. fFrom
Ref. 10.
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literature and discussions with chemical kinetics researchers.
Rate set 2 generally employed a faster set of rates or modified
baseline rates. The rate set 2 modified baseline rates were ob-
tained by increasing the rate set 1 baseline rates by either the
experimental error or, if the experimental error was not
quoted, by a factor of 10. When more than one rate was found
for a particular reaction, and it was not possible to discern the
better, the faster rate was used in rate set 2.

Since recombination was under study, the rates were all in-
creased in the recombination direction. For the equation,
H2 + e ~ — H + H + e~ , no data were found in the recombina-
tion direction. For this reason, the equation and the kinetic
rate are in the reverse direction. The H + e ~ ^ H ~ + h j > reac-
tion rate, which was judged insignificant, was accidentally left
in both reaction sets. It should have been omitted.

Analytical Procedure
The performance (thrust/mass flow combination) of a

thruster is dependent upon the expansion of the exhaust gases
through a nozzle, which is in turn controlled by the rates of the
chemical reactions. The ODK program uses this reaction data
to predict rocket performance is terms of specific impulse. The
one-dimensional equilibrium (ODE) nozzle analysis version of
TDK supplies the chemical equilibrium gas composition and
the pressure field needed for the kinetics calculations in ODK.
The ODE/ODK code is a standard propulsion analytical tool
and is used throughout government and industry. Details on
its specifies are readily available in another publication.4

As written, the computer program provides thermodynamic
data on the species H, H+ , and H~ to a temperature of 5000
K. This analysis required thermodynamic data for the species
H2, H, H+ , H ~ , and e~ to the maximum temperature under
consideration (18,000 K). The additional thermodynamic pro-
perty data were obtained directly from partition function
calculations, similar to the method described by Patch.11

To use ODK for the nonequilibrium flow analysis, the for-
ward reaction rates (Table 2) were converted to the reverse
form (kr) through the equilibrium relationship: K = kf/kr_
where K is the equilibrium constant and kf is the forward rate.
The reaction rate for each reacti6n was input through the
Arrhenius parameters A, TV, and B. For the three-body reac-
tions within the set, third-body efficiency values were assumed
to be unity unless explicitly indicated in Table 2.

The analysis was conducted using a number of variable
parameters other than the rates. Table 3 provides a list of the
parameters and their range of values.

Results and Discussion
With the large number of independent parameters available

for parametric variation, a multitude of relationships can be
examined. The key dependent parameter of interest is the
specific impulse and, therefore, the following discussion will
concentrate on it and the various independent parameters that
influence it. Primarily, the effects of chamber temperature,
nozzle area ratio, and kinetic rate set will be examined.

The following discussion is aimed at providing information
on performance possibilities for a laser thruster. A wealth of
calculations, other than those shown, will be made available in
a subsequent publication.12 The data do not reveal trends
other than what one would expect, but they do provide a
quantitative reference for assessments. A summary of the
results includes:

Table 3 Analytical parameters
Parameters Value

Stagnation pressure, PC, MPa
Stagnation temperature 7c,K

Area ratio Ae/A*
Nozzle half-angle B, deg_______

0.101, 0.304, 1.01
3000, 6000, 9000, 12,000

15,000, 18,000
1, 5, 10, 15, 20, 25
7, 14, 21_____________

1) For the nozzle types under consideration, achievable
specific impulse is a strong function of the kinetic rates.

2) The nozzle area ratio effect on specific impulse is not
large for the low chamber pressures anticipated. Thus, a large-
area-ratio nozzle may not be useful for these thrusters. A short
description of some of the significant parametric variations is
included in the following discussion.

Specific Impulse/Kinetic Rate
Figure 3 is typical of all the predictions of specific impulse

as a function of chamber temperature. The expected operating
bulk temperature range for a laser thermal thruster is between
3000 and 6000 K. As previously discussed, the range is related
to the chamber heat loads amenable to current technology. At
these values, the best available kinetics (rate set 1) indicate that
the flow is very nearly frozen and that specific impulse values
are several hundred seconds below the typically quoted
equilibrium values. The explanation for the difference is the
lack of recovery of molecular recombination energy in frozen
flow. Figure 4 demonstrates this by showing the H atom con-
centration as a function of area ratio (axial location) for the 7
deg, half-angle nozzle. For the full expansion (25:1), 20% of
the potential recombinant energy is lost. This performance
decrease is only slightly recovered by the molecular weight ad-
vantage. Thus, a significant specific impulse difference is
noted between equilibrium flow and the best kinetic flow
prediction. The effect of the various rates changes with
temperature; as we increase the chamber temperature from
below to above 6000 K, we see the ionization rates begin to
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Fig. 3 Hydrogen thruster kinetic performance (Pc = 0.101 MPa, noz-
zle half-angle = 7 deg, Ae/A* = 25).
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Fig. 4 Hydrogen thruster kinetic performance (Pc = 0.101 MPa,
TC = 6000 K, nozzle half-angle = 7 deg).
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Fig. 5 Hydrogen thruster kinetic performance (Jc = 6000 K, nozzle
half-angle = 14 deg).
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Fig. 7 Hydrogen thruster kinetic performance (Jo = 9000 K, nozzle
half-angle = 14 deg).
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Fig. 6 Hydrogen thruster kinetic performance (Jc = 3000 K, nozzle
half-angle = 14 deg).

weigh more heavily than the atomic recombination. This ac-
counts for the characteristic flattening seen in Fig. 3.

Specific Impulse/Chamber Pressure
The plasma devices under development at Marshall Space

Flight Center operate at low pressure, 0.05-1 MPa (0.5-10
atm). The effect of pressure on performance is determined by
the chemical kinetic rates. This is clearly indicated in Fig. 5
where specific impulse increases 240 seconds as pressure in-
creases from 0.1 to 1 MPa for rate set 1 (area ratio = 25), For
rate set 2, the specific impulse increases only 170 s. Due to the
effect of the chemical kinetic rates, the specific impulse dif-
ference between rate sets 2 and 1 decreases from 100 s at a
pressure of 0.1 MPa to 30 s at a pressure of 1 MPa (area
ratio = 25). Thus, the effect of increasing pressure is to make
the rates more equivalent. This would be anticipated. At lower
chamber temperatures, the effect becomes increasingly less
significant, as can be discerned in Fig. 6 for a 3000 K chamber
temperature.

Specific Impulse/Area Ratio
In general, a space nozzle is expected to be large in area

ratio to permit maximum performance to be realized. The
laser thermal thruster operates at low pressure and the impact
of the flow freezing greatly reduces the utility of a high-area-
ratio nozzle. Figure 7 demonstrates that effect. The perfor-

mance is seen to be a strong function of area ratio of
Ae/A* = 1-5, but for larger area ratios has a minimal effect,
at least in the context of large specific impulse. Thus, a laser
thermal thruster would not require a high-expansion-ratio
nozzle.

Conclusions
The previous section presented only a small percentage of

the computations performed. The significance of the data is
the expectation one can have for the performance of an actual
laser thermal thruster. Current research and technology ef-
forts at MSFC and elsewhere are pursuing the laser thermal
thruster concept in search of the 2500 s specific impusle poten-
tial. This study is an attempt to examine the realism of that
number for the purpose of evaluating such a system for orbital
transfer applications. The presented specific impulse is an
overestimate of the true system value since the laser resupply
was not included in the mass flow parameter of the calcula-
tion. Nevertheless, the thruster-only portion of the system
evaluation is in itself significant.

In that evaluation, one must account for kinetic effects,
heat losses to the hardware, flow divergence, nonuniform
pressure, and temperature profile and boundary-layer effects.
This study examines only the first entity, the effect of chemical
nonequilibrium. From the data presented in the previous sec-
tion, it is obvious that the kinetic rates will signifcantly reduce
the performance of a hydrogen laser thermal thruster. In fact,
it appears that the performance level will be closer to that for
frozen rather than equilibrium flow. When one also accounts
for a practical bulk temperature limit (5000 K) for a well-
stirred system, a specific impulse loss of several hundred
seconds is to be expected. Based upon the predictions obtained
with the ODK code, the practical upper limit for a hydrogen
laser thermal thruster should be set at 1300-1900 s rather than
2500 s. Attempts to drive the bulk temperature and perfor-
mance past that range of values does not appear worthwhile.
Research in progress by the authors and several colleagues
should address many of the other loss mechanisms and the
overall laser/laser thruster system performance.
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