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I. INTRODUCTION

This is one of a series of reports on a research effort whose objective is
the determination of the ambient pressure, temperature, density, and composition
of . the earth's atmosphere at altitudes above the level where the mean free path
of the various particles is appreciably greater than the dimensions of the meas-
uring object.

The research effort is devoted to several taszks:

(a) a theoretical study of the general measurement problem, and several
associated problems;

(b) development of suitable sensors;

(c) development of associated instrumentation to permit fruitful employ-
ment of the sensors; and

(d) the development of an ultra-high vacuum system capable of achieving
pressures as low as the state of the art permits, with the final ob-
Jective of sensor calibration and testing.

IT. DISCUSSION

During the quarter, the effort was concerned with items (a), (b), and (d)
above, as follows.

1. THEORETICAL STUDY

There are naturally several areas in which theoretical studies are essen-
tial or helpful in realization of the objectives of the program. These include:

(a) General development of the measurement technique employing sensors in
spherical or possibly other geometries, in both the orbiting and near vertical
trajectory case.l2 In this tregtment, a sphere with an appropriate chamber and
opening is assumed to be moving at a specified velocity in a specified manner.

1"

A general solution is obtained for the relationships between "internal" and "ex-
ternal" pressure and density.

(b) Consideration of the orifice problem, that is; determination of the
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optimum configuration for the port through which the sensor must sample the ex-
ternal gas. That is, should it be "knife-edge,” a cylindrical port, or other-
wise?

(c) Consideration of the general problem of the motion of an ejected sphere
or other geometry in free flight with the objective of arriving at an arrange-
ment which will maximize the probability of achieving the desired motion after
ejection. The considerations of (a) above suggest the optimum orientation pat-
tern.

(d) Study of various aspects of particle motion in the sensor, including
the energy situation, effect and importance of initial energy, optimum configu-
ration to maximize sensitivity, and other considerations appropriate to use of
an lonization-gage-type device.

Of the four listed topics, (a) has received considerable attention. As a
result of this work, it is now possible to include a general mathematical de-
velopment in this report as an appendix. Work on topics (b) and (d) has been
initiated and will be discussed in a later report, when some significant con-
clusions have been reached.

2. DEVELOPMENT OF SENSORS

As discussed previously, a device which is considered to offer considerable
promise for use in measurements of the type constituting the objectives of this
program is the omegatron (Fig. 1).* The chief reasons for this choice are,
first, that it is small compared to other possible devices such as the r-f spec-
trometer and time-of-flight spectrometer, and accordingly appears greatly to
simplify problems arising from the necessity of maintaining good diffusion and
flow equilibrium between "external" and "internal" gas; and second, that it is
a simple device physically, easily constructed and thus less subject to influ-
ence by externally applied forces and other disturbing effects.

An inevitable result of the small size and simplicity is less sensitivity,
and a need for a strong, d-c, magnetic field. Recent advances in instrumenta-
tion techniques, however, offer considerable promise of greatly increasing the
useful range with respect to altitude, and the investigation is proceeding a-
long these lines.

On the basis of a study of the literature and the advice and counsel of
personnel of the Tube Shop of the Department of Electrical Engineering a first
omegatron (Fig. 2) has been constructed.

This first model is very crude, and is expected to be useful primarily as
a means of gaining familiarity with constructional procedures o show how a more

*Several references appear at the end of the report.
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useful model should be built. It is planned, however, to operate the device to
become acquainted with its operational aspects, and to provide some experimental
results for substantiation of published and computed‘datao

Two general schemes of detecting resonant particles are being considered
and will be explored. The first technique involves direct collection of the
ions and thus provides, as an output signal, a current resulting from recombi-
nation at the collector. Most tubes reported in the references have employed
this technique as it afforded, in laboratory use, adecuate sensitivity. The
second method reported was based upon the concept of measuring the energy ab-
sorbed from the r-f field by the resonant ions,6 Although this technique ap-
pears to hold greater immediate promise insofar as sensitivity and relative com-
plexity are concerned, amplification techniques applied to the direct-collec=
tion case offer attractive possibilities. Both schemes will be employed until
the better becomes apparent.

It is expected that, by the end of the next reporting period, newer models
of the omegatron will have been operated using both detection techniques.

3. ULTRA-HIGH VACUUM SYSTEM

The ultra-high vacuum system discussed in the previous report has been com-
pleted and is operating continuously as of the end of the reporting period.
Figure 3 is a photograph of the system; and Fig. 4 is a diagram detailing the
various major components of which the system is composed.

The system has been developed on the basis of years of experience in this
laboratory with "standard" vacuum systems, and on the basis of information rela-
tive to the achievement of "ultra=-high vacuum" recorded in the literature.”s |

The system has been brought into operastion gradually to insure proper
operation of the various elements. At the close of the period covered by this
report,all elements had been checked out and the system was operating in the in-
terval 107% mm Hg to 10™7 mm Hg. The ion-gage control employed at that time was
inadequate for proper gage degassing and functioning and thus was limiting the
attainment of lower pressures.

BIBLIOGRAPHY

The following listing includes papers and reports relevant to the subject
of the research effort, and which may have been mentioned in this or the pre-
vious quarterly report.

1., Sommer, H., Thomas, H. A., and Hipple, J. A., "Measurement of e/m by Cyclo-
tron Resonance," Phys. Rev., 82, 697-702 (June, 1951).

b,



10.

11.

12.

13.

1k,

FEdwards, A. G., "Some Properties of a Simple Omegatron Type Mass Spectro-
meter,” Brit. J. Appl. Phys., 6, 4k-L8 (February, 1955).

Bell, R. L., "Omegatron as a Leak Detector," J. Sci. Instr., 33, 269 (July,
1956) .

Wagener, J. S., and Marth, P. T., "Analysis of Gases at Very Low Pressures
by Using the Omegatron Spectrometer," J. Appl. Phys., gé, 1027=1030
(September, 1957).

Alpert, D., "New Developments in the Production and Measurement of Ultra-
High Vacuum," J. Appl. Phys., 24, 860 (July, 1953).

Sommer, H., and Thomas, H. A., "Detection of Magnetic Resonance by Ion
Resonance Absorption," Phys. Rev., 78, 806 (June, 1950).

Alpert, D., and Buritz, R. S., "Ultra-High Vacuum II. Limiting Factors on
the Attainment of Very Low Pressures," J. Appl. Phys., 25, 202 (February,

1954 ).

Berry, C. E., "Ion Trajectories in the Omegatron," J. Appl. Phys., 25, 28
(January, 1954).

Brubaker, W. M., "Influence of Space Charge on the Potential Distribution
in Mass Spectrometer Ion Sources," J. Appl. Phys., gé, 1007 (August, 1955).

Brubaker, W, M., and Perkins, G. D., "Influence of Magnetic and Electric
Field Distribution on the Operation of the Omegatron," Rev. Scien. Inst.,
27, 720 (September, 1956).

Hopkins, N. J., "A Magnetic Field Strength Meter Using the Proton Magnetic
Moment," Rev. Scien. Inst., 20, LOL (June, 1949).

Spencer, N. W., Boggess, R. L., lagow, H. E,, and Horwitz, R., "On the Use
of Ionization Gage Devices at Very High Altitudes," Jour. Amer. Rocket Soc.,
to be published.

Spencer, N. W., and Boggess, R. L., "Radioactive Ionization Gage Pressure
Measurement System," Jour. Amer. Rocket Soc., 29, 68 (Janvary, 1959).

Spencer, N. W., Bi-polar Probe Instrumentation No. 1, UMRI Report 2521, 2816,
1-1-S, Ann Arbor, October, 1958.




‘ucxjyeIsuwo Jo WeIseTp TBUOTZOUN]

‘T *814

a71314 OIL3INOVI

a13id 4y



TucI BRSO Teyuawtssdxy




e i

e e
o -

.

.

%2«»\

=

:
e
<

. -
.
...
‘? K:»\‘si\\\ .
.
- G o
\'Q@ \@\&@%\\Q o
. @%@ .
<§§@é§§<\\§@ .
. *’@é’@»@\(@%g@ R
e e e
e
. .
. .
. .
.
L
.

~

7

. 3\&:‘& .
G
.

o
-

S

i

o /@&f\' S
.
.
.
-
L

G G
A e e e
.

S

e

. o
SRS .

Fig. 3.

T
e

S
.

-
.

.

. .
L

.

e

e
%‘\\@%@

Ultra-high vacuum system,




‘waqsAs umnoevA YIIY-BIFIN JO WBIFSBID H00Td

J 0 00L ~ LV IN/INVE
Y04 NINO NV NI F78/SOTIONT S/
INIT SIHL FNOEY NV LHIIY OL NOILYOd

W31SAS WYYV B
TOYLINOD 39V9 NOI

3ATVA JVA-IH 1834V ®

1831
Y3ANN
321A30

7 /
—— e ) — —— ——
/ \ 1
/ \ _
3J9V9 39v9 —
NOI NOlI —
|
-®——®
|
|
|
_
dval |
434400

JATVA
31v9

dvidl
0

S30IA3AQ
104.LNOD

dWNd
NOISN441a dWnd
710 - 3404

39V9

J1dNOJOWH3HL




APPENDIX

ON THE DETERMINATION OF PRESSURE, TEMPERATURE,

AND DENSITY OF UPPER ATMOSPHERE

The following development was prepared by Mr., Madhoo Kanal for inclusion
in this report.

TABLE OF SYMBOLS

Pressure ingside the chamber.

Temperature inside the chamber.

Pressure outside.

Temperature outside.

Angle between the direction of sphere motion and x-axis.

Angle between the direction of sphere motion and y-axis.

Angle between the direction of sphere motion and z-axis.
x=component of the particle velocity.

y-component of the particle velocity.

z=-component of the particle velocity.

Angle between x-axis and the normal component of ux.

Angle between y-axis and the normal component of uy.

Angle between z-axis and the normal component of uy.

Angle between the direction of sphere motion and the orientation of the
chamber hole with respect to the origin.

most probable velocity of the particle inside the chamber.
most probable velocity of the particle outside.

The
The
The
The
The
The
The
The
Wy,
The

number
number
number
number

of particles per unit volume inside the chamber.
of particles per unit volume outside the chamber.
of particles leaving the chamber in time At.

of particles entering the chamber in time At.

velocity of the sphere.
imaginary cylindrical volume created by the normal components of W,
Wys Uy, Uys Uy outside.

imaginary cylindrical volume created by the normal component of uy
inside the chamber.

The mass of a particle.



INTRODUCTION

Sometimes a few assumptions make a conception more comprehensible. These
assumptions are Justifiable and necessary. Throughout the solution of this
problem I will not define the most probable particle velocity (cm), Neverthe=~
less, there are some distributions. and Maxwellian distribution is one of them,
that define 'cp' to some degree of approximation. I therefore sincerely hope
to leave the readers'® intuition unoffended at the end of the paper.

I do not mean to restrict myself to that limited situation which leaves the
results reached in doubt; on the contrary, some reflection on the statistical
behavior of the systems will throw light on the fact that random behavior of the
subsystems is combined in one system as a whole, which in turn is controlled by
these subsystems. In the theory of Boral sets these subsystems (as I prefer to
call them) are termed subsets. The distribution of these subsets is very impor-
tant as regards their relevancy to the behavior of the system as a whole. The
most important factors in their distribution are (1) that the subsets should abut
each other, and (2) that there are no empty subsets present in the system,

Consider a system of randomly distributed particles moving about in a ran-
dom manner. Let a particle selected at random move in a certain arbitrary direc-
tion with velocity u. Let ug, Uy and u, be the y
components of the velocity along %, y and z di- u
rections. The particle will continue to move !
along its path with velocity u as long as 1t 1w
does not collide with another particle, result- Fff:jrtu
ing in its change of direction of path and ve- 9
locity. But as we know that the collision does

place, resulting in the change of its energy and
hence velocity, we are thus bound to restrict

our situation to the statistical behavior of the
system as a whole and neglect the behavior of the
particle as an individual. Nevertheless, we are not yet at the end of our jour-
ney because if we cannot study the actual behavior of an individual particle, we
still can study its probable behavior. Then the question arises whether there
does exist a distribution function which can foretell the probable behavior of

an individual particle at any instant. This is the point, mentioned earlier, re-
garding the most probable particle velocity, and at present the question is best
answered by the Maxwellian distribution. Now the probability that the velocity
of a particle selected at random shall have components lying between u, and uy +

occur and that the change in its path does take //////

Z

du,, Uy and + du,, and u, and u, + du, is given by the velocity distribution
function. Mathematically
P o= f(uy, Uy, Uy )duy duy du, (1)
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where P is the probgbility and f the function of distribution. If N is
the number of particles per unit volume with the above velocity distribution
and cp 1is the most probable particle velocity, then

- (ux2+uy2+uzz) duy duy du
N = [[ike Cm= = _JL = )
Cm °m ©m

where k 1s a constant.
N = k - n3/2, or k = N/ﬂ3/2 (3)

N is the number density; therefore, k has the units of number density and dif-
fers from N by the factor of x~3/2 in magnitude.

DERIVATION OF DIFFUSION EQUATION

A spherical chamber with an opening of cross-sectioned area Y, is filled
with a monotypic gas. It is moving in outer space, where the mean free path of
particles is large compared to the dimensions of the vessel, with the drift ve-
locity W. When the sphere is in flight, the chamber hole is opened. The par-
ticles inside the chamber will begin to diffuse out into space, and the parti-
cles in outer space will begin to diffuse into the chamber, until after some
time equilibrium is established between the number of particles that get out
(Gi) and the number of particles that get into the chamber (Go) from outside in
time At. Mathematically, the equilibrium will exist if

Gi = G (%)

if P; 1is the pressure exerted by the gas particles inside the chamber at the
instant when equilibrium is established and Ti is the temperature, and if P,
and Ty are the pressure and temperature outside at the same instant, respec-
tively, then a certain relation is expected to correspond to these parameters.
This paper contains the derivation of that relation.

Consider any arbitrary orientation of the chamber hole with respect to the
arbitrary axes of reference as chown in the figure. Let W,, W, and W, be the
components of the drift velocity along x, y, and z axes. Then the sum of the
normal components of the velocities on the chamber hole is

vV o= (WX+uX)9 + (Wy+uy)9 + (Wz+uz)ﬁ (5)

(Wy+uy )cos © + (wy+uy)cos $+ (Wy+uy)cos ¥ . (6)

11



The imaginary volume created in time At normal to the chamber hole is

u = wa+ux)cos © + (Wy+uy)cos B + (Wg+ug )cos w} AL, (7)

The number of particles that enter the chamber hole in time At, therefore, is
given by

| (uy +uy2+u 2)
G, = 2atk [[f] ng+ux)cos 6 + (Wy+uy)cos B + (Wp+ug)cos %} e’ Cio
e Ty By (8)
“my, Cm, Cmg

The 1imits of integration for u,, Uy and u, are

n r
G, = LAtk J L J
Ux = = Uy = - E-E--@.{(wxﬂlx)cos ® + (Wy+u, )cos ¢}~ Wy

- v
- . 2 4(Wx+ux)cos e + (Wy+uy)COS ¢}"Wz

cos y
) (uxz+uy2+u22>
[}Wx+ux)cos 6 + (Wytuy)cos p + (Wy+u, )cos %] e ey 2
o
duy, duy du, (9)
Cm. Cmg Cm,
From Eg. (3) we have
N
k = 2 (10)
3/2

12



where N, 1s the number of particles per unit volume in the outer atmosphere.
Therefore, substituting Eq. (10) in Eq. (9), we get

(ux2+uy2+uy?)
Tt Xy i

G, = ey [[f [}Wx+ux)cos o + (Wy+uy)cos b + (WZ+UZ%COS %] e cmo2

duy duy du, | (11)

———— o—— —————

c c. C
Ny "My Mg

It will be easier if we change the limits to - o« to &. Hence Eq. (11) gives

Gy = Z§§$% fﬂ{nf [}Wx+ux)cos o + (wy+uy)cos $ + (W,+u,)cos ?J

U wa+ux)cos o + (wy+uy)cos b + (W, +u, )cos ¢]

’ 2202
exp [} (uy +uy Pty )J du, duy, du, (12)
cméz °my “mg “mg

Multiplying and dividing Eq. (12) by cp, and letting

t

/<;£i cos © + ﬁbl cos @ + "

W 5 COS Y
\\Cmo Cmg Cmg

and

we get from Eg. (12)

0] ZAtNocmo ; ;
Go = -m——7-— [t + x cos @+ ycos P +2zcos ¥ ] UIlt+xcos @y cos
n3/2

+ z cos V)
exp [ - x7 + y° + 22] dydydy, (13)

Since the limits are from - tow, we will use the bilateral transforms

13



which will give us

TAtNoC
To J[] e (x cos 8 + y cos ¢ + 2 cos ¥) P - x2 - y2 - z2 144

o = 3/2 P Xy g
(14)

LAtNoC, P cos 6\° P cos P\° P cos V)2
S N G N R R G

PZcos®6 + Pecos2¢4_P2c052W duy duy dug
L N N c, ¢

mo “my “mg

-+

(15)

B ZAtNOCm e»-[coszg + cos2p + cos2y) [ f [ exp [’ <: P cos ?)

I RS

LAtNge,, P2
= ——2 T x (x3/2) (17)
/2
cos®e + cos?é + coszw = 1
and
(o8]
fffexp[-<-'pcos ( —Ci-@) G-LQQS-%ZJdXdde= 3/2
-0 -
2
TAtNC i
o = —-—.—__O._E.n_g e? - (18)
1
p2
The inverse transform of el is given by
P
e¥ £ gerfe(-t) (19)
t
LAtNoCm
Gy = ——20 [ erfe(-t)dt , (20)

2 -

where t has already been defined.
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Let (-t)

G =

o0
ZAtNOCmO f
(@]

2 S

erfe(s)ds . (21)

Let R Dbe any variable such that; when R » &, Eq. (21) becomes

R s

G. = §£E§93§9 Limp., {R + t - | erfsds + | erfsds 22
0 5 R+ 5 o
ZAtNOcmO . 1 -R?
= leR_,aG? +t -Rerf‘R-:]«_ﬂ_— (e - 1) + (s)erf(s)

; f—_- (et - 1)} (23)

which obviously gives us

Gy = ~—2—-Q {cerfc(_t) + % e-tg} . (L)

But t has been defined as

Wy W W
t = 63; cos @ + Eéz-cos ¢ + Eii cos Y
Mo Mo Mo

Substituting for t in Eg. (2L4), we get

&)
e}
Il

LAtNoen W W W r oW W
Q <j_ £ cos & + —L cos ¢ + —-?>«srfc -( =% cos 6 + —L cos ¢
2 “mg, m, m, ¢ Cm

WZ -
+ Cag cOs \.!I

N W "
+ 2 exp |- (==X cos @ + WY cos b + Mz cos 1] (25)
VFE Cmg Cmg Cmg .

Equation (25) gives the number of particles entering the chamber in time At
when equilibrium 1s established. For the particles inside the chamber, W = O.
Hence the imaginary volume created by the x=-component of particle velocity is

Vo= LUhtuy . (26)

15



The fraction of number of particles per unit volume with the velocity compo-
nents between u, and u, + duy is given by the Maxwellian equation, i.e.,

du
- L olom X (27)
N “my

dNs
l\Tl

where Ni 1s the number of particles per unit volume inside the chamber and

Cms the most probable particle velocity of those particles. The number of par-
ticles, G4, leaving the chamber in time At when the equilibrium is established
is; therefore,

LAtNic - == du
Gy = i mlf e Cmyt (28)
‘ J it o le Cmy
LAtN;c
ms 1
G; = ———(x (29)
PO

Thus for condition (L), we must have

pr—
2 ,\/ 1t o Cmo m Mo

W
erfc —Gﬁ% 08 O + E}T cos ;5 + E“‘ cos}}
.J~ wx Wy
+ exp - (== cos 6 + ~QL cos ﬁ + —— COS W

YAt Cy s YAtNie i W W ‘
B Mo <Xcosg+g-lcos¢+=c—£cosw

(30)
l— Cmo Mo Cmg
Cancelling the common terms and rearranging the rest, we get
Nicmq _ Wr w' P
= = Jr (=% cos 6 + —L cos @ + —Z cos ¥
NoCmy, Cmg Cmo Cmg
W / W
erfe 4= ("2 cos 6 + M cos ¢ + _EL cos %)
s [ Cn
0
W W
+ exp<4 - (:ii-cog 6 + —L cos § + —= cos %) (31)
mg Cmg —{
Now
P o= 2 omliey” (%22)
and
TK = %— mep,® (32b)
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If we assume that the particles that enter the chamber are of the same mass as
the monotypic gas in the chamber, we get

NiCm- P. T_
= —x J;- - (33)
Nocmg, Po T4

Substituting Eq. (33) in Eq. (31), we get

[

: : W W W Wy W
L /EL Vo (=% cos 6 + —L cos § + —% cos @erfc (-2 cos 6 + —L cos ¢f
/\ To Cme Cmg Cmg mg, Cm

W, W W, .
+ ,,___ cos 1D + exp < cos © + .C._Q’_ cos @ + C_._7_ cos 1}) . (34)
j o) Mo

Now Wy, Wy and Wz are the components of W such that

Wy = W cos QX)
wy = W cos Qy"?
and
W, = W cos e%J (25)

where 6y, @y, and ©, are the angles that W makes with the x, y, and z axes of
reference. Substituting for Wy, Wy, and Wy in Eq. (34), we get

P . n’:—l- \[;,W_.C:os 6 cos Bx + cos QS cos By + cos ¥ cos ez>
5 T c

Mo

\T
erfc{ <os 68 cos 6y + cos 55 cos @ + cos V¥ cos 9>}

+ exp {:- ngos@cos@v+cos¢cos Sy + cos ¥ cos © ) :l (36)

C —
Mg

From analytical and vector algebra we know that

COs © cOs By + cos Qﬁ cos Gy + Cos ¥y cos 65 = cCoOs (& (37)

7



where & 1s the angle between the velocity vector W and the line joining the
chamber hole and origin as shown in the figure.
J

\\\
\
4ﬁf§§ii"j“"w

R

e

Z

Therefore Eq. (36) becomes

2 [T3 c \ z _
—= I Wx Hcos a erfe /- M cos a) + exp l} W” _ cos? a]
P, | To Cmo  Cmo Cmo”

Eguation (38) is the required equation.

18
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