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Abstract

Identification of the product platform is a key step
in designing a family of products. This article
presents a methodology for selecting the product
platform using information obtained from the indi-
vidual optimization of the product variants. Un-
der the assumption that the product variety re-
quires only mild design changes, a sharing penalty
vector (SPV) is derived by taking into considera-
tion individual optimal designs and sensitivities of
functional requirements. Commonality decisions
are based on SPV values and the product family
is designed optimally with respect to the chosen
platform. An automotive body structure problem
is used to demonstrate the proposed methodology.
Variants are defined by changing the functional
requirements they need to satisfy and/or the ge-
ometry of the associated finite element models.

1 Introduction

Sharing components within a family of products
can be an effective method for corporations to in-
crease cost savings (Meyer and Lehnerd, 1997; Er-
icsson and Erixon, 1999). A drawback to com-
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monality is that a sharing penalty can be incurred
with regard to optimized individual product de-
sign. The challenge is to choose which compo-
nents to share (i.e., define the product platform),
and design the product family with minimal indi-
vidual variation from optimal design.

Simpson et al. (1999) proposed a method for
product platform synthesis and exploration based
on a market segmentation grid and leveraging and
scaling concepts (Meyer and Lehnerd, 1997). They
solved the family design problem by means of com-
promise decision support problems using goal pro-
gramming. This methodology has been built upon
in a number of subsequent publications (Messac et
al., 2000; Conner et al., 1999; Nayak et al., 2000).

Gonzalez-Zugasti et al. (1998) presented a
method that uses cost gain models as the driv-
ing force for designing the product platform while
satisfying performance and budget constraints: a
priori specified platforms are optimized first; fam-
ily variants are designed second. Gonzalez-Zugasti
and Otto (2000) formulated a design optimization
problem for modular product architecture that
can be solved to simultaneously determine mod-
ule designs and their combination for the variant
instantiations. Fujita et al. (2001) proposed a
method for simultaneous optimization of module
attributes and combinations. The modular archi-
tecture of the product family is fixed in both of
the latter papers.
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Siddique et al. (1998) examined the applica-
bility of product variety concepts to automotive
design. In particular, they investigated whether
product variety design concepts such as standard-
ization, delayed differentiation, modularity, mod-
ule interfaces, robustness, and mutability can be
utilized. Keeping in mind that they limited their
consideration for platform only to the underbody
structure of a vehicle, they came to the conclu-
sion that some of these concepts cannot be applied,
mainly because of the integral nature of its archi-
tecture. However, they did mention the possibility
of partitioning the underbody platform into major
manufacturable modules that can be assembled.

Nelson et al. (2001) formulated platform de-
sign as a multiobjective optimal design problem
by means of Pareto set theory. Given a fixed plat-
form, a set of optimal points is generated based
on the importance of the conflicting variant objec-
tives. The designer can identify trade-offs, evalu-
ate multiple platforms, and then make related de-
cisions. Fellini et al. (2000) applied this concept to
the design of an automotive product family based
on a powertrain platform along with examining
the hierarchical structure of the platform design
problem. Kokkolaras et al. (2002) extended the
target cascading formulation to the design of prod-
uct families with pre-specified platforms. Both
common and individual components, subsystems,
and/or systems of the family products were de-
signed optimally with respect to family and vari-
ant targets.

In the present work a methodology is proposed
for making commonality decisions based on in-
dividual optima and sensitivity analysis of func-
tional requirements. Emphasis is put on fami-
lies of vehicle body structures using modelling ap-
proaches proposed by Fenyes (2000). We assume
that we are dealing only with “mild variants”, so
that design changes can be guided by sensitivity
information reasonably well.

The paper is organized as follows: Platform-
based design of body structures is introduced in
the next section. The mathematical derivation un-
derlying the proposed approach is presented. The
methodology based on this derivation is formu-
lated and demonstrated by means of an automo-
bile body structure case study. Results are dis-
cussed and conclusions are drawn.

2 Platform-based Design of Body
Structures

A component is defined as a manufactured object
that is the smallest (indivisible) element of an as-
sembly, and is described by a set of design vari-

ables. A product is an artifact made up of compo-
nents. A product platform is the set of all compo-
nents, manufacturing processes, and/or assembly
steps that are common in a set of products. A
product family is the set of products that are built
upon a product platform. A product in a prod-
uct family is also referred to as a product variant.
Two types of sharing are possible when selecting
a product platform that is not based on manu-
facturing processes or assembly steps. In compo-
nent sharing, one or more components are com-
mon across a family of products as shown in Fig-
ure 1. In addition, it is possible to share “scaled”

variant A variant B

(shared        )

Figure 1: Platform-based products (component
sharing).

versions of components. Mathematically this can
be described as design variable sharing, where the
components themselves are derived from a plat-
form. The example in Figure 2 shows the cross-
section of two structural beam elements. While

b b

hh
t t

(shared b & h)

Figure 2: Platform-based components (design
variable sharing).

the height and width of both parts are the same,
the thickness is different. The product containing
the “thicker” component variant has higher rigid-
ity requirements. By not sharing the thickness,
the other product with lesser rigidity requirements
does not have to take on an unnecessarily large
weight penalty. The manufacturing advantage can
also be illustrated by this example. By keeping
width and height invariant, the same stamping
equipment can be used with different gauge steel.
In general, manufacturing considerations should
be taken into account in the design of platforms.
We do not address this aspect explicitly but we at-
tempt to recognize the associated design impact.
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2.1 Problem Formulation
The following definitions are necessary to formu-
late the variant and family design problems:

P = {A,B, C, . . .}: set of m products

xp: vector of design variables for product
p ∈ P

S: set of indices describing a platform

S: set of all permissible platforms

S∗: set of indices describing the optimal plat-
form

xp,◦: null platform optimal design of product
p, corresponding to the individual optimal de-
signs solutions of Problem (1) below

xp,∗: family optimal design of product p, so-
lution of Problem (2) below. Because of the
sharing of variables whose indices are in S, for
p, q ∈ P and i ∈ S, we have xp,∗

i ≡ xq,∗
i = x∗i

Cp: set of indices of the active constraints at
the null platform optimum of product p

For convenience, equality constraints are as-
sumed to have been eliminated implicitly or ex-
plicitly. The individual optimal design problem for
product variant p can be formulated as follows:

min
xp

fp(xp) (1)

subject to gp(xp) ≤ 0

The family design problem is then formulated ac-
cordingly as

min
xA,xB ,...

{fp(xp) | p ∈ P} (2)

subject to gp(xp) ≤ 0 p ∈ P
xp

i = xq
i i ∈ S, p, q ∈ P, p < q

The platform selection methodology can be
summarized as follows: Quantify sharing penalty
by considering individual optimal designs and sen-
sitivities of functional requirements; decide which
components can be shared (i.e., determine the
platform) with minimal sharing penalty; optimally
design the product family around the chosen plat-
form.

3 Commonality Decisions

The proposed approach is based on the use of op-
timality and sensitivity information obtained from
individual product optimization to assess the po-
tential sharing penalty incurred by sharing vari-
ables. When the products in the family contain a

large number of components that are candidates
for sharing, platform selection entails the solution
of a large combinatorial problem. In the approach
proposed, this problem is reduced to a simpler one
under the assumptions listed below. The deriva-
tion presented in the following section is based on
first order Taylor series approximation. Therefore,
in order for the approximation to remain reason-
ably accurate, the general condition is that the
individual optimal designs lie not “too far away”
from each other so that the linear approximation
is valid in the region between them. The deriva-
tion will be presented for a family of two products
A and B.

3.1 Assumptions
1. Self-sharing (i.e., component sharing within

the same variant) is not possible. Further-
more, sharing is done on a same component
basis.

2. Components are either shared by all family
products or not at all.

3. Null platform optimal designs lie “close
enough” to each other .

4. The platform design (denoted by super-
script ∗) lies in the convex hull of the indi-
vidual solutions (denoted by superscripts p,◦

and q,◦). It implies there exists α ∈ [0 1] such
that: ∀ i ∈ S, x∗i = α xp,◦

i + (1− α) xq,◦
i .

5. Constraint activity remains unchanged be-
tween individual and family design problems.

We refer to the design solutions that satisfy
these assumptions as “mild variants”.

3.2 Sharing Penalty Vector Derivation
Sharing may cause a penalty with respect to the
individually optimized products, which is mea-
sured by the responses representing the functional
requirements. In the context of the approach in-
troduced in this article, the sharing decision con-
sists essentially in deciding on the number n of
variables to share. The actual selection of an opti-
mal platform can then be done by minimizing the
relative variation of the designs based on any plat-
form with n shared variables with respect to the
null platform optimal designs — while remaining
in the feasible space for the variants. Formally,
this translates to:

min
S ∈ S

∆ (3)

subject to |S| = n
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where ∆ = ∆A + ∆B , and for p ∈ P:

∆p = | fp(xp)− fp(xp,◦) |+
∑
j∈Cp

max(gp
j (xp), 0)

In order to enable the meaningful summation of
responses of different natures, we consider them to
be non-dimensional.

A first order Taylor approximation of the varia-
tion in each response fp, gp is introduced in agree-
ment with the assumptions described in Section
3.1:

fp(xp)− fp(xp,◦) ≈ ∇fp,◦ (xp − xp,◦);
for j ∈ Cp, gp

j (xp) ≈ ∇gj
p,◦ (xp − xp,◦),

where ∇fp,◦ is the gradient of f evaluated for the
null platform optimal design of product p. By def-
inition of Cp, gp

j is active at the null platform op-
timum xp,◦ therefore gp

j (xp,◦) = 0.
Furthermore, under Assumption 4, the relation

between the shared variables and the null platform
can be rewritten as:

For i ∈ S,
(
x∗i − xA,◦

i

)
= (1− α)

(
xB,◦

i − xA,◦
i

)
Consequently, the variation (sharing penalty) of

the objective f in one variant A due to the sharing
of the components in S is approximated by:

fA(x∗)− fA(xA,◦)

≈
∑
i∈S

∇if
A,◦

(
x∗i − xA,◦

i

)
≈ (1− α)

∑
i∈S

∇if
A,◦

(
xB,◦

i − xA,◦
i

)
Letting δi = |xB,◦

i − xA,◦
i |, an upper bound on

the total variation in responses ∆A is:

∆A ≤ (1− α)
∑
i∈S

( ∣∣∣∇if
A,◦

∣∣∣ δi

+
∑

j∈CA

max(∇igj
A,◦δi, 0)

)
(4)

A similar upper bound can be obtained for ∆B .
The Sharing Penalty Vector is then defined as the
vector SPV with components SPVi given as fol-
lows:

SPVi = (5)

(1− α)
( ∣∣∣∇fA,◦

i

∣∣∣ δi +
∑

j∈CA

max(∇gj
A,◦δi, 0)

)
+ α

( ∣∣∣∇fB,◦
i

∣∣∣ δi +
∑

j∈CB

max(∇gj
B,◦δi, 0)

)

3.3 Application to Platform Decision
The SPV provides an upper bound on the sharing
penalty ∆ through the aggregate sum of the SPVi

which correspond to a shared variable:

∆ ≤
∑
i∈S

SPVi (6)

The approach adopted in this article for ap-
proximating a solution to the original problem de-
scribed in Eq. (3) is to minimize the upper bound
on ∆ given by the SPV as in Eq. (6). In this
regard, the choice of the parameter α has to be
discussed.

This parameter is theoretically determined by
the position of the family solution for a given plat-
form S relative to the position of the null platform
solutions for the two variants (cf. Assumption 4).
In the framework described here, the exact value
of α is not known since the solution to the family
problem is not available. This issue can be by-
passed through several different approximations.
Taking the average of the SPV with α varying in
[0, 1] yields α = 1/2; α can also be chosen so as
to balance the highest sensitivity of fA and fB ;
or different values can be tested and the resulting
SPVs compared.

The design variables can then be arranged in
order of increasing SPVi. Thus the design of the
platform consists only in the decision of the num-
ber n of variables that are to be shared. The actual
shared variables are given by the first n variables
ordered according to the SPVi, and this minimizes
the upper bound on ∆.

4 Proposed Methodology

The proposed general methodology for selecting
the product platform and designing the product
family is as follows:

1. Generate product variants based on:
a. design requirements,
b. geometry of the model(s) 1,
c. or both.

2. Develop appropriate analysis models and
identify inputs and outputs.

3. Formulate and solve the optimal design prob-
lem for each variant, i.e., find null platform
optimal designs, cf. Eq. (1).

4. Compare optimal design variable and sensi-
tivity information by selecting α and comput-
ing the sharing penalty vector (SPV) using
Eq. (5).

1i.e., no topological changes
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5. Arrange the variables in order of increasing
SPVi.

6. Using the SPV, decide which components to
share or not share.

7. Formulate and solve the family design prob-
lem with the chosen platform (cf. Eq. (2)).

8. Compare family optimal designs to individual
variant optimal designs and evaluate sharing
penalty (iterate if necessary).

5 Application Study

A family of automotive body structures is consid-
ered. A variant is defined as a structure associated
with specific dimensional properties (lengths) and
functional requirements.

5.1 Model Description
The structures are modelled using finite elements
in MSC-NASTRAN according to the MDO sys-
tem described in Fenyes (2000) (cf. Figure 3).
Modal and static loadcases (torsion on the front
and rear shock towers, and bending) are consid-
ered, as shown in Figure 3. It is assumed that
these load cases give access to the properties that
the designer wishes to tailor, and therefore are
valid as a basis of the design.

The finite element analysis outputs mass (m)
and natural frequencies (ω), in addition to dis-
placements and stress responses for static load
cases of front torsion, rear torsion and bending
(denoted dft, drt, db) along with corresponding
sensitivity information for all the design variables.
These are the cross-sectional dimensions of the
beams (width b, height h, and thickness t) and
thicknesses t of the shells. There are 66 design
variables.

Figure 3: Automotive body structure model.

As mentioned, variants are generated either by
implementing dimensional changes or by imposing
different design requirements. We examine these
two cases next.

Table 1: Null platform optima.
short long

mass (kg) 715.13 703.36
ω1 (Hz) 21.00 22.06
ω2 (Hz) 24.82 27.00

dft (mm) 2.158 2.1698
drt (mm) 1.905 1.909
db (mm) 0.2 0.2

5.2 Dimensional variants
The original individual optimal design problem
that needs to be solved is described formally in
Eq. (7).

minimize m (7)
with respect to b,h, t

subject to 21 Hz ≤ ω1

24 Hz ≤ ω2

dft ≤ 2.9 mm

drt ≤ 2.9 mm

db ≤ 0.2 mm

σmax ≤ 25 MPa

Here we consider a vehicle family of two vari-
ants, based on dimensional changes (cf. Figure
4), and having the same objective functions and
constraints.

variant A - wheelbase

variant B – wheelbase 
(stretched)

variant B engine 
compartment shortened

variant B 
trunk 

expanded

Figure 4: Vehicle body structure variants.

As shown in Figure 4, a second variant is gen-
erated by stretching the wheelbase and trunk of
the baseline vehicle. The engine compartment is
shortened, and therefore a smaller engine (and
lumped mass representing the engine) is assumed.
The models will be correspondingly referred to as
the short and long wheelbase body models. The
corresponding null platform optima are summa-
rized in Table 1.

The SPV is computed according to Eq. (5). The
platform is then determined by the value of the
SPV as described in Section 4. Based on the values
of the SPV, 59 variables are selected for sharing.
The total platform — in which all variables are
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Table 2: Optima for 59-variable and total plat-
forms.

59 var. platform total platform
variant short long short long

mass (kg) 715.17 703.54 725.65 703.37
ω1 (Hz) 21.00 22.06 21.00 22.24
ω2 (Hz) 24.82 27.00 25.83 27

dft (mm) 2.158 2.170 2.082 2.171
drt (mm) 1.905 1.909 1.837 1.911
db (mm) 0.2 0.2 0.191 0.2

shared — is also computed in order to compare
the usefulness of the approach to the maximum
sharing penalty. Both resulting family optima are
given in Table 2.

Overall, the family based on the 59-variable
platform is close to the null platform: The opti-
mal masses of both short and long wheelbase vari-
ants are almost identical to the corresponding null
platform designs. The total platform-based long
wheelbase variant is still close to the corresponding
null platform variant, compared to a 10.5 kg dif-
ference in mass in the short wheelbase variants. A
large number of variables may be shared with neg-
ligible sharing penalty, considering that the shar-
ing penalty of each variant is less than 1.5% com-
pared to the corresponding null platform variants.
This can be traced to the fact that the variants
do not have competing design objective functions,
and that their geometric configurations are very
similar (cf. Figure 4). The combination of these
two factors results in relatively close individual op-
tima and family optima. The next study was sub-
sequently devised to test the proposed method-
ology on a problem that does not present these
features.

5.3 Performance Variants
We now look at variants based on the same ge-
ometric model (the short wheelbase model) and
defined by different design objectives and con-
straints. Two variants with competing objectives
are designed, denoted “stiff” and “light weight”,
respectively. In the former the designer aims at
maximizing the stiffness of the structure to im-
prove ride quality, while in the latter the goal is to
minimize weight to improve fuel economy.

The flexibility ϕ is defined as a weighted sum
of the displacements in the three load cases con-
sidered (front and rear torsion, and bending). The
weights approximate the ratios of the expected dis-
placements (cf. null platform optima in Table 1)
in each load case, hence flexibility is computed as

Table 3: Optimal design problems and associated
null platform optima.

variant lightWeight stiff
obj. min mass min flexibility
var. Beams: b, h and t; Shells t 66 variables

constr. 15 Hz ≤ ω1 21 Hz ≤ ω1

17 Hz ≤ ω2 24 Hz ≤ ω2

dft, drt ≤ 2.9 mm mass ≤ 822 kg
db ≤ 0.5 mm —

σmax ≤ 25 MPa
ppt. mass = 691.87 kg ϕ = 4.4049 mm

follows:
ϕ = dft + drt + 10db (8)

Each variant thus defined is then individually
optimized to obtain a null platform design. The in-
dividual optima are subsequently used to compute
the SPV following Eq. (5). The individual opti-
mization problems and their corresponding optima
are summarized in Table 3.

5.4 Sharing Penalty Vector Computation and
Platform Selection

Each design variable with index i has a corre-
sponding sharing penalty SPVi. The design vari-
ables are then arranged in order of increasing
penalty. To aid visualization, we represent a graph
of the penalty versus the number of design vari-
ables shared. This is shown in Figure 5.

25 30 35 40 45 50 55 60 65
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Ordered design variable i

V
al

ue
 o

f S
P

V
i

Figure 5: SPV vs. design variable number in order
of increasing SPVi value (performance variants).

We also compute the design of the family for the
total platform. This represents an upper bound
on the sharing penalty. The graph shows how the
penalty remains low for the first 50 or so variables,
then begins to increase sharply. We chose a 54-
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variable platform based on the fact that the curve
presents an elbow at 54 variables (cf. Figure 5).

Figure 6 is the representation of the whole
Pareto set that generalizes the results in Table 4,
which were obtained by minimizing the distance
between the Pareto set and the null platform op-
timum (the point of coordinates (1,1)). The 54-
variable platform shares all but 18% of the vari-
ables, and presents a penalty of 0.6% for the stiff
variant and 1.16% for the light weight variant.
In contrast, the total platform presents a 1.4%
penalty for the stiff variant and an 18.8% penalty
for the light weight variant.

1 1.005 1.01 1.015 1.02 1.025 1.03
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

weight

fle
xi

bi
lit

y

pareto set
family solution

(a)

1 1.05 1.1 1.15 1.2
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

weight

fle
xi

bi
lit

y

54 var platform
total platform

(b)

Figure 6: Pareto sets for the 54-variable and total
platforms, expressed in relative sharing penalty.
Figure 6a represents the Pareto set for the 54-
variable platform; Figure 6b contains both Pareto
sets, the dashed curve corresponding to the Pareto
set of the 54-variable platform. It appears smaller
because of the difference in scale in the two graphs.

5.5 Assumption Validation
Some of the assumptions described in Section 3.1
can only be checked a posteriori. They were exam-

ined using the 54-variable platform. The validity
of each assumption for this platform is assessed
below.

Assumptions 1 and 2 are automatically satisfied
by the framework in which the case study was set
up.

For Assumption 3, the distance between the
platform designs is evaluated by computing the
average of the relative difference in design vari-
ables xst,◦

i and xlw,◦
i for all i, which is 0.187. This

gives us an idea of the relative difference between
designs.

Assumption 5 is designed to avoid the case
where a constraint that is inactive in the individ-
ual solution becomes active in the family solution,
case which is not taken into account in the current
derivation of Section 3.2. Here this assumption is
violated in the sense that one constraint — out of
8 — that is active in the individual solution of the
lightweight variant becomes inactive in the family
solution. It is in agreement with the intuition that
by adding equality constraints in the family design
problem (the commonality constraints), it is likely
that other constraints become inactive. However,
this occurrence does not invalidate the conclusion
of the derivation.

Assumption 4 however is not entirely satisfied.
This assumption is very strong, therefore it was
expected that issues would arise. The distance
of the family solution to the convex hull of the
individual solutions — the line between xst,◦ and
xlw,◦ — is 25.1, the distance between these two
points being 89.2. The projection of the family
solution on the convex hull corresponds to an α of
0.23 (see Assumption 4), meaning that the family
solution is closer to the “stiff” individual optimum.
Further work must be accomplished to relax this
assumption.

If the assumptions required by the approxima-
tion are satisfied, the SPV by itself provides an up-
per bound on the potential sharing penalty. Sev-
eral platforms, chosen according to the order given
by the SPV were computed, with a number of vari-
ables ranging from 30 to 65. In Figure 7, the actual
penalty for the objective functions of each variant
— weight and flexibility — is plotted against the
value of the upper bound given by the aggregate
sum of the SPVi that correspond to shared vari-
ables .

To further test the efficiency of the SPV ap-
proach, platforms were computed by sharing the
variables in an order reversed to the one given
by the SPV — a worst case scenario. In Figure
8 the actual penalty incurred in those platforms
is plotted versus the penalty to the platforms de-
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Table 4: Comparison of null platform and 54-variable and total platform.
Platform null platform 54-variable platform total platform
variant stiff l. weight stiff l. weight stiff l. weight

mass (kg) 822 691.87 822 699.90 822 822
dft(mm) 1.581 2.429 1.595 2.270 1.607 1.607
drt (mm) 1.396 2.148 1.409 1.007 1.419 1.419
db (mm) 0.1427 0.2922 0.1429 0.2829 0.1443 0.1443

flexibility(mm) 4.405 7.499 4.433 7.107 4.468 4.468
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stiff
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SPV

Figure 7: Actual sharing penalty vs. predicted by
SPV (non dimensional).

signed according to the SPV. This figure demon-
strates the gain in selecting a platform according
to the process above. It also shows that if the
assumptions are not entirely satisfied, the shar-
ing penalty cannot be accurately predicted using
the SPV. Had the assumptions been met, it would
have been expected that the reverse SPV platform
reached a plateau towards 65 variables.

0 10 20 30 40 50 60 70
1

1.05
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Variables shared
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weight
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weight

} SPV 

} SPV reversed 

Figure 8: Actual penalty for both objective func-
tions, for platforms computed according to the
SPV and SPV reversed.

6 Conclusions

The methodology presented uses first-order infor-
mation to compute a metric for measuring the
penalty attributed to sharing specific components.
This analysis can be used to identify which com-
ponents should or should not be part of the prod-
uct platform and becomes essential when the num-
ber of sharing combinations becomes too high
to search exhaustively. Further examination of
assumptions is a priority in future work. The
methodology also needs to be tested on product
families including more than two products. The
desire is to enhance and validate the approach as
a general methodology for reducing the platform
design problem and for providing the designer with
guidance for choosing the “optimal” platform.
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