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Abstract
The control of a spacecraft hovering over a uniformly
rotating asteroid is analyzed. This work builds on
the previous analysis of open-loop stability of hov-
ering spacecraft trajectories (Scheeres 1999) by con-
sidering the effect of closed-loop control strategies on
the overall stability of the hovering trajectory. We
characterize the ability of one-dimensional altimetry
measurements to stabilize the hovering spacecraft
and find some ideal control methodologies that can
yield stable hovering trajectories. These ideas are
developed initially for the ideal case of a spherical
asteroid and are then applied to a rotating ellipsoid
and a rotating model of the asteroid Castalia (Hud-
son and Ostro 1994). The necessary modifications
to the measurement and control laws in these more
general gravitational cases are characterized.

Introduction
Performing scientific explorations of small bodies

such as comets and asteroids can be simplified in
many cases by abandoning an "orbital" approach
(Scheeres et al. 2000) in favor of a "hovering" ap-
proach (Scheeres 1999) where the spacecraft thrusts
continuously (or near-continuously) to null out the
gravitational and rotational accelerations that act on
it, fixing its position in the body fixed frame. Such
an approach to exploration would make it possible to
obtain high resolution measurements, and even sam-
ples, from multiple sites over the body surface with-
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out having to make complicated transitions from or-
bital to body-fixed trajectories between each near-
surface observation period. The implementation of
such hovering trajectories are not trivial, however, as
they are fundamentally unstable (Scheeres 1999) and
may involve the complex interplay of several naviga-
tion sensors and control actuators to implement.

In this paper we investigate the feasibility of sim-
plifying the navigation of these hovering trajecto-
ries by applying a simple control law that stabilizes
the hovering trajectory. If the hovering trajectory
can be stabilized with a simple closed control loop,
the complexity of the entire navigation problem can
be similarly reduced. Ideally, the stabilizing control
loop can then run in the "background" and a more
sophisticated control loop can be used to "drive"
the hovering spacecraft over the small body surface.
Ideally, these higher-level control laws will be sim-
pler to implement and characterize if the underlying
stability of the hovering trajectory is ensured.

Our proposed approach to stabilizing the hover-
ing trajectory uses a single altimeter and thrusting
direction. By tightly controlling the spacecraft alti-
tude along the direction that the small body gravity
acts, we show that it is possible to completely stabi-
lize the hovering trajectory in most cases of interest.
We define and analyze the stability and implemen-
tation of this control for a spacecraft hovering over
a rotating sphere, ellipsoid, and a generalized shape
based on the asteroid Castalia (Hudson and Ostro
1994). We note that our control law does not uni-
formly stabilize a hovering trajectory, but is only
valid for hovering less than a characteristic "alti-
tude" , defined in the text. We present some limited
simulations of the approach to verify its utility.
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Consideration of Controller Type
The previous work of (Scheeres 1999) assumed

open-loop control to cancel out the centrifugal force
and gravity attraction. Control thrusts are added
as a quasi-continuous constant acceleration which
balances the residual acceleration if the spacecraft
is at the prescribed hovering point. In this paper,
we assume a closed-loop controller in addition to the
open-loop one. The easiest way to control the space-
craft is to keep the altimetry output constant. So,
this paper considers such "tight" controllers. With
such a simple control logic, hovering can be easily
implemented.

For the control direction, the nominal direction
of the gravitational acceleration meets at the pre-
scribed point is adopted. With the tight control us-
ing the gravity direction for observation and thrust-
ing, we do not have to install open-loop continuous
thrusting to kill out the nominal gravity attraction.
It can be canceled through the closed-loop tight con-
trol. In general, it is difficult to estimate the magni-
tude of gravity attraction exactly. If the open-loop
gravity is specified, it may cause the hovering point
to be disturbed due to error.

Stability of Controller
For now, it is assumed that the nominal gravity

force and centrifugal force are canceled by open-loop
continuous thrusting. This means that the nominal
prescribed position is an equilibrium point for hov-
ering. But from (Scheeres 1999) we see that equilib-
rium points of hovering are not stable for most posi-
tions without closed-loop control. In this section, we
discuss the stability of hovering with the linearized
equation of motion, and investigate how the stabil-
ity can be enhanced by adding a "tight" closed-loop
control along the nominal gravity direction. At first,
we consider the case when the center body is a point
mass, followed by the consideration of an arbitrarily
shaped body.

Stability Analysis of Point Mass Center Body In
this case, stability around the equilibrium point
can be investigated analytically. By taking the
coordinate of Fig.l, the equation of motion becomes

f + 2wz x r + w2z x (z x r) = Fc + Fg

where

r = [x, y, z]T

z
O)

Fc

F0

[0,0, if
Angular velocity of center body
Control force
Gravitational force

to : Center Body Rotation Period

Spacecraft location

Figure 1: Body fixed Frame Coordinate

By treating the perturbation around the nominal
X0

point of TO =

earized as

F = 9U
9 dr

0 , the gravity attraction is lin-

d2U
dr2 (r-ro) (2)

where U = ^
Now, let the coordinates be normalized by the res-

onance radius of rs =

Xn =

Zn =

Ax =

Az =

fc,o =

1/3, or

rs

rs
X — XQ

rs
z —.

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(1) and Eq.l can be linearized as

(10)

where
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Figure 2: Coordinate around Nominal Hovering
Point

With ideally tight altitude control using the grav-
ity direction (fr direction) thrusters, Ar(t) = 0 will
hold at all times, and Eq.12 will reduce to

Ay
At

0 Zn
0

Ay
At

fy
ft (13)

This equation describes linearized motion with tight
control along the TO direction. The stability of this
controller can be investigated from the characteristic
equation of Eq.13

I

(14)

The tightly controlled spacecraft motion is stable if
and only if all roots of Eq.14 have negative or zero
real parts. Note that Eq.14 corresponds to the zero
locations of the open-loop spacecraft dynamics. So,
the "tight" controller can be considered as the infin-
ity limit of controller gain. Generally speaking, if
the characteristic equation is

s4 + 6s2 + c = 0

then the stability conditions are

6
c

62-4c

> 0
> 0
> 0

In our case, these conditions become

4 _ >
r*- —

^3—— + ^2~ frn rn )

or equivalently,

rn<l or (— J > —
\rn / rn

i < rn < yi or

or

(15)

(16)
(17)
(18)

(19)

(20)

(21)

(22)

(23)

(24)

Eq.22, 23, and 24 corresponds to Eqs.19, 20, and 21,
respectively. The hovering point is stable if and only
if Eqs.22 - 24 holds at that point. Note that these
equations hold if rn < 1, because, at that time,

-2 + rj
< 0

< 0
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Figure 3: Stable Region for Tight Altitude Con-
trolled Hovering over Point Mass — Shaded Region
Corresponds to Stable Area

The stable area of the controller is summarized in
Fig.3. It can be seen that the region of rn < 1 i.e.
the area within the resonance radius is stable.

Sufficient Conditions for Stable Hovering
above an Arbitrary Body

The previous section derived the stable region for
hovering over a point mass using a tight controller.
This condition can be generalized to an arbitrary
gravity field, but the resulting conditions do not lend
themselves to analytical description. So, instead, a
sufficient condition for the tight controller stability
is discussed.

Starting from Eq.10, let the eigenvalues and eigen-
vectors of the matrix p be 0:21 QS, and v1;
V2> vs, respectively. As this matrix is symmetric,
the eigenvectors are orthogonal to each other. So,
without any loss of generality, we can define the fol-
lowing relations;

vl x V2 = V3

V2 X V3 = Vi

V3 X Vi = V2

llvill = I|v2|| = ||vs|| =

By changing our coordinates

x' = [vi,v2,v3]~

Eq. 10 becomes

Aor
Ay

Aar
Ay
Az

(29)

r o
V

I -Viz

' ai+u2

0
0

^2 viz

—V3z
0

Viz

02

Viz
—Viz X'

0
0 0
+ u,2 0
0 Qf3 ~\~ (jJ

[viz,V2z,V3z] >x'

= f' (30)

For most cases, one of the eigenvectors (vs, for
example) is almost aligned with the gravity attrac-
tion, and 2 of the eigenvalues ( a\ , 0:2) are stable,
i.e. negative values. This is exactly true if the as-
teroid is a sphere. Here, vs is defined as the "quasi-
gravity" direction. By adopting the tight controller
in the vs direction (observation and thrusting), the
system of Eq. 30 will reduce to

x' - 0 -V3z
V3z 0

ai 0
Q2 +U

Viz

V2z

With characteristic equation

s4 + bs2 + c = 0

where

VizV2Z +
ki = ai +ui2 — vizu2

i 2 2 2
K2 = O2 + O) — V2zUI

(31)

(32)

(33)
(34)
(35)
(36)

Now, the stability conditions of the tight controller
are

(37)
(38)
(39)

3o;2t;|z + w2 - («i + o>2) - (a2 + a;2) > 0 (40)
( , 1\ I , 2\ 2 2 / 2\(ai + u> ) (QI + ai J — a; vlz (012 + u )

-u2v%z (ai + a;2) > 0 (41)

(QI — ai — & ) + 3w v$z (V3Z + 2)

-8a;2w|z { (ai + w2) 4- (a2 + w2) } > 0 (42)

(25)
(26)
(27)
(28)

b
c

62-4c

or,

> o
> o
> o
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Figure 4:
4.07[hour]

Stable Region for Tight Altitude Controlled Hovering over Ellipsoid with Rotation Period of

Stable Region with Tight Altitude Controller
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Figure 5:
10.0[hour]

Stable Region for Tight Altitude Controlled Hovering over Ellipsoid with Rotation Period of

V2y

To obtain these equations, we should be aware of
the following relations, which can be deduced from
Eqs.25 - 28;

«L + »L+»L = * (43)
= 1 (44)
= 1 (45)
= 0 (46)
= 0 (47)

VlzVly + V2zV2y + VZ-rVZy = 0 (48)

Note that, without any loss of generality, we can
assume

<*i > «2 (49)

With Eq. 49, we see that Eq. 40 to 42 will hold if

ai + w2 < 0
a2 + w2 < 0

(50)
(51)

Eqs.50 - 51 are the sufficient conditions for the
"quasi-gravity" direction tight controller stability.

In the case of a sphere, we can assume that the
spacecraft's nominal point is located on x-z plane,
without any loss of generality. So, by assuming the
spacecraft nominal position as (x, 0, z), the stability
results reduce to

r < 1 (52)

+ z2 and the length is normalized by

Numerical Check of Stable Area

To validate our sufficient condition, a number of
numerical checks are conducted. Here, the center
body is assumed to be an ellipsoid (Figs.4 - 5), or
the realistic shape of asteroid Castalia (Hudson and
Ostro 1994) (Figs.6 - 7). The rotation period is

479



(c)2000 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Sufficient Condition of Stability
* Region with Tight Altitude Controller

-?z

Figure 6: Stable Region for Tight Altitude Controlled Hovering over Castalia with Rotation Period of
4.07[hour]

SUWc Region with Tight Altitude Controller
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Figure 7: Stable Region for Tight Altitude Controlled Hovering over Castalia with Rotation Period of
10.0[hour]

taken as 4.07 hours, which is Castalia's estimated
rotation period, or 10 hours, for comparison. From
Figs.3 - 7, it seems that the stable region has some
similarity among the sphere, ellipsoid and Castalia
center body cases, still, the similarity degrades at
the faster rotation speed. Figs.4 - 7 also show the
sufficient condition area derived from the discussion
of the previous section. It can be seen that the suffi-
cient areas coincide well with the actual stable area,
if the region of interest is near the asteroid surface.

Fig.8 shows the fastest and slowest residual mode
of a tightly controlled spacecraft. Even if the hover-
ing is stable, the frequencies of the residual modes
are a matter of interest. If they are too fast, the
hovering trajectory can become unstable easily with
a small time lag in the controller. In contrary, if the
residual mode is too slow, the hovering position de-
viation can become excessively large with only small
initial velocity errors. These figures imply that hov-
ering near the stability limit does not have strong

robustness against velocity errors.

Summary

In this section, the stability of hovering under tight
control has been discussed. The stability conditions
are deduced explicitly for the point mass, and we
find that hovering is stable for the region inside the
resonance radius. For a general mass distribution
analytical results are not possible, so reliance must
be made on numerical checks of stability. We are
able to derive a simpler sufficient condition in this
case which agrees well with the full stability condi-
tions.

Also from this stability analysis, it is clear that
hovering using the controller proposed here should
be most robust near the center body regions. The
maximum altitude for the stable hovering can be de-
fined as the resonance radius, or the radius at which
Eqs.50 - 51 hold.
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Figure 8: Maximum and Minimum Residual Mode Frequency of Tight Controller Around the Ellipsoidal
Body with 10 hour Rotation

Sensitivity to Control Direction Error
For an actual spacecraft, some discrepancy will ex-

ist among the thrust that cancels the centrifugal
force, the estimated direction of gravity attraction,
and the hovering altitude. Ideally, the hovering equi-
librium point will be the point where these coincide
with their prescribed values. But actually, there will
be some inconsistency among them, and there will
be no points where they coincide exactly with the
prescribed values. The actual equilibrium point will
be a compromise among these values.

In this section, our discussions will be made us-
ing the linearized equations for simplicity. The lin-
earized equation of motion for hovering is

x = fc

fc = fc,a + fc,c

(53)

(54)

where x is the deviation of the spacecraft from the
nominal point, fc>s is the control force of gravity di-
rection, and fc,c is the force to cancel the centrifu-
gal force, which is added in an open-loop manner.
The nominal position x = 0 is defined as a posi-
tion where the gravity attraction is aligned with the
control force fCt9, and where the hovering altitude
becomes the prescribed value.

Here, we assume that fC)C is the force which is bal-
anced with the actual centrifugal force at the posi-
tion XG. Ideally, xc = 0 holds. But due to errors,
including the gravity direction estimation error, Xc
will not coincide with the nominal position of x = 0.

In this case, Eq.53 will be as

u;
0

(55)

At the equilibrium point, x and x is equal to zero,
so

\ga x + 0
0

: - xc) =

or
Ax = Bxc + fvg

where

A =

B =

- 2
o U

_dr*

' J1

0
0

+
' a;2 0

n , i2U (jj

0 0
0 0 "

w2 0
0 0

0 "
0
0

fc,g =

i
/

(56)

(57)

(58)

(59)

(60)
(61)
(62)

holds. Note that the direction of fc,g aligns with
the estimated gravitational attraction, which acts
to keep the altitude along the fC)ff direction equal
to a constant height. At the equilibrium point, this
control force must be constant.

Suppose matrix A is not singular, then Eq.57 can
be rewritten as

va (63)x =
and

= r0 =
i _

(64)

(65)
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Figure 9: Sensitivity of Equilibrium Point Due to Gravity Direction Estimation Error

where TO is the difference of altitude between the lin-
earized center (x = 0) and the commanded altitude,
and ro (= vjx) = 0 holds from the definition
of x. The control force fc,g will keep the altitude
as commanded, meaning that va • x = TO will hold.
From Eq.63,

TV X = (66)

holds for arbitrary vector v. From Eqs.65 and 66,
we get

vrx =

As this equation holds for arbitrary vector v,

(67)

(68)

(69)

This equation relates the sensitivity of equilibrium
point (x) with xc (the discrepancy between the cen-
trifugal force reference point and the gravity direc-
tion reference point). So, by defining

M = il- (70)

the maximum singular value of matrix M must be
kept small to have equilibrium points insensitive to
these errors.

The eigenvectors of matrix M have some interest-
ing characteristics. For example, as

(71)

the eigenvectors of non-zero eigenvalues must be per-
pendicular to the vector vg. And,

= 0 (72)

means that the z axis ( = spin axis) direction is one
of the eigenvectors with an eigenvalue of zero.

Fig.9 is the numerical calculation of the maximum
singular value of matrix M. Note that the equi-
librium point becomes insensitive to errors as the
hovering point approaches closer to the asteroid.

Numerical examples
Some numerical simulations of hovering trajecto-

ries were conducted. The controller adopted here
performs as a tight controller along the estimated
gravity direction. Centrifugal force cancellations
are added periodically, the added force to cancel it
is only the component perpendicular to the grav-
ity force direction. The residual component which
aligns with the gravity direction is applied through
the closed loop tight control.

The tight controller is of dead band type. If the
range to the center body along the estimated gravity
direction exceeds the prescribed value, the thruster
will be fired. The estimated gravity direction is kept
unchanged within each simulation. The control logic
which checks if the spacecraft violates the dead band
is activated every 1 sec.

Additionally, no open-loop logic to cancel the
nominal gravity attraction is used as the quasi-
continuous force to kill out the gravity force can be
obtained through the closed-loop control.

Simulations were executed to evaluate the robust-
ness of hovering associated with the hovering posi-
tion. For most cases, the center body is assumed to
be the ellipsoid of dimensions 0.5[fcm] x O.Sffcm] x
1.0[fcm]. Two hovering positions were selected to
show the difference between hovering near the cen-
ter body at (0.65km, 0.00km, 0.50km) and fur-
ther at (1.65km, 0.00km, 0.50km),just as shown in
Fig. 10. Some other simulations were made to eval-
uate hovering in the unstable region and hovering
over Castalia. In this section, the rotation period of
the center body is assumed to be 10 hours.
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I a): Center Body Rotation Period = 10 [hours]

o^>
- 1.0 [km)

Figure 10: Hovering Positions at Numerical Simula-
tions

Simulations on Centrifugal Force Cancel Period
Effect

In (Scheeres 1999), continuous acceleration was as-
sumed to cancel the centrifugal force. But in reality,
the most popular thrusting device for spacecraft are
chemical thrusters, which produce impulsive accel-
erations. By adjusting the duration of firing and the
period of the cycle, a spacecraft can simulate contin-
uous thrusting. In this case, by using an improperly
long cycle period, the spacecraft may fail to hover
above the small body even if the prescribed position
is in the stable region.

Fig. 11 - 12 show the hovering simulation with the
centrifugal cancel cycle period of 2.0 hours. Each
figure shows the time history along the x, y, and z
axis. If hovering is stable and steady, the lines will
be straight. Here, the dead band width of the range
is assumed to be ±1 cm. No initial errors and no
navigation errors are assumed.

It is true that the acceptable period depends some-
what on the position of hovering. Still by noting
that the rotating period of center body is 10 hours
in these cases, it is clear that the centrifugal force
cancel period is not very sensitive to the hovering
stability. :

10 15 20 25 30
Tunelbouf]

Figure 11: Hovering Simulation Over Ellipsoid with
Centrifugal Cancel Period of 2.0 [hour]: hovering at
region near the resonance radius

A-jyT *V
0 5 10 15 20 25 30

Time [htnu]

Figure 12: Hovering Simulation Over Ellipsoid with
Centrifugal Cancel Period of 2.0 [hour]: hovering at
region close to the center body

navigation errors are assumed. The delta-V for tight
hovering control is 2.0 cm/sec.

It is clear that the range allowance is not sensitive
to the hovering stability. Still it should be noted
that the delta-V magnitude to maintain the range
should be adjusted carefully to properly cancel the
spacecraft velocity. If their values are excessively
small, the spacecraft can not produce the necessary
acceleration to cancel the gravity force. In contrast,
if they are too large, it results in a limit cycle of very
short period.

Simulations on Range Allowance Effect

Fig. 13 - 14 show the hovering simulations with a
range deadband width of 100 [m]. Each figure shows
the time history along the x, y, and z axis. Here,
centrifugal force cancellation thrusts are assumed to
be fired every 0.1 hour. No initial errors and no

Simulations of Velocity Error Effect

The initial velocity of the spacecraft is one of the
factors that decide the amplitude of the hovering
position oscillation. If the frequency of the residual
motion mode is low, the amplitude will be sensitive
to the initial velocity error. Fig. 15 - 16 show the
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Figure 13: Hovering Simulation Over Ellipsoid with
Dead Band Width of 100 [m]: hovering at region
near the resonance radius

ti-ft^miitm

Figure 15: Hovering Simulation Over Ellipsoid with
Initial Velocity Error of 1.0[cm/sec]: hovering at re-
gion near the resonance radius

¥

Figure 14: Hovering Simulation Over Ellipsoid with
Dead Band Width of 100 [m]: hovering at region
close to the center body

Figure 16: Hovering Simulation Over Ellipsoid with
Initial Velocity Error of 10.0[cm/sec]: hovering at
region close to the center body

simulations with initial velocity errors. Here, the
range allowance is assumed to be 1cm, and centrifu-
gal force is canceled every 0.1 hour. No guidance
errors and no initial position errors are assumed.

It is shown that the acceptable velocity error de-
pends strongly on the position of hovering. If the
hovering position is near the resonance radius and
has slow residual modes, it is sensitive to the initial
velocity. But if the hovering position is close to the
center body, relatively large initial velocity errors
(comparable to escape velocity) can be accommo-
dated.

by (Ax, Ay, Az) from that position, the hovering is
disturbed. Fig. 17 - 18 show this effect. Here, the
range allowance is assumed to be 1cm, and centrifu-
gal force is canceled every 0.1 hour. No guidance er-
rors and no initial errors are assumed. The delta-V
amount is set as a function of the spacecraft velocity
along the estimated gravity direction.

It is shown that hovering is sensitive to these errors
if the commanded hovering point is near the reso-
nance radius. Fig. 18 suggests that hovering close to
the center body is robust against gravity estimation
error.

Simulations on Gravity Estimation Error Effect

At the actual hovering position, the estimated
gravity attraction and centrifugal forces are not con-
sistent, and the actual settling point is affected by
this mismatch. If the estimated gravity attraction
is not of the prescribed position but is displaced

Some Other Simulations

Fig. 19 shows a hovering simulation in the unsta-
ble region. It can be seen that the hovering trajec-
tory goes away with very small initial velocity error.
Fig.20 shows hovering over Castalia with a rotation
period of 10 hours.
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10 20 30 40
Time [hour]

I I -

Figure 17: Hovering Simulation Over Ellipsoid with
Gravity Direction Discrepancy of 10[mj: hovering at
region near the resonance radius

A t\
W

M X
W W W

Figure 19: Hovering Simulation Over Ellipsoid
around the Unstable Point of [1.95km, 0.0km,
0.5km]

I"
I 0.3

Figure 18: Hovering Simulation Over Ellipsoid with
Gravity Direction Discrepancy of 100[m]: hovering
at region close to the center body

Note that in this section, we do not investigate the
influence of rotation period estimation error. It is
expected that it will be estimated well in advance of
hovering.

Conclusion
This paper discuss hovering over a uniformly ro-

tating small asteroid. It is assumed that the space-
craft is equipped with an altimeter, and the con-
troller commands thrusting to keep the altimeter
output constant. It is found that the hovering is
stable within a region nearer than the resonance ra-
dius for the point mass central body case, and at the
equivalent near central body region for the arbitrary
central body case. It is also found that the robust-
ness of the hovering trajectory to controller error
increases as the hovering position becomes closer to
the center body.

Figure 20: Hovering Simulation Over Castalia
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