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ABSTRACT 

A new approach is taken to the computation of the 
elliptic part of the Euler equations. In each cell of an 
unstructured triangular grid, on which the solution is 
stored at the vertices, the residual is decomposed into 
purely elliptic and purely hyperbolic contributions. 
The elliptic part is minimised in a norm suggested by 
an earlier analysis of linearized potential flow. This 
choice of norm enables substantial simplification of 
the update procedure, for which an explicit formula 
is given. From ,the formula, it can be seen that the 
procedure is well-behaved in the transonic and low- 
Mach number limits. 

Introduction 

This paper contributes further to the development 
of computational methods for the Euler equations 
(and eventually for other problems that share their 
structure) that reflect genuinely multidimensional 
physics. These methods aim to retain the benefits 
of a physical aproach to strongly discontinuous flows 
while avoiding the defects of upwind methods applied 
to almost incompressible flow. There has recently 
been considerable success in extending compressible 
flow codes to the low Mach number limit by means 
of matrix preconditioning. The present paper takes 
the approach of equation decomposition, which is a 
very closely related concept. 
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The main contribution that we hope to make with 
this paper is to show that the decomposition, and the 
update procedure are sufficiently simple that explicit 
formulae can be given for them. This enables the sin- 
gularities of the procedure, near sonic or stagnation 
points, to be displayed and percieved harmless. 

Forms of the Euler Equations 

Different aspects of the Euler equations are most 
readily expressed by choosing different sets of un- 
knowns. For computing compressible flow, the most 
fundamental choice is probably the set of conserved 
quantities 

u = (Pt PV, w (1) 

since a weak solution of this form of the equations 
captures shocks that satisfy the Rankine-Hugoniot 
conditions. Associated with these variables is the flux 
tensor 

g = (PV, PV 63 v + P$, VP + P))” (2) 

There is computational convenience in the parameter 
vector 

z = fi(l, v, v, (3) 

where h is the total specific enthalpy (E+p)/p, on ac- 
count of the property that all components of u, F are 
simply bilinear in terms of z. This allows the-con- 
struction of local linearizations having conservation 
properties, both in the one-dimensional1 and multi- 
dimensional2 cases. 
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Also important, at least to the present approach, 
are what have been called3 the natural variables 

x = (S, h, P, v/lvl>” (4 

where S is entropy, since it is uniquely in these vari- 
ables that the Euler equations can be decoupled into 
maximally independent subsystems.4l5 This enables 
the essentially different hyperbolic and elliptic be- 
haviour to be computed independently with the mini- 
mum of “crosstalk”. In this paper we are particularly 
concerned with the solution of the elliptic subsystem. 

Fluctuation Solitting 

In this approach ‘jj7, the computational domain is di- 
vided into elements in an unstructured way, with the 
unknowns stored at its vertices. Iteration toward a 
steady solution from an in intial guess takes place 
by computing an average residual for each cell (the 
fluctuation dT in element T) , and then changing the 
current solution at each node of the cell T by an 
amount proportional to dT; 

6U.j = WffT4T (if node j belongs to cell T) (5) 

where w is a relaxation factor and the weight c$ is a 
matrix to be determined. 

Our aim is to create a method of this kind that 
exploits the different properties of the different sets of 
unknowns. We represent the solution in terms of the 
parameter vector, and find the conservative residual 
by integrating over the cell (of area AT) 

4: = Ca,z -t D&& f Cxdy - Dxdx (6) 
aT 

where the matrices C = dF/dz and C = a&/az are 
locally constant because of the quadratic property2. 
Our aim is then to reduce this residual in some suit- 
able norm. The norm is chosen by splitting the resid- 
ual into its elliptic and hyperbolic parts. 

Conceptually this is a sophisticated approach, but 
the fact that the final result emerges as the concate- 
nation of a long chain of tranformations makes it 
seem costly. In fact, this would not be the proper 
approach, for reasons having nothing to do with cost. 

Many of the transformations are singular, at M = 0 
or M = 1 and although we expect that these singu- 
larities would cancel out in analysis, they are unlikely 
to do so numerically. Therefore we carry out the com- 
plete chain analytically, and find that its final form is 
computationally tractable and indeed rather simple 
if the correct norm is chosen. 

The Update Matrix 

This gives a convenient way to think about 
Fluctuation-Splitting schemes. Let the initial state of 
a cell (in two dimensions) whose vertices are (a, b, c) 
be represented by the twelve scalar quantities 

w” = (wa, wb, wc) 

where w is whatever quantity we have decided to 
store at the vertices The update can be represented 
as a matrix multiplication 

W n+l - W” = wuwn 

where U is some matrix that is constant within the 
cell and w is a relaxation constant. 

For example, suppose we intend to update the so- 
lution by a steepest-descent minimisation of 

T 

where Q is some symmetric matrix representing a lo- 
cal norm. If we write Q = PtP this is equivalent to 
an L2 minimization of P~!J~, which is some weighted 
combination of the residuals. We will treat +T as a 
linear function RTWT of the vertex values because 
it arises from a linear process to find the local deriva- 
tives, followed by multiplication by matrices that are 
frozen during the update. In general R is a rectangu- 
lar matrix formed from three 4 x 4 blocks (see the ex- 
amples below). Hence the quantity to be minimized 
is 

C(wt~t)T(~t~)T(~~)T 
T 

and the gradient of this is 

g = 2 x(RtPtPR)Twj 
Tj 
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and so the update procedure within each triangle 

W”+l- W” = -w(R~P~PR)~W 

where w is some global constant, implements the re- 
quired procedure. In this case U is the symmetric 
matrix (RtFfPR)T. - 

If we had proposed some other method than steep- 
est descent for solving the least-squares system, the 
update matrix .would be different. However, the 
right-hand factors (PR)‘W which represent the 
weighted residual, would be exactly the same. These 
terms give the properly weighted elliptic part of the 
residual, and might be supposed rather complicated, 
but are actually very simple. The expression is given 
later as (8). 

For the sake of definiteness we continue here with 
the least-squares procedure, whose properties will de- 
pend.on the matrix Q that defines the norm, or equiv- 
alently on the matrix P which forms some linear com- 
bination of the scalar residual, and also on the matrix 
R that defines the residuals. In fact we will only ap- 
ply this technique to the elliptic part of the Euler 
equations since the hyperbolic parts are better han- 
dled by asymmetric, upwind, methods. : 

We design the procedure by first. considering the 
nonconservative case where the stored variables are 
x. The Euler equations for this case ‘are3 

(l- M2)Pa -pqy, = 0 
pq28, +pn = 0 

.a,&9 = 0 
a,h.= 0 

The four residuals so defined may be called #x where 

4~ = C Rjxj 
j=a,b,c 

where, ‘using. standard methods to evaluate the 
derivatives, 

Rj = 

r 0 - imu. 
\- 

I 

f~ Y&j u8j . 'O 0  

1 
AT 

-'Sj unj O 

0 

0 0 unj 0 (7) 

0' 0 O unj 1  

where unj = [u(A,)j - v(A,)j] and uSj = [V(Ay)j + 
u(A,)j] with ((A,)j, (Ay)j) the vector representing 
the side opposite vertex j. The first two components 
of this vector comprise the elliptic part of the prob- 
lem, if M < 1 so the quantity to be minimized is 

2) ‘C Rjxjwhere V = diag(di, da, 0,O) 
jk,b,c . 

and the update matrix is 

U = ( C Rj)“D2( C Rj) 
j=a,b,c j=a,b,c 

The outcome still contains pl,p2 as free parameters, 
and there is a special choice of their ratio that brings 
about considerable simplification. This was antici- 
pated on the strength of analysing linearised poten- 
tial flow8, where it was found that minimizing in a 
norm 

(continuity equation)2 

+[I - M2[ (vorticity equation)’ 

led to a method almost completely equivalent to ap- 
plying the standard Galerkin finite-element to the 
Prandtl-Glauert equation (“stretched” Laplace equa- 
tion) satisfied by each velocity component. It also 
provides for a smooth transition from the subsonic 
to the supersonic case. Thus, we choose dl = 1, d2 = 
dmt Then one block of the update matrix be- 
comes 

[ 

(l- M2)aij pq2un;Usj 0 0 

Uij = -PQ2uniu8j p2Q4&j 0 0 
0 0 0 0 
0 0 o* 0 1 

where oij = (i - M2)uniunj + usiusj. The off- 

diagonal terms are zero if i = j and if the relaxation 
factor is taken inversely proportional to pq2 it can be 
shown that they cancel around any interior vertex. 

Turning now to the case where the stored variables 
are chosen as z (to ensure conservation) we continue 
to minimize in the same norm. That is to say, the 
quantity to be minimized is now defined by 

4; = C 
j=a,b,c 

Rjgzj 
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It is important to note that this contains the conser- where 
vative residual 

as a factor, because both are bilinear functions of 
!Z that vanish simultaneously. The update matrix 
becomes 

u= ( c Rjg)“D2( c Rj$ 
j=a,b,c j=a,b,c 

StS = k2 

and 

-Z2Z4 -Z3Z4 ZlZ4 
-Z2Z4 Zz Z2 Z3 -Z1Z2 

-Z3Z4 I ZlZ4 2 0 0 0 0 
Z2 Z3 z3 --a Z3 

-Z2Z3 -Z1Z2 4 0 0 -Z2Z3 -Z1Z3 8; 0 0 0 0 0 0 1 3 

The Structure of U 

The update matrix U actually enjoys considerable 
structure which can be demonstrated by exhibiting 
just one of the blocks; 

-Z2Z4 0 
2; + z3” -Z1Z3 

0 a Z2 

-Z1Z2 0 1 
Defining vectors a = (~4, -zs, -zs, z#, and b = 

(8) (OIZ3, -z2, O)t we have the simple expressions 

where StS= k2ata+btb 

StN = atb-bta 

N= 

-kzd kz2 kz3 -kzl 
0 Z3 -z2 0 
0 0 0 0 
0 0 0 0 

It is interesting that each block of U has the same 
two-dimensional nullspace, spanned by 

0 -Z3 Z2 0 
-kzq kz2 kz3 -kzl 

0 0 0 0 
0 0 0 0 

and 
k=- -JiIjJjz 

Y 

Zl 0 
0 ZlZ2 [I[ 1 0 ’ Zl Z3 

-Z4 z2” + z3” 

The first of these shows that constant-enthalpy so- 
lutions are accepted. The second shows after some 
algebra that a scaling of the velocities and the sound 

Hence that part of the update matrix giving the effect speed by the same amount also leaves the solution 
of node i on node j is unchanged. 

u.. = [d=uni N + u,$‘jt x Transonic Transition ‘73 
[di=%njN + usjS)] It is instructive to collect the last result, using the 

At this point it turns out that NtN = StS and 2?N+ 
definition of k, as 

NtS = 0 so the update becomes 
Ui,j = 

(7 - 1)2(1- AP)s 
(%iUnj)ata 

u. . ‘$3 = [(l- M2)u,iu,j + U,iUnjJ(StS) 

+~~[t~,~u,~ - u,~u~~](S~N) 
+(y - l&l - AP) 

r2 
(UsiUsj)ata 
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+ (Y - w - M2) x‘ 
(udi~~~ - uSj21ni)(atb -bta) 

+(l - M2)(u,;unj)b’b 

+(“8iu3j)~tb 

The terms on the third line are the ones that can be 
neglected in the constant-coefficient case; it is not yet 
clear whether they can be neglected here. 

The conclusion ofs is that in the supersonic case, 
the appropriate norm is obtained by taking dl = 
l,d2 = dm .which causes the update of the 
characteristic variables dmp f pq26’ to become 
decoupled from each other. Repeating the above 
analysis in the new norm leads to the following up- 
date matrix 

u.. = S,J (y -,1)2if2,-1)2(uniunj)ata 

+ (Y - l12(M2 - 1) (u 
Y2 

,u .)ata 3. 3, 

+ t7-- lW2 - 1) x 
Y 

(~~iunj +usjuni)(atb+bta) 
+(M2 - l))(uniu,;)btb 

+(U,iUsj)b”b 

What happens is that the first and last terms remain 
unaltered, the second and fourth terms change sign, 
but the third term is completely changed. The su- 
personic version does not even approximately cancel 
when summed round an interior vertex. However, 
the transition from slightly subsonic to slightly su- 
personic flow takes. place smoothly, because all the 
changes happen in terms that vanish at M = 1. We 
repeat that the use of a lea&squares method is inap- 
propriate when the flow becomes hyperbolic, but the 
analysis does demonstrate that at least the transition 
would be smooth. That is a property that should be 
retained. 

Stagnations Points and Incompressible Flow 

We note that there are no singularities involved at 
M = 0. We also note that when M=O the update 

matrix simplifies to 

ujj = (usiuJj + (uniutaj) [ qata + bab] 

which does not seem to reveal any computational dif- 
ficulties. 

Computational Examples 

The three examples presented are in fact of potential 
flow, computed with the nonconservative version of 
the code. The first example is that of barely sub- 
critical flow past a circular cylinder, It demonstrates 
the excellent behaviour of the least-squares technique 
right up to the stagnation points, even though the 
method used is applied not to the actual potential 
equation, but to the first-order system. 

The second example is, that of an ellipse placed 
broadside to the flow, merely to show that even in this 
case a very high degree of symmetry is maintained. 

The third example is a symmetrical airfoil. at zero 
incidence, and now the least-squares method is used 
only in the subsonic region. That is to say, every- 
where in the first case, but only outside of 

the supercritical zone in the second case. Where a 
supercritical region exists, the hyperbolic part of the 
problem is handled using the PSI advection scheme. 
No special procedure was used to match the calcula- 
tions across the sonic 

line or across the shock. 

Concluding Remarks 

The present contribution is not yet intended to pro- 
vide a practical recipe for solving the Euler equa- 
tions. The main defect is that steepest descent is, by 
itself, a very slow way to solve nonlinear equations. 
However, it forms the starting point for many other 
(mainly N ew on i e methods that are extremely ef- t -1 k ) 
ficient, and which have the same fixed points. It also 
remains to be proved that an analogous method will 
work in three dimensions. There is no problem for- 
mally. All the formulae given here extend straightfor- 
wardly. The issue is whether the streamwise vorticity 
that becomes coupled to the potential flow in three 
dimensions5 will be well captured. 
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Figure 1: Subcritical cylinder (M, = 
0.38), grid, Mach contours and flow an- 
gle isolines. The challenge in this test case 
comes from the two stagnation points and 
in maintaining perfect symmetry with re- 
spect to the horizontal and vertical axes. 
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Figure 2: Subcritical ellipse (M, = 0.1) 
at .9@ angle of attack, Mach contours. 

’ top/bottom and left/right symmetry are 
the result of the very low level of numeri- 
cal vorticity generated by the least squares 
scheme. 

. 

Figure 3: Subsonic (M, = 0.36) and tran- 
sonic (A4, = 0.85) NACA 0012,, Mach con- 
tours. The purely subsonic case is solved 
using the least squares approach while the 
transonic case is calculated by. combining 
least squares (subsonic region) and fluctu- 
ation splitting (supersonic region). 
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