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ABSTRACT

A new model has been developed to predict mode |
failure of laminated composites. Instead of using an en-
ergy release rate concept based on Linear Elastic Frac-
ture Mechanics (LEFM), a nonlinear elastic foundation
model was employed to simulate cohesive interlaminar
fracture of the composite. The materials experiencing
stresses due to the presence of the crack was replaced by
a nonlinear elastic foundation with its own special prop-
erties. Unidirectionally laminated DCB type specimens
were used in this study to model the mode | failure. A fi-
nite element code was developed to solve the beam on a
nonlinear elastic foundation model. The current model
reproduced load versus displacement curves of laborato-
ry fracture tests very closely. The current model has the
potential capability of being extended to predict the evo-
lution of planar crack growth for 2-D crack problems
without recourse to an explicit crack growth criterion.

1. INTRODUCTION

The use of composite materials in recent times has
been escalating rapidly in a broad spectrum of industry
as these materials turn out to be an excellent engineering
alternative to traditional materials due to outstanding me-
chanical and chemical properties such as high flexibility,
light weight, excellent fatigue strength and corrosion re-
sistance etc. However composite structures have revealed
weaknesses in directions perpendicular to their lamina-
tion planes. For example, debonding between two dis-
tinct materials or delamination in laminated fibrous
composites is a major concern. Therefore the issues re-
lated to fracture in these new bi-material based structures
has been and continues to receive much attention.

The same concepts that were used to analyze homo-
geneous isotropic materials were naturally adopted to
this new area with some modifications [1]. However the
complexity inherent in the crack problems associated
with these materials inhibits its use from being an easy

1. Graduate Research Assistant

2. Asst. Professor, Aerospace Engineering, Member AIAA.
Copyright ¢ 1993by Anthony M. Waas. Published by the
American Institute of Aeronautics and Astronautics, Inc. with
permission.

task or makes the solution of the corresponding fracture
mechanics problem almost impossible for some combi-
nations of materials [1]. Many researchers have made
their contributions to enhancing the understanding of
crack problems in laminated composites by doing exper-
iments [2-10]. Chai [2-4] performed experiments to
study the effect of bond thickness on fracture toughness
using adhesive joints. He used aluminum beams as ad-
herends and various kinds of polymers as adhesives with
different adhesive thicknesses. From these experiments,
he showed that the critical energy release rate is not a true
material constant. He also explained that the reason there
is S0 much scatter in this critical value for the same ma-
terial is that the fracture toughness is critically depen-
dent, additionally, on the morphology revealed on
cracked surfaces of fracture specimens.

It appears that linear elastic fracture mechanics may
not always deliver the proper tools to handle crack prob-
lems in layered materials. Motivated by this, we have de-
veloped a new fracture model; namely a nonlinear elastic
foundation model with properties to characterize the
foundation that are dependent on critical quantities of the
constituents such as maximum strength, Young's modu-
lus etc. DCB type specimens were used in this study to
model mode | delamination of a laminated composite.
The model is called a beam on a nonlinear elastic
(spring) foundation in which the cracking material is rep-
resented by continuous springs. The concept of a spring
representation has been mentioned and studied by many
previous workers. At the early stages of fracture mechan-
ics development, Elliot [11] used a continuum solution
for a cracked body under uniform tension, where he stud-
ied two semi-infinite blocks that attract each other with
interatomic forces. The interactions were schematically
represented by springs. Later Goodier and Kanninen [11}
extended Elliot's model by introducing nonlinear springs
as well as linear springs that attach pairs of atoms. But
this model had size limitations due to considerations
based on distances between neighboring atoms. Later, in
the 1980's, Kanninen used a beam on a linear spring
foundation model to calculate the energy release rate of
mode | fracture of a DCB [12]. He also used the same
model to study fast fractures in DCB type specimens
[13]. Similar concepts along with the finite element tech-
nique can be found in several places[14-16]. Nonlinear
elastic foundation models to study crack propagations
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without an energy release rate concept have been at-
tempted by some researchers [17-19]. However a linear
foundation is used and its constitutive property is not
clearly defined [17,18], or the cracking material carries
load even after reaching its maximum strength [19].

In this study, a new nonlinear elastic foundation
model with its own special properties have been devel-
oped. The characterization of the current model is illus-
trated in section 2. Development of a finite element to
solve the beam on nonlinear foundation model is ex-
plained in section 3. An experimental study is described
in section 4.Finally sections 5 and 6 present results and
conclusions, respectively.

2. AMECHANICAL MODEL FOR
CRACK PROPAGATION

Fig. 1.a shows a laminated composite DCB fracture
specimen and Fig. 1.b is the corresponding beam on a
nonlinear elastic foundation model for mode | failure.
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Fig. 1.a DCB specimen
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Fig. 1.b Beam on nonlinear foundation model

The foundation is a Winkler type spring foundation.
There is no friction between any pair of adjacent springs.
The DCB considered in this study is uni-directionally
laminated with the fiber direction along the beam axis.
The crack is at the center of resin rich matrix material.

This model has two parts and each part plays an in-
dividual role. One is the beam part and the other is the
spring or elastic foundation part. The beam is responsible
for accounting for the bending deformation caused by
external loading. The spring part is responsible for the
transverse deformation at the crack tip which will even-
tually cause fracture. As the external loading increases,
the springs continue to deform until the first spring at the
crack tip reaches its maximum endurable strength. At the
maximum strength, the material becomes unstable and

fracture occurs right away without additional energy ab-
sorption during breaking of the material. This phenome-
non can be explained using the following analogy.
Consider a cylindrical bar made of nonlinear elastic ma-
terial subjected to uniaxial tensile loading. The bar is of
afinitelength and infinitesimal cross-sectional area. Sup-
pose we model the bar as a series of non-linear springs
having slightly different constitutive laws for each
spring. The maximum strength the system can reach
equals the maximum strength of the weakest spring. As
the weakest spring passes its maximum strength and be-
comes unstable (the descending portion of the stress-
strain curve), the other springs are still ascending up the
stress vs strain curve, approaching their own maxima. At
this stage the system becomes unstable because the
weakest spring cannot attain a higher force while the oth-
ers can. Once the system reaches this point, without fur-
ther global loading or extension, the weakest spring pulls
apart permanently. No more energy absorption from ex-
ternal loading occurs at this point; a redistribution of
strain energy occurs because the breaking spring (the de-
formation is localized at this spring) experiences an in-
creased strain energy while a corresponding decrease in
strain energy occurs in the other springs, thus making the
total strain energy constant.

In the present spring model, it is assumed that the
energy from the transverse normal strain is much larger
than the energy from shear and axial strain caused by the
crack under mode | failure. Therefore shear and axial
terms were not accounted for.

2.1 Characterizationof Spring Foundations

In this model, the spring is assumed to deform uni-
formly through the thickness. In other words, the spring
has constant strain throughout the length. The constitu-
tive relation for this spring is assumed to be

~E,e
6 =Eige *

(EQ)
where E, and E, are positive constants to be determined.
This form is an approximation to the inter-atomic force
law and is depicted in Fig. 2. We need two conditions to
solve for E, and E,. The first condition is that the initial
slope of the stress versus strain curve is equal to Young's
modulus of the matrix material, E,, . The second condi-
tion is that energy the spring can absorb up to the maxi-
mum strength is equal to the surface energy (half the
fracture energy) determined from a single laboratory
fracture test for a given laminate. After applying these
two conditions we obtain

1327



1 (EQ2)

tE 2 2
E2 = (—,‘{—(1“;))

where t is the spring length and v is the surface energy.
The spring length is taken to be half the resin layer thick-
ness of the laminate with an assumption that the plies
above the resin rich layer is much stiffer than the resin
layer so that the energy absorbed in the plies above the
resin layer can be neglected. The resulting force versus
displacement relation for the current spring foundation
can be obtained by substituting (EQ 2) into (EQ 1) along
with e = w/z. This final equation will be used in the de-
velopment of the finite element in section 3.

G
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Fig.2 Constitutive relation for current model

The failure criterion for the spring foundation can be
based on either its maximum strength or its critical strain.
The critical strain was chosen in this study. It follows that
the crack is assumed to be propagated if the first spring
at the crack tip has reached its critical strain, the strain at
which the slope of the stress versus strain curve becomes
zero (Fig. 2).

3. FINITEELEMENT IMPLEMENTATION

A finite element code was developed to solve the
beam on nonlinear foundation model in an incremental
way. Bernoulli-Euler beam theory was used to model the
beam deformation. A multilinear spring constitutive law,
depicted in Fig. 3, was used to handle the general nonlin-
earity of the cracking material (spring). The stationary

potential energy theorem was employed to develop the
element stiffness matrices and equivalent nodal loads.
Details are as follows.

f S =g(w)

Sy -m - -

Fig. 3 Multilinear spring model

The nonlinear spring foundation has a force versus
displacement relation of the form

f=gw (EQ3)

where £ is a force with units of stress and w is the trans-
verse deflection of the beam centroid. The beam itself
has no transverse strain. So the beam and spring founda-
tion have the same amount of deflections w . Now assume
that the spring has deformed up to w in an incremental
way. During the proceeding increment the spring de-
forms to a new state w. Therefore the force versus dis-
placement relation during this increment (w to w ) can be
written as,

f=kwtk, (EQ 4)
where k, and k, are given by,
k, =g (W)
(EQ4.4
ky = g (W) —wg' (W)
The potential energy of the linearized system is
= Ubeam+ ‘spring— We (EQ 5)

where U denotes the strain energy and w, is the external
work potential. Each of these are as follows

L
_1 w2
Upoam = FEIf (") 2dx
0

L w
Uspring = bj[f/+f(k1w+k2) dw:I dx (EQ 5.a)

Y w

W, = w F 16,M, +w,F,t0,M,

e
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where U is a strain energy the element has absorbed up
to w. Now the deflection w can be approximated using
beam shape functions.

w(x) =w,N, +6N, +w,N, +62N4 (EQ6)
where N,throughN, are Bernoulli-Euler beam shape
functions. After substituting the approximate deflection
w(x) into (EQ 5), the energy equation is differentiated
with respect to nodal displacements. The stationary po-
tential energy theorem can be applied for equilibrium,

an an an an

S = —B8w, + 36_1891 +—0w, +6T2892

ow, Iw,

(EQT)
=0

This leads to the following element matrix equation.

wy Fy
1le M,
K?.eam + KSpring = + (R (EQ 8)
i ) W, F,
) M,
where
L
b m " "
Kreem = Eljl\{ N dx
0
L
KPring < b j kNN dx (EQ 8.a)
0
L
R; = =b[k,N;dx

(0]

Here, the indices i, range from 1to 4 and R, are the
equivalent nodal loads created from the nonlinearity of
the spring foundation. Note that k,andk, are functions of
w(x) . There are two ways of integrating Kfj’”'"gandR,.
matrices. One method is using numerical integration and
the other option is through exact integration after simpli-
fication. The latter method is chosen in this study in
which w (x) can be approximated to have a single aver-
age value within one finite element. In this manner
kjandk, can be taken outside the integral sign. This is
possible only if the element size is very small for those
elements having high gradient in deflection. Thus, a dis-

advantage of this method is the large total number of fi-
nite elements to be used. However, a major advantage is
that it avoids numerical integrations all throughout the
domain of integration, which usually takes a consider-
able amount of CPU time. Our problem has a small re-
gion of high gradient in deflection; only near the crack
tip. This fact made the latter method a better choice for
our problem.

A mesh was generated in such a manner that element
numbering is dense near the crack tip and sparse away
from the crack tip. The resulting global matrix equation
was solved using Gauss elimination with pivoting. The
numbering of global matrix was done diagonally so as to
reduce the size of computer memory, hence reducing the
CPU time also. The loading on the DCB was simulated
by incrementing the displacement at the loading point.
During the crack propagation phase, each time the spring
at the crack tip reaches its breaking condition, the pro-
gram calculates how much the crack has propagated and
regenerates a new mesh according to the new crack
length until the crack has propagated to the final crack
length. This numerical process acquires another conver-
gence problem in addition to convergence problems as-
sociated with the finite element method itself. This
convergence problem was solved by reducing the incre-
ment size of the loading until convergence was found to
occeur.

4. EXPERIMENTAL STUDY

A mode | fracture test was performed to validate the cur-
rent model. The DCB type specimen was made by cut-
ting E7T1-2B1/G40-800 unidirectional 48 ply laminated
composite plate obtained from BP Chemical Corp. Load-
ing was done slowly with a speed of 0.4 mm per minute
on a screw driven Riehele testing frame, simulating static
conditions. Special grips were made to minimize any un-
necessary moment and shear arising from grips. The
crack opening displacement (6 in Fig. 1) was measured
via an LVDT and the corresponding load was measured
via a 200 Ibf load cell. The instantaneous location of the
crack tip was marked on one side of the beam with the aid
of a magnifying glass. The beam specimen was prepaint-
ed white to make the crack tips more visible. Both read-
ings and time were acquired on an in-house data
acquisition system. Fig. 4 depicts the pulling force, P,
versus crack opening displacement, 6, for the beam spec-
imen. After the test, the side of cracked specimenwas ex-
amined using a microscope along the crack line. It was
found that the failure was fully interlaminar (not in-
tralaminar) and cohesive. The thickness of the resin rich
layer was taken to be the average of several measure-
ments through a high magnification microscope. Three
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Fig. 4 Fracturetest result of E7T1-2BI/G40-800 DCB

point bending test was done to obtain the bending stiff-
ness of the beam, which was used as an input data for the
current model.

5. RESULTS

Fig. 5.a is the output of current model after simulat-
ing E7T1-2B1/G40-800 DCB specimen with the resin
layer thickness of 35um. The output is compared with
experimental result in Fig. 5.b. The current model has re-
produced the experiment very well. The surface energies

crack
150 length = 52.6mm
60.0mm
70.3mm
80.0mm
£ 100 90.0m{n
B
2
504
0 ; 5 v
0 0.001 0.002 0.003 0.004
displacement [mj]

Fig.5.a Simulationoutput

obtained from the experiment were averaged to be used
in this model. The average fracture energy calculated
from the experiment and that from the current model
matched very closely with an error of less than 1%. The
slopes of the loading and unloading curves were found to
match more closely as the crack length became large
compared with the beam thickness. Bernoulli-Euler
beam theory was used in this model, and its predictions
become more accurate with an aspectratio of bigger than
20 for unidirectional composite beams. It was found that
the slopes of the unloading curves in Fig. 5.b for both ex-
periment and simulation are somewhat lower than they

—— Experiment
---------- Cutrent Model

0 0.001 0.002 0.003 0.004
displacement [m]

Fig.5.b Comparison between experiment and simulatior

would be if the cantilever beam approach was used. This
indicates that the material at the crack tip is displacingup
and rotating as the cracking material is being deformed
due to the external loading. Thus, the ‘slope’ of the crack
flange is never zero at the crack tip. This is in contrast to
a cantilever approximation to the crack flanges. This
nonzero slope was experimentally observed by Parvin
and Knauss [20].

6. CONCLUDING REMARKS

The current model uses fracture energy froma single
laboratory fracture test as an important condition to char-
acterize the spring property. It is insensitive to details at
the crack tip, and therefore is easy to characterize and use
for virtually any kind of mode | fracture specimen. This
model reproduced the fracture tests of unidirectionally
laminated composite beam specimens very closely.

The advantage of the current model is that micro-
scopically behaving cracking material which experiences
high gradients in stress and large strain is separated out
from the global structure which has relatively low gradi-
ents in stress and strain. Another important strength is
that the current model can be utilized to predict the evo-
lution of planar crack propagation with any initial plan-
form shape of crack geometry, whereas fracture
mechanics concepts based on energy release rates cannot
in a straightforward manner (except for simple geome-
tries) be extended to achieve the same tasks (for example
the growth of delaminations of general shapes in impact-
ed laminates; in this case the ‘beam’ theory is replaced
by ‘plate’ theory and the formulation is in a 2D setting).

Our current application of the model can be im-
proved by using 2-D elasticity elements instead of beam
elements as the latter revealed weaknesses for the case of
short crack lengths. A spring model for mode II crack
propagation is being developed using similar concepts. A
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mixed mode failure model, then, can emerge after com-
bining both models in an appropriate manner.
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