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The computational formulation of a new nonequilibrium Reynolds stress closure is pre-
sented along with preliminary validation results for both homogeneous and inhomogeneous
turbulent flow problems of practical engineering importance. The new nonequilibrium
closure, which has been rigorously derived elsewhere,1 replaces the classical Boussinesq
hypothesis appearing in many current two-equation turbulence models with a comparably
simple representation for the Reynolds stresses, thereby allowing straightforward imple-
mentation in existing computational frameworks. The new nonequilibrium closure has been
extended to include a rigorously derived realizable eddy viscosity, and theoretical details of
the closure are evaluated through fundamental tests of periodically and impulsively sheared
homogeneous turbulence. The full computational formulation of the nonequilibrium closure
is outlined for both k-ε and k-ω model frameworks. Finally, preliminary inhomogeneous
flow results are presented using the k-ω framework for turbulent flow over a flat-plate and
the interaction of an impinging oblique shock wave with a turbulent boundary layer.

I. Introduction

Due to the substantial computational resources required for direct numerical simulations (DNS) and
true large eddy simulations (LES) of practical engineering turbulent flow problems, simulation approaches
based on the Reynolds-averaged Navier-Stokes (RANS) equations remain the “state of the practice” for these
types of flows. The single-point RANS equations are obtained by averaging the continuity and momentum
equations, yielding

∂ρ

∂t
+

∂ (ρui)
∂xi

= 0 , (1)

ρ
Dui

Dt
= − ∂p

∂xi
+

∂

∂xj

[
2µSij − 2

3
µSnnδij − ρ u′iu

′
j

]
, (2)

where D/Dt denotes the mean flow material derivative and Sij is the symmetric mean strain rate tensor,
defined as

Sij ≡ 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3)

Solving (1)-(3) requires a physically-accurate closure representation for the Reynolds stress tensor u′iu
′
j

appearing in (2), where primes denote fluctuations relative to the average. This stress tensor can be written
in terms of its isotropic form 2

3kδij and the deviations from isotropy as

u′iu
′
j =

2
3
kδij −

(
u′iu

′
j

)
dev

, (4)

where k ≡ 1
2u′iu

′
i is the turbulence kinetic energy. The anisotropic part (u′iu

′
j)dev can then be equivalently

expressed in terms of the Reynolds stress anisotropy tensor aij , defined as

aij ≡ − (u′iu
′
j)dev

k
. (5)
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Within this framework, a suitable model for the Reynolds stress anisotropy in (5) is required to achieve
closure of (1)-(4). Second-order models2,3 based on the full Reynolds stress transport equation capture much
of the relevant physics governing the evolution of the Reynolds stress anisotropy. However, such models have
not gained widespread acceptance due to the significant computational load required for the solution of
the six coupled partial differential equations involved in such approaches. Issues of numerical stability and
ambiguity surrounding the modeling of higher order terms have also contributed to the general resistance to
Reynolds stress transport modeling.

The most widely used turbulence models are formulated in a framework that introduces the required
closure directly at the level of the second-order single-point moments u′iu

′
j . These are typically based on the

classical equilibrium Boussinesq hypothesis, first introduced in 1877, that assumes the deviatoric stresses
in (4) to be directly proportional to the mean strain rate tensor Sij in (3). The corresponding anisotropy
tensor in (5) is then

aij = −2
νT

k
Sij , (6)

where νT is an eddy viscosity that must itself be modeled, often with a two-equation formulation, to complete
the closure. The vast majority of such two-equation turbulence models differ primarily in how they choose
to represent νT , but fundamentally are based on the equilibrium assumption in (6) that the anisotropy is
proportional to the local instantaneous mean strain rate tensor Sij .

As the computational demands placed upon such two-equation equilibrium RANS models have increased
however, model accuracy and sophistication has proceeded at a somewhat slower pace. In particular, there
is an increasing need to simulate complex inhomogeneous nonequilibrium flows, where the mean strain rate
tensor may be temporally or spatially rapidly varying. Most existing two-equation model frameworks are
incapable of accurately predicting nonequilibrium turbulence effects, and this has largely prevented the use
of RANS simulations as a viable engineering design tool in certain flow problems. For example, the highly
nonequilibrium interaction between turbulence and a shock wave is of substantial importance in the design of
next-generation mixed-compression inlets for propulsion systems, yet the interaction is known to be poorly
predicted by most existing two-equation RANS models.4

The failure of the Boussinesq closure in (6) in nonequilibrium flows is due to the fact that (6) is funda-
mentally an equilibrium expression for the anisotropy that assumes the anisotropy to depend only on the
local instantaneous value of the mean strain rate tensor Sij . However, such a representation fares poorly
when nonequilibrium effects are significant, namely when temporal or spatial variations in flow properties
create large Lagrangian time variations in the strain rate. The underlying dynamics of the anisotropy ten-
sor then cannot remain in equilibrium with the rapidly changing mean strain rate tensor, and the direct
proportionality in (6) becomes inaccurate.

By contrast, here we present the first computational results obtained using a new nonequilibrium Reynolds
stress closure for a range of complex nonequilibrium flow problems. This new closure has been rigorously
derived in previous work,1 and replaces the equilibrium Boussinesq hypothesis appearing in most current two-
equation models with an alternative closure that is comparably simple, and thus can be readily implemented
in existing computational frameworks for solving (1)-(4). In the following, the computational formulation
of the new nonequilibrium closure approach, which has now been extended to include a rigorously derived
realizable eddy viscosity, is presented in full detail for both k-ε and k-ω model frameworks. The new closure
has been implemented in CFL3D, a Navier-Stokes CFD code developed by NASA,5 within the standard k-ω
two-equation model framework.6 Fundamental tests in periodically and impulsively sheared homogeneous
turbulence are used to validate certain aspects of the nonequilibrium closure, and preliminary results obtained
using the full computational formulation are presented for turbulent flow over a flat-plate and the interaction
of an impinging oblique shock wave with a turbulent boundary layer.

II. Nonequilibrium Anisotropy Closure

In the following Section we summarize the derivation of a new anisotropy closure that seeks to include the
principal nonequilibrium dynamics of aij , but that can be readily implemented within existing two-equation
computational frameworks such as those found in standard codes for solving the RANS equations. This
is done by formulating a replacement for the local instantaneous mean strain rate Sij that appears in the
equilibrium closure in (6) with a nonequilibrium effective strain rate tensor S̃ij that depends on the straining
history of the flow. The full derivation of the nonequilibrium closure and the effective strain rate has been
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presented in detail elsewhere,1 and in the following we summarize the key steps leading to the time-local
computational formulation of the nonequilibrium closure. The accuracy of the time-local formulation is
evaluated using periodically-sheared homogeneous turbulence, for which DNS validation data are available
from Yu and Girimaji.7

II.A. Modeled Anisotropy Transport Equation

The new nonequilibrium closure and effective strain rate tensor are rigorously derived from the exact trans-
port equation for the anisotropy tensor aij , which is given in general form as2,3, 8

Daij

Dt
= −

(
P

ε
− 1

)
ε

k
aij +

1
k

[
Pij − 2

3
Pδij

]
+

1
k

Πij +
1
k

[
Dij −

(
aij +

2
3
δij

)
D

]
, (7)

where D/Dt is the mean-flow Lagrangian derivative, ε is the dissipation rate of the turbulence kinetic energy,
Pij is the anisotropy production tensor, P ≡ Pll/2 is the scalar kinetic energy production rate, Πij is the
pressure-strain rate correlation tensor, and Dij is the combined viscous and turbulent transport tensor,
where D ≡ Dll/2. Using the standard representation for the pressure-strain rate correlation that is linear in
aij , namely2,3

Πij = −C1εaij + C2kSij + C3k

(
ailSlj + Silalj − 2

3
anlSnlδij

)
− C4k

(
ailW lj −W ilalj

)
, (8)

the full modeled transport equation for aij is written as

Daij

Dt
= −α1

ε

k
aij + α2Sij + α3

(
ailSlj + Silalj − 2

3
anlSnlδij

)
(9)

− α4

(
ailW lj −W ilalj

)
+

1
k

[
Dij −

(
aij +

2
3
δij

)
D

]
,

where Pij has been exactly expressed in terms of aij , Sij , and W ij . The tensor W ij is the anti-symmetric
part of the velocity gradient tensor, defined as

W ij ≡ 1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
, (10)

and the αi in (9) are given as

α1 = (1 + C0
1 )

P

ε
− 1 + C1

1 , α2 = C2 − 4
3
, α3 = C3 − 1, α4 = C4 − 1 . (11)

The turbulence kinetic energy production P appearing in (11) is given by

P ≡ −u′iu
′
j Sij , (12)

or in terms of aij as
P = −kaijSij . (13)

The Ci coefficients in (11) are given by the particular model for the pressure-strain rate correlation in (8),
and are taken as

C0
1 = 0, C1

1 = 1.5, C2 = 0.8, C3 = 0.875, C4 = 0.655 , (14)

in the Launder, Reece & Rodi (LRR) model,2 and as

C0
1 = 0.9, C1

1 = 1.7, C2 = 0.8− 0.65 (IIa)1/2
, C3 = 0.625, C4 = 0.2 , (15)

in the Speziale, Sarkar & Gatski (SSG) model,3 where IIa ≡ anlaln is the second invariant of the anisotropy
tensor.

Reynolds stress transport (RST) models involve the solution of the full set of six coupled partial dif-
ferential equations for aij represented by (9). Closure of (9) is typically achieved through solution of two
additional equations for the turbulence variables k and ε, as in standard two-equation turbulence models.
However, it has already been noted in Section I that such RST approaches are often accompanied by nu-
merical issues, and simpler algebraic approaches for representing the anisotropy, such as the equilibrium
Boussinesq closure in (6), are more commonly used in simulations of practical applications.
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II.B. Derivation of Nonequilibrium Closure and Effective Strain Rate

Here we seek to retain the principal anisotropy dynamics contained in (9) within a relatively simple repre-
sentation for aij such as that used in (6). From the full modeled transport equation for aij in (9), we propose
a simplified quasi-linear dynamical equation for the anisotropy evolution as1

Daij

Dt
= − 1

Λm
aij + α2Sij , (16)

where Λm is a turbulence memory time scale defined as

Λm ≡ 1
α1

τT , (17)

with τT the characteristic turbulence time scale whose formulation varies depending on the turbulence
variables (either k-ε or k-ω) employed in the closure framework. While (16) lacks many of the higher-
order interactions appearing in the full anisotropy transport equation in (9), it still contains the primary
nonequilibrium (Daij/Dt), relaxation (−aij/Λm), and rapid strain (α2Sij) dynamics governing the evolution
of the anisotropy tensor. Note that the equilibrium anisotropy closure in (6) is obtained from this equation
by neglecting the nonequilibrium dynamics and setting Daij/Dt = 0.

Letting Λm be a constant with respect to the timescale over which (16) must be integrated, the solution
for aij in (16) is a convolution integral of the form

aij(t) =
∫ t

−∞
α2Sij(τ)e−(t−τ)/Λm(t)Dτ . (18)

By noting that8,9
νT

k
≡ −α2

2
Λm , (19)

the convolution in (18) can be equivalently written as

aij = −2
νT

k
S̃ij , (20)

where S̃ij(t) is the effective strain rate tensor defined as

S̃ij(t) =
∫ t

−∞
Sij(τ)

e−(t−τ)/Λm(t)

Λm(t)
Dτ . (21)

The relation in (20) between the anisotropy tensor aij and the effective strain rate tensor thus gives the
general nonequilibrium anisotropy closure hypothesis which replaces the equilibrium anisotropy closure in
(6). Comparison with (6) shows that (20) is still an eddy viscosity formulation, and that it differs from the
classical Boussinesq equilibrium hypothesis only in that the anisotropy tensor is proportional to the effective
strain rate tensor S̃ij in (21), rather than to the local instantaneous mean strain rate tensor Sij .

It has been shown previously1 that the nonequilibrium model given by (20) and (21) provides dramatically
improved results over conventional closure approaches based on (6) in a range of nonequilibrium homoge-
neous test cases, including impulsively-sheared turbulence, periodically-sheared turbulence, turbulence that
is strained, relaxed, and destrained, and turbulence interacting with a normal shock wave. In these homo-
geneous tests the nonequilibrium closure has been implemented in the standard k-ε framework10 where the
eddy viscosity is given as

νT = Cµ
k2

ε
, (22)

with k and ε obtained through solution of the standard modeled transport equations valid for homogeneous
flows, namely

dk

dt
= P − ε , (23)

dε

dt
= (Cε1P − Cε2ε)

ε

k
, (24)
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where P is given in (13). In Ref. [1], the model constants were given the standard values10

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92 , (25)

and despite the dependence of α1 on P/ε in (11), it was found that the constant value

1
α1

≡ CΛ = 0.26 (26)

yielded good agreement with validation data for all nonequilibrium test cases. The resulting memory time
scale in the k-ε formulation is then

Λm = CΛ
k

ε
. (27)

II.C. Time-Local Formulation of Nonequilibrium Model

In order to evaluate the effective strain integral in (21) within a computational framework where only local
instantaneous variables are available, the integral must be written in an equivalent time-local form that
allows S̃ij to be readily evaluated in such implementations. The Lagrangian strain rate history term Sij(τ)
in the convolution integral in (21) can be expanded about the current time t, resulting in

S̃ij(t) =
∫ t

−∞

e−(t−τ)/Λm

Λm

[
Sij(t)− DSij

Dt

∣∣∣∣
t

(t− τ) +
1
2

D2Sij

Dt2

∣∣∣∣
t

(t− τ)2 + · · ·
]

Dτ . (28)

Since the derivatives of Sij do not depend on τ , the integrals appearing in (28) are readily solved, which
yields

S̃ij(t) = Sij(t) +
∞∑

n=1

(−Λm)n DnSij

Dtn

∣∣∣∣
t

. (29)

The form of the effective strain rate tensor in (29) is equivalent to the convolution integral in (21), but allows
a time-local evaluation of S̃ij(t). With the nonequilibrium anisotropy hypothesis in (20), the time-local
form in (29) allows straightforward implementation of the present nonequilibrium model in a computational
framework where only local instantaneous variables are available.

From (20) and (29), the time-local nonequilibrium anisotropy closure suitable for implementation in
traditional computational RANS modeling frameworks is thus written in general form as

aij = −2
νT

k
Sij − 2

νT

k

∞∑
n=1

(−Λm)n DnSij

Dtn
, (30)

and the corresponding full Reynolds stress closure is

u′iu
′
j =

2
3
kδij − 2νT Sij − 2νT

∞∑
n=1

(−Λm)n DnSij

Dtn
. (31)

Implementation of this closure model in two-equation RANS model frameworks is straightforward, and (30)
or (31) directly replace the Boussinesq hypothesis wherever it appears. While in previous work1 the eddy
viscosity νT in (30) and (31) has been determined by the underlying k-ε or k-ω model, in Section III a real-
izable eddy viscosity modification based on a rigorous analysis of the modeled anisotropy transport equation
in (9) will be presented. In the following we will consider periodically-sheared homogeneous turbulence in
order to evaluate the convergence of truncated forms of the time-local expression for the anisotropy in (30)
to the full convolution integral form represented by (20) and (21).

II.D. Time-Local Formulation in Periodically-Sheared Homogeneous Turbulence

To avoid issues of numerical stability and computational complexity as an increasing number of terms are
retained in the expression for the anisotropy in (30), it is of interest to consider how well a truncated form of
(30) reproduces the results of the full convolution anisotropy closure in (20) and (21). This analysis can be
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carried out through consideration of initially isotropic periodically-sheared homogeneous turbulence, where
the applied mean strain rate is defined7 as

S12(t) = S21(t) =

{
0 for t < 0
(Smax/2) sin(ωt) for t ≥ 0

. (32)

This test case provides insight into the accuracy of the time-local formulation of the new closure over a
range of nonequilibrium flow conditions (characterized by the magnitude of the shearing frequency ω/Smax),
as well as the convergence of a reduced form of the time-local anisotropy in (30) to the full convolution
anisotropy in (20) and (21).

Using the full convolution form of the anisotropy in (20) and (21), the shear anisotropy a12 for the
periodic shearing in (32) is given1 as

a12(t) = −νT

k
Smax

[
1

1 + (ωΛm)2

] [
sin(ωt)− ωΛm cos(ωt) + ωΛme−t/Λm

]
. (33)

It is clear from this expression that the nonequilibrium anisotropy has a frequency-dependent amplitude,
phase shift, and offset, in contrast to the shear anisotropy predicted by the equilibrium Boussinesq hypothesis
in (6), namely

a12(t) = −νT

k
Smax sin(ωt) . (34)

Considering the time-local formulation of the anisotropy from (30), the first five terms in the series (n = 5)
yield

a12(t) = −νT

k
Smax

[
1− (ωΛm)2 + (ωΛm)4 + · · ·

]
[sin(ωt)− ωΛm cos(ωt)] . (35)

The sequence
[
1− (ωΛm)2 + (ωΛm)4 + · · ·

]
in (35) is the Taylor expansion about the parameter (ωΛm)2

of the frequency-dependent amplitude term
[
1 + (ωΛm)2

]−1 in (33). The frequency-dependent phase shift
is primarily accounted for by the [ωΛm cos(ωt)] term in (35), and so inclusion of higher-order terms in (35)
serves only to yield better amplitude agreement with the full convolution form in (33).

As shown previously,1 phase results obtained using the full anisotropy closure in (33), where the closure
has been implemented within the k-ε model framework outlined in (22)-(27), agree much more closely with
the DNS results from Yu and Girimaji7 than results obtained using the classical Boussinesq hypothesis, as
shown in Figure 1. The phase difference φ is defined as the separation between the zero crossing points of
the applied mean shear S12 in (32) and the shear anisotropy a12. Considering the n = 1 truncated form of
the time-local nonequilibrium anisotropy from (35), namely

a12(t) = −νT

k
Smax [sin(ωt)− ωΛm cos(ωt)] , (36)

Figure 1 shows that (36) reproduces the phase difference predicted by the full nonequilibrium model in (33)
over a wide range of shearing frequencies. While there is some disagreement between the phase predicted by
(33) and (36) at intermediate frequencies, the truncated form for a12 in (36) is still in much better agreement
with the DNS results7 than the Boussinesq expression for a12 in (34) over all shearing frequencies.

Moreover, Figure 2 shows that the anisotropy evolution for shearing frequencies ω/Smax = 0.125,
ω/Smax = 0.25, and ω/Smax = 0.5 predicted by the n = 1 truncation in (36) is also in good agreement
with the full convolution integral form for a12 in (33). The agreement between the truncated and full forms
is particularly good for the low frequency cases in Figs. 2a,b, although there is a noticeable amplitude dis-
agreement in Fig. 2c for the ω/Smax = 0.5 case. This disagreement is due to the neglect of the higher-order
amplitude terms in obtaining (36) from (35). This indicates – not surprisingly given the expansion in (35) –
that as the degree of nonequilibrium in a turbulent flow increases (which is characterized by the parameter
ωΛm in periodically sheared turbulence), a greater number of terms in the time-local anisotropy expansion
in (30) must be retained to yield physically-accurate results. Nevertheless, while better amplitude agreement
between the full and truncated expressions for a12 in (33) and (35) is obtained by retaining higher-order
terms in the expansion for S̃12, Figures 1 and 2 do indicate that even the n = 1 truncated nonequilibrium
closure in (36) is sufficient to obtain significantly higher-fidelity results for periodically-sheared turbulence
than the classical Boussinesq hypothesis in (6). This suggests that a truncated n = 1 form of the anisotropy
closure in (30), where numerical difficulties are not expected to be prohibitive, is sufficient to give good
results for practical nonequilibrium turbulent flow problems.
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Figure 1. Phase difference between anisotropy a12 and imposed mean shear S12 in periodically-sheared turbulence,
comparing results obtained from n = 1 truncated nonequilibrium closure in (36) (NKE n = 1) with standard k-ε model
in (34) (SKE), full nonequilibrium closure in (33) (NKE), and DNS results from Yu and Girimaji.7
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Figure 2. Temporal evolution of anisotropy a12 for shearing frequencies (a) ω/Smax = 0.125, (b) ω/Smax = 0.25, and (c)
ω/Smax = 0.5, showing results from n = 1 truncated nonequilibrium closure in (36) (NKE n = 1), standard k-ε model in
(34) (SKE), and full nonequilibrium closure in (33) (NKE). DNS results from Yu and Girimaji7 are shown in (c).
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III. Realizable Eddy Viscosity for Nonequilibrium Closure

It is well known that the assumption of a constant eddy viscosity coefficient Cµ, as used for example in
the standard k-ε framework in (22)-(25), is generally inaccurate in flows where the production-to-dissipation
ratio P/ε becomes large. This can be seen explicitly by considering the definition of the eddy viscosity
obtained from (17) and (19) for a k-ε framework, namely

νT = − α2

2α1

k2

ε
. (37)

It is clear from (11) with the coefficients Ci given by the LRR model in (14) that α2 is a constant with value
α2 = −8/15, while α1 depends on P/ε. By extension, (37) indicates that the eddy viscosity also explicitly
depends on P/ε. We can account for this dependence by noting that P/ε is given from (11) as

P

ε
=

α1

1 + C0
1

+
1− C1

1

1 + C0
1

, (38)

and from the definition of P in (13) as

P

ε
= −k

ε
aijSij = −α2

α1

(
k

ε

)2

S̃ijSij . (39)

Defining the variable C̃µ as
C̃µ = − α2

2α1
, (40)

we obtain a quadratic equation for C̃µ from (38) and (39), namely

C̃2
µ −

1
2η2

(
1− C1

1

1 + C0
1

)
C̃µ +

α2

4η2(1 + C0
1 )

= 0 , (41)

which has the solution

C̃µ =





(1−C1
1 )

4η2(1+C0
1 )

[
1−

(
1− 4α2η

2 (1+C0
1 )

(1−C1
1 )2

)1/2
]

for η 6= 0

α2/2(1− C1
1 ) for η = 0

, (42)

where
η ≡ τT

√
S̃ijSij . (43)

Note that k/ε has been replaced with τT in (43) in order to obtain greater generality. The parameter
η contains nonequilibrium information in the form of the effective strain rate tensor S̃ij , in contrast to
previous approaches for limiting the eddy viscosity that depend only on Sij . The resulting eddy viscosity
coefficient C̃µ from (42) is limited to be no greater than the standard value C∗µ = 0.09, namely

Cµ = min
[
C̃µ, C∗µ

]
. (44)

Figure 3 shows the dependence of Cµ from (42)-(44) on the parameter η, where the LRR model in (14) has
been used to obtain values for α2 and the Ci appearing in (42). It is clear from Figure 3 that at η ≈ 3.7 the
value of Cµ begins to decrease with increasing η. This is strongly reminiscent of realizable representations
for Cµ such as the Bradshaw hypothesis, where Cµ is reduced for large values of Sk/ε as

Cµ =

{
0.09 for (Sk/ε) ≤ 3.4
0.31(Sk/ε)−1 for (Sk/ε) > 3.4

, (45)

where S ≡ [
2SijSij

]1/2
. Figure 3 shows that the current nonlinear form for Cµ in (42)-(44) is in rela-

tively good agreement with the Bradshaw hypothesis in (45), where Cµ from (45) is plotted with respect
to Sk/ε instead of η. It should be noted however that C̃µ in (42) has been rigorously derived from the
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Figure 3. Realizable eddy viscosity coefficient Cµ as a function of η or Sk/ε, as predicted by the realizable nonequilibrium
model in (42)-(44) and the realizable Bradshaw hypothesis in (45).

modeled anisotropy transport equation in (9), and additionally accounts for nonequilibrium effects through
the dependence of η on S̃ij as in (43). In the k-ε framework the eddy viscosity is then given by

νT = Cµ
k2

ε
, (46)

while in the k-ω framework it is given by

νT =
Cµ

C∗µ

k

ω
, (47)

where in both cases Cµ is given by (42)-(44).

III.A. Realizable Eddy Viscosity in Impulsively-Sheared Homogeneous Turbulence

The accuracy of Cµ given by (42)-(44) is readily evaluated for impulsively-sheared homogeneous turbulence,
where the applied mean shear is

S12 = S21 =

{
0 for t < 0
S/2 for t ≥ 0

. (48)

While the equilibrium Boussinesq hypothesis in (6) predicts that the shear anisotropy is

a12 = −νT

k
S , (49)

the nonequilibrium closure based on the full convolution effective strain rate integral in (21) yields

a12 = −νT

k
S

[
1− e−t/Λm

]
. (50)

It has already been shown1 that the nonequilibrium anisotropy in (50) provides better agreement with
the LES validation results of Bardina et al.11 than the equilibrium anisotropy in (49) for the initial shear
Sk0/ε0 = 3.4, where the eddy viscosity is represented in both (49) and (50) using the standard k-ε framework
as

νT = C∗µ
k2

ε
. (51)

Now using the realizable eddy viscosity coefficient Cµ from (42)-(44) in place of C∗µ in (51) for the nonequilib-
rium anisotropy in (50), we obtain the results for the kinetic energy evolution shown in Figure 4. All models
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Figure 4. Kinetic energy evolution for initially-isotropic impulsively sheared turbulence for initial shearing frequencies
(a) Sk0/ε0 = 3.4, (b) Sk0/ε0 = 10, (c) Sk0/ε0 = 20, and (d) Sk0/ε0 = 50. Results from the standard k-ε model (SKE), the
nonequilibrium k-ε model (NKE), and the nonequilibrium k-ε model with realizable Cµ given by (42)-(44) (Realizable

NKE) are compared with results from the LRR RST model in (9) and (14). LES validation data from Bardina et al.11

are shown in (a).

have been implemented using the homogeneous k-ε model framework outlined in (22)-(25). In Figure 4, re-
sults from the standard model in (49) with (51), nonequilibrium model in (50) with (51), and nonequilibrium
model in (50) with realizable Cµ given by (42)-(44) are presented for initial shearing frequencies Sk0/ε0 = 3.4,
Sk0/ε0 = 10, Sk0/ε0 = 20, and Sk0/ε0 = 50. In the sense that the realizable nonequilibrium closure ap-
proach presented herein is intended as an approximate solution to the full modeled anisotropy transport
equation in (9), we generally require the realizable nonequilibrium closure results to be in good agreement
with the underlying RST model, which in this case is the LRR model in (9) and (14). Subsequently, results
from the LRR RST model are also shown in Figure 4 for comparison.

It is clear from Fig. 4a that both forms of nonequilibrium closure provide better agreement with the LES
validation results than the standard model in (49), particularly for small times. For the larger initial shear
cases in Figs. 4b-d, both the standard and nonequilibrium anisotropy models substantially overpredict the
kinetic energy magnitude when compared to the LRR model results. By contrast, the realizable nonequilib-
rium closure is in much better agreement with the LRR results and begins to show substantial departures
from the LRR results only for the very large initial shear in Fig. 4d.

IV. Computational Formulation of the Nonequilibrium Anisotropy Closure

The computational formulation of the nonequilibrium anisotropy closure with rigorously derived realizable
eddy viscosity is given as

u′iu
′
j =

2
3
kδij + kaij (52)
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aij = −2
νT

k
S̃ij (53)

S̃ij = Sij +
∞∑

n=1

(−Λm)n DnSij

Dtn

∣∣∣∣
t

(54)

Λm = CΛτT (55)

C̃µ =





(1−C1
1 )

4η2(1+C0
1 )

[
1−

(
1− 4α2η

2 (1+C0
1 )

(1−C1
1 )2

)1/2
]

for η 6= 0

α2/2(1− C1
1 ) for η = 0

(56)

η = τT

√
S̃ijSij , (57)

Cµ = min
[
C̃µ, C∗µ

]
. (58)

The constants in (52)-(58) are taken in the following from the LRR model2 in (14) as

C∗µ = 0.09, CΛ = 0.26, C0
1 = 0, C1

1 = 1.5, α2 = − 8
15

, (59)

although other values such as those in (15) for the SSG model3 are also possible.
The closure formulation in (52)-(59) can be used in any two-equation turbulence modeling framework

that provides a suitable expression for the eddy viscosity. In the widely-used standard k-ε and k-ω model
frameworks, the eddy viscosity νT and turbulence time scale τT are given as

νT = Cµ
k2

ε
, τT =

k

ε
, (60)

for k-ε implementations and

νT =
Cµ

C∗µ

k

ω
, τT =

1
C∗µω

, (61)

for k-ω implementations.

V. Computational Results Using Nonequilibrium Closure

In the following, preliminary computational results obtained using the new nonequilibrium closure are
presented for turbulent flow over a flat-plate, where results can be compared with the Spalding curve fit,12 and
the interaction of an oblique shock wave impinging on a turbulent boundary layer. While the nonequilibrium
anisotropy closure developed herein is formulated as a replacement for the equilibrium closure in (6), it can be
implemented in essentially any two-equation turbulence model that employs that the Boussinesq hypothesis
in (6). For initial testing, the present nonequilibrium closure will be implemented and evaluated within
the framework of the Wilcox k-ω two-equation turbulence model.6 This model is available in CFL3D and
other codes for solving (1)-(4), and allows full integration to viscous walls. In the following, the standard
k-ω model formulation with the nonequilibrium anisotropy closure used in preliminary testing will first be
outlined, and then results for the two inhomogeneous test cases will be presented.

V.A. Standard k-ω Model Framework

The standard k-ω model of Wilcox6 contains essentially the same physics as standard k-ε model approaches,
but is formulated in such a way as to make the near wall damping functions unnecessary. In the standard
formulation, the eddy viscosity is given by the expression

νT =
k

ω
, (62)

where ω is a “turbulence frequency” that is proportional to ε/k. The corresponding transport equations for
k and ω are then

Dk

Dt
= P − β′kω +

1
ρ

∂

∂xj

[(
µ +

µT

σk

)
∂k

∂xj

]
, (63)

Dω

Dt
= Pω − βω2 +

1
ρ

∂

∂xj

[(
µ +

µT

σω

)
∂ω

∂xj

]
, (64)
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where P is defined as in (13), and Pω = 2γSijSji. Standard values of the model constants are6

β′ = 0.09, β = 0.075, κ = 0.41, σk = 2.0, σω = 2.0, γ =
β

β′
− κ2

σω

√
β′

. (65)

For the purposes of initial testing, the nonequilibrium closure is implemented within this framework by
replacing the eddy viscosity in (62) with the nonequilibrium eddy viscosity in (61). The resulting kinetic
energy production term P is then

P = 2
Cµ

C∗µ

k

ω
S̃ijSij , (66)

and the ω production term Pω is

Pω = 2
Cµ

C∗µ
γS̃ijSij , (67)

where Cµ is given by (56)-(58). The effective strain rate in (54) is truncated at the n = 1 term, yielding

S̃ij = Sij − Λm
DSij

Dt
, (68)

where for the k-ω model Λm is given as

Λm =
CΛ

C∗µ

1
ω

, (69)

with CΛ and C∗µ defined as in (59). It was shown in Section II.D for periodically-sheared homogeneous
turbulence that an n = 1 truncation of the effective strain rate such as that in (68) was sufficient to give
good modeled results for a range of shearing frequencies. In order to maintain computational stability using
the truncated form of the effective strain rate, the quantity S̃ijSij in (67) and elsewhere is limited to be
within 50% of SijSij . This restriction can be relaxed as additional terms are retained in the expansion for
the effective strain rate tensor.

In the following, results for the nonequilibrium k-ω model are compared with standard k-ω model re-
sults for inhomogeneous flat-plate and shock-boundary layer test cases. Implementation and testing of the
nonequilibrium closure have been carried out in CFL3D,5 and calculation of the Lagrangian derivative of
the mean strain rate tensor, namely DSij/Dt, is the most computationally intensive aspect of the new
closure framework. Nevertheless, the overall computational complexity of the new closure approach is still
substantially lower than full RST models.

V.B. Flat-plate Boundary Layer

Figure 5 shows the streamwise velocity in wall coordinates obtained using the nonequilibrium k-ω model for
incompressible M = 0.2 boundary layer flow over a flat-plate. Nonequilibrium model results are compared
with those obtained using the standard k-ω model.

The nonequilibrium k-ω results in Figure 5 show an exact correspondence with the underlying standard
k-ω model, as is expected since DSij/Dt = 0 along the flat-plate. Both the standard and nonequilibrium
k-ω model results are in good agreement with the Spalding curve fit,12 as expected.

In a sense, the flat-plate boundary layer is a consistency check for the new model approach, since boundary
layer and channel flows are essentially equilibrium flows where mean flow Lagrangian derivatives of flow
properties are small, resulting in Sij = S̃ij .

V.C. Shock Interaction with Turbulent Boundary Layer

From a turbulence modeling perspective, the interaction of a shock wave with a turbulent boundary layer
remains relatively poorly understood.13,14 Studies of the interaction have traditionally focused on geomet-
rically simple compression ramp and impinging oblique shock flows, but in recent years there has been
increased interest in shock-boundary layer flow control for more sophisticated defense and aerospace ap-
plications. This has, in turn, led to a renewed effort within the scientific and engineering communities to
develop improved turbulence models for simulation of the interaction, in part through more advanced direct
numerical simulation (DNS) and experimental studies of basic shock-boundary layer flows.15,16 Impinging
shock flows are particularly advantageous for the study of fundamental shock-boundary layer physics since
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Figure 5. Mean streamwise velocity for turbulent flow over a flat-plate. The new nonequilibrium k-ω results are
compared with results from the standard k-ω model,6 as well as the Spalding curve fit.12

the interaction dynamics can be studied in the absence of curvature effects (which are present in compression
ramp flows, and are a separate problem).

Currently the most poorly understood, and by extension poorly modeled, feature of impinging shock
flows is the separation bubble that forms when a strong shock interacts with the turbulent boundary layer.
Several researchers4,17,18 have described the failure of both linear eddy viscosity models and more advanced
nonlinear eddy viscosity models in simulating impinging shock flows, and in particular the following three
shortcomings have been noted:

(i) the location and extent of the separated flow region are poorly predicted computationally,

(ii) the turbulence kinetic energy both within and downstream of the interaction region is poorly
predicted,

(iii) the location of the reflected shock emanating from the interaction region for an impinging oblique
shock flow is often incorrect.

The third point is related to the first two, and if the simulated separation region and turbulence kinetic
energy can be made more accurate then the location of the reflected shock will also improve.

In the following we apply the new nonequilibrium closure to the simulation of an M1 = 2.9 oblique
shock impinging on a turbulent boundary layer, where the flow deflection angle is θ = 13◦. This results
in a relatively strong shock wave with an angle of β = 30.96◦. A schematic of the simulation domain and
boundary conditions is shown in Figure 6, and flow parameters used to initialize the simulation are listed in
Table 1. Only the region immediately surrounding the shock wave impingement point was calculated in the
simulation. The interaction region was taken to be two-dimensional for the computations, and x = 0 in the
streamwise direction corresponds to the inviscid shock impingement point.

Figures 8-9 show results for the turbulence kinetic energy k, the Reynolds shear stress u′v′, and the mean
streamwise velocity U obtained using the standard and nonequilibrium k-ω models for the shock-turbulent
boundary layer test case outlined in Table 1. All three Figures show that the interaction region predicted
by the nonequilibrium k-ω model is much smaller than that predicted by the standard k-ω model. Figure
8 shows that the overall turbulence kinetic energy magnitude is greater for the nonequilibrium model than
for the standard model, particularly downstream of the shock impingement point. Both the standard and
nonequilibrium models predict a thickening of the boundary layer after the shock-boundary layer interaction,
although the nonequilibrium model predicts a smaller post-interaction thickness compared to the standard
model, as shown in Figure 9.

While there are substantial differences between the standard and nonequilibrium model results in Figures
8-9, comparison with high-quality experimental or computational validation data is required to fully assess
the accuracy of both approaches. The current shock-boundary layer case is similar to the impinging shock
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Figure 6. Schematic of the computational domain showing all boundary conditions and flow properties. The incoming
pre-shock flow parameters at the left boundary are denoted by the subscript 1 and the post-shock flow entering the
top of the computational domain at angle θ is denoted by 2. The subscript ‘t’ denotes a stagnation variable, while the
subscript ‘∞’ denotes a freestream variable.

Parameter Value Parameter Value
M1 2.9 M2 2.28
θ(◦) 13 Pt2/P∞ 29.46
β(◦) 30.96 Tt2/T∞ 2.68
Re/L∞ (×10−6) 57 Tt∞(K) 291
Pt1/P∞ 31.59 T∞(K) 108.50
Tt1/T∞ 2.68 Tw/T∞ 2.50

Table 1. Table of parameters used to initialize the SBLI computations. The incoming pre-shock flow properties
are denoted by the subscript 1 while the post-shock flow properties are denoted by 2. The subscript ‘t’ denotes a
stagnation variable, while the subscript ‘∞’ denotes a freestream variable. The post-shock flow deflection angle is θ,
and the shock angle is β, both measured in negative degrees with respect to the x axis. The boundary layer width δ0/L∞
at the beginning of the interaction region is taken from the validation data and the wall temperature ratio Tw/T∞ is
determined using an adiabatic wall with a recovery factor of rf = 0.89.

experiments of Reda & Murphy19 and Modarress & Johnson,20 for which only limited validation data are
available. There is now a substantial need in the engineering community for high-quality validation data
of strong oblique shock waves impinging on turbulent boundary layers. This would allow a more complete
evaluation of the physical-accuracy of the new nonequilibrium closure approach. A full three-dimensional
simulation using the nonequilibrium model – instead of the two-dimensional simulation presented herein –
is also required in order to assess the new model under more realistic flow conditions.

VI. Conclusions

The full computational formulation of a new nonequilibrium anisotropy closure has been presented. The
new closure accounts for strain history effects through an effective strain rate tensor, and also includes a
realizable eddy viscosity that is rigorously derived from the governing anisotropy transport equation. The
time-local representation and realizable eddy viscosity in the new nonequilibrium closure have been evaluated
using fundamental tests of periodically and impulsively sheared homogeneous turbulence.

An initial form of the full nonequilibrium computational approach has been implemented in CFL3D
within the standard k-ω model framework. As expected, the nonequilibrium k-ω model yields identical
results to the standard k-ω model for boundary layer flow over a flat-plate, due to the fact that mean flow
Lagrangian derivatives of Sij are small. Results for an oblique shock wave impinging on a turbulent boundary
layer, where the initial Mach number is M1 = 2.9 and the flow deflection angle is θ = 13◦, indicate that the
nonequilibrium model predicts increased kinetic energy within the interaction region, a smaller interaction
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region, and a thinner post-interaction boundary layer.
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